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Abstract The evolutionary events in organisms can be 

tracked to the transfer of genetic material. The inheritance 

of genetic material among closely related organisms is a 

slow evolutionary process. On the other hand, the move-

ment of genes among distantly related species can account 

for rapid evolution. The later process has been quite evident 

in the appearance of antibiotic resistance genes among hu-

man and animal pathogens. Phylogenetic trees based on 

such genes and those involved in metabolic activities refl ect 

the incongruencies in comparison to the 16S rDNA gene, 

generally used for taxonomic relationships. Such discrep-

ancies in gene inheritance have been termed as horizontal 

gene transfer (HGT) events. In the post-genomic era, the 

explosion of known sequences through large-scale sequenc-

ing projects has unraveled the weakness of traditional 16S 

rDNA gene tree based evolutionary model. Various meth-

ods to scrutinize HGT events include atypical composition, 

abnormal sequence similarity, anomalous phylogenetic dis-

tribution, unusual phyletic patterns, etc. Since HGT gener-

ates greater genetic diversity, it is likely to increase resource 

use and ecosystem resilience.

Keywords Evolution · Phylogeny · Horizontal gene 

transfer

Introduction

Organismal evolution of living beings occurs largely 

through transfer of genetic material. This process is pri-

marily instrumental in vertical inheritance among closely 

related organisms. The creative evolutionary movement of 

genetic information among remotely related species has 

been traditionally resisted by biologists. The skepticism 

around this evolutionary route is largely due to lack of ex-

perimental explanations and quite a few cases, which failed 

on closer scrutiny [1]. The most widely accepted forms of 

horizontal transfer of genetic information have been the 

evolution of eukaryotic chloroplasts and mitochondria 

as bacterial endosymbiotes [2, 3]. Protists (microbial eu-

karyotes) have existed as parasites with relic genomes [4]

and anaerobic protists seem to have acquired hydrogeno-

somes via multiple endosymbioses [5]. It sparked interest 

in 1944, when scientists began accumulating experimental 

evidences on the ability of microbes to uptake ‘naked’ 

DNA from their environment and incorporate it in to their 

genomes [6]. The main question for almost a century has 

been whether these horizontal movements of genes occur 

at a rate that signifi cantly infl uences evolution. In the pre-

genomic era, it has been diffi cult issue to deal [7], however, 

in the post-genomic era, the subject has been reviewed quite 

vigorously [1, 5, 8–16]. During this period, more and more 

candidates for the wonderful natural events of horizontal 

(Lateral) gene transfer (HGT) have been identifi ed. Hori-

zontal gene fl ow is being viewed as a competitive model 

for the origin of microbial diversity [17]. In view of the 

evidences that most archaeal and bacterial genomes and 

certain eukaryotes contain genes from multiple sources 

[9], “chimerism” or HGT cannot be dismissed as a trivial 

issue. Particularly so since different estimates refl ect that 
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2 to 60% of all prokaryotic genes have been affected by 

HGT [18, 19]. HGT blur taxonomic boundaries and such 

cases are impossible to predict [20]. These cause profound 

disagreements. It does not come as a surprise that it is one 

of the most controversial topics in evolutionary microbiol-

ogy [19, 21].

The need for HGT 

Under challenging environmental conditions, organisms 

draw from a pre-existing genetic repertoire, which may not 

be suffi cient to ensure their survival. DNA rearrangements 

often result in novel combinations of existing functionalities. 

Most natural mutations stem from mutations in the Mismatch 

Repair System (MRS), which increases mutation rate and 

confer a hyper-recombination phenotype [22]. Acquired 

genes play a major role in bacterial diversifi cation and al-

low rapid exploitation of new environments [20]. Extensive 

HGT accelerates niche invasion and genes that confer advan-

tages against host defense mechanism may be shared widely 

among pathogens [23]. Approximately 250 HGT events 

within Synechococcus-Prochlorococcus clade, and >150 

in γ-Proteobacterial genus, Pseudomonas alone have been 

recorded [23]. Among these, Proteobacteria and Low G+C 

Gram-positive best represent long distance HGT [23]. 

Many bacterial operons confer highly benefi cial func-

tions that may be of long-term use to their new hosts: such 

functions include biosynthesis of amino-acids, co-factors or 

other metabolites, the degradation of compounds as carbon 

or nitrogen sources or transport of metabolites. Simultane-

ous transfer of all genes is required for such functions to 

be conferred to the host. Organization of these genes in to 

operons is primarily benefi cial to the constituent genes. It is 

a selfi sh property since clustered genes can propagate suc-

cessfully and their co-regulation would be most benefi cial 

[24]. For example, the phd/doc system of bacteriophage P1 

prevents the host death / death on curing, encoding a long-

lived toxin (e.g., Doc) and a short-lived antidote (Phd). 

Deletion or loss of these genes from the cell will allow 

toxin to outlive its antidote and cause cell death. Hence, 

cells are addicted to the presence of antidote. The proximal 

location of toxin- and antidote-encoding genes is selfi sh in 

that it allows the effective co-transfer in to naïve genomes 

– transfer of one gene without the other is useless [24]. 

Similar situations also hold good for Type II restriction / 

modifi cation systems, organization of antibiotic resistance 

gene [24]. Horizontal transfer of selfi sh operons most 

probably promotes bacterial diversifi cation [24]. Transfer 

of operons en block, however, provides a selective ad-

vantage by furnishing new metabolic capacities, resulting 

in simultaneous generation of several aberrant gene pairs. 

Although co adapted nature of genes can accelerate the 

co-transfer of genes contributing to a single function, the 

Selfi sh operon model predicts that clusters of functionally 

related genes can colonize naïve genomes or genomes hav-

ing lost two genes of a single pathway [25]. The Salmonella 

typhimurium cob operon, the organization of the cobalmin 

(Coenzyme B
12

) biosynthetic operon and the propanediol 

degradation (pdu) operon, exemplifi es the introduction of 

a new degradative pathway and the biosynthetic pathway. 

The adjacent location of the cob (cobalmin (Coenzyme B
12

) 

biosynthetic) and pdu operons demonstrates that an organ-

ism by horizontal transfer may gain complex functions [26, 

27]. Many such introgressed operons have been identifi ed 

within the Escherichia coli and S. typhimurium chromo-

somes [25]. A remarkable similarity between the structure 

and sequence of the trp (tryptophan biosynthesis) operon in 

Brevibacterium lactofermentum and of enteric bacteria can 

be accounted for by the process involving loss and reacqui-

sition of genes [28].

In a “catastrophic” situation, it will be benefi cial for or-

ganisms to share their individual capabilities and survive. 

This might have forced dissemination of gene cluster (oper-

ons) involved in the catabolism of xenobiotics in polluted en-

vironments [29–33]. Arsenic resistance in microbes through 

arsB gene (conferring arsenite, As [3+], resistance) seems 

to have evolved in response to changes in redox conditions, 

by an event of duplication of arsA gene [34] and subsequent 

HGT events [35]. In key biogeochemical cycles, microbial 

sulfate reduction pathway has been shown to evolve early in 

Earth’s history [36]. Most living sulphate-reducing microbes 

belong to bacterial groups, with archaea, Archaeoglobus 

species as exceptions. It seems Archaeoglobus species have 

acquired the gene for dissimilatory sulfi te reductase (dsr), a 

key enzyme in sulfate reduction, through HGT [37]. 

Whole-genome comparisons have uncovered sets of 

genes that are restricted to organisms that have indepen-

dently adapted to a common life style such as Archaeal 

and Bacterial hyperthermophiles [38] or the intracellular 

pathogens Rickettsia and Chlamydia [39]. This movement 

has happened across intergenic boundaries including the 

Gram-positive and Gram-negative barrier. In fact massive 

HGT from endosymbiotic bacteria to the nucleus forms 

the basis of the theory of the origin of eukaryotes [40]. The 

evolutionary analysis of 31 photosynthetic genes shows 

that the earliest photosynthetic organisms diverged from 

a bacterial lineage (Proteobacteria) [41]. HGT and result-

ing phylogenetic incongruities document the process of 

gene-transfer-mediated organismal diversifi cation [10]. 

These characteristics contribute signifi cantly to enhance 

evolutionary rates, which may be further accelerated by 
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environmental stimuli. Gene swapping (HGT) is perhaps 

an important mechanism of biological insurance against 

sudden geochemical changes and perhaps also shortens 

time-scale for succession [42]. 

Agents of HGT

The evolution of microbes occurs mainly through trans-

formation, conjugation and transduction. However, the 

genetic mechanisms for acquisition and dissemination are 

enhanced through mobile genetic elements, gene cassettes, 

transposons, plasmids and bacteriophages [43–45]. The 

mobilization of resistant determinants has occurred with the 

aid of transposons, where the gene conferring a selectable 

phenotype is fl anked by two insertion sequences. For ex-

ample, insertion sequence IS10 fl ank a tetracycline resistant 

determinant and a regulatory gene to form transposon Tn10. 

Similarly, IS50 elements fl ank an operon that confers resis-

tance to kanamycin, bleomycin and streptomycin to form a 

transposon Tn5 [46]. These transposons can integrate into 

the chromosomes of phylogenetically diverse bacterial 

species. Integrons, on the other hand, incorporate promoter-

less genes, there by converting them into functional genes 

[46]. Integrons have been implicated in the acquisition of 

virulence determinants by the cholera-causing bacterium, 

Vibrio cholerae [47]. Unlike the acquisition of antibiotic re-

sistance, adoption of a pathogenic life style usually involves 

a fundamental change in a microorganism’s ecology. The 

pathogenic strains of Streptococcus pneumoniae [48], Neis-

seria meningitidis [49, 50] and N. gonorrhoeae [51] were 

originally sensitive but have recently acquired resistance to 

antibiotics. The appearance of multicellular organisms has 

provided bacteria with new environments, whereby they 

acquired virulence. Most pathogenicity genes are located 

in the bacterial chromosome as pathogenicity islands (PAI). 

These resemble defective bacteriophages and plasmid me-

diated conjugate systems or compound transposons [52]. 

The sporadic phylogenetic distribution of the pathogenic 

organism fi nds support from the discovery that horizontally 

acquired PAIs, which are the major contributors to the viru-

lent nature of many pathogenic bacteria [8,52] for example 

70 kb PAI-1 of uropathogenic E. coli [53], 35 kb LEE island 

of enteropathogenic E. coli [54], 24 kb SH1-3 island of Shi-

gella fl exneri [55,56] and 17 kb SP1-3 island of Salmonella 

enterica [57].

Detection of Horizontal gene transfer

Evidences for acquisition of genetic material for a character 

from a donor organism are derived largely from the avail-

able sources rather than actual observations. Gene transfer 

event involves introduction of DNA in a lineage, where 

the acquired character is limited to the descendants of the 

recipient and absent from closely related taxa. It results in a 

restricted phylogenetic distribution. DNA segments gained 

through HGT often display a scattered phylogenetic distri-

bution among unrelated strains or species [12, 13]. These 

species-specifi c DNA regions may show unduly high levels 

of DNA or protein sequence similarity to genes from oth-

erwise divergent taxa [10]. Most of the methods for detect-

ing HGT include atypical composition, abnormal sequence 

similarity (i.e. greatest similarity with a gene from distantly 

related species), anomalous phylogenetic distribution and 

unusual phyletic patterns. [12, 13, 58, 59]. 

Atypical composition and codon usage

The genome composition in terms of the bases G and C 

(G+C content) varies signifi cantly as a function of the posi-

tion within the codon. The overall G+C content is computed 

by considering all of the nucleotides in a genome [60]. A 

comparison of any two homologous DNA regions that dis-

play an abrupt change in similarity raises the possibility of 

a mosaic structure and hence a horizontal transfer [20]. An-

other criteria for identifying horizontal transfers is to com-

pare codon usage of a gene with the codon bias of the host 

organism. The codon usage patterns generally differ sig-

nifi cantly from organism to organism [61, 62]. Thus, genes 

whose nucleotide or codon composition are signifi cantly 

different from the mean for a given genome are considered 

as probable horizontal acquisitions [60, 63–66]. Codon 

bias can be used to support more compelling evidences. In 

E. coli and S. typhimurium 90% genes are closely related, 

10% of the genome in S. typhimurium encodes functions 

not found in E. coli. GC contents in these unique genes are 

frequently signifi cantly lower than the 50% average for the 

entire genome i.e., remote origins for these regions [67]. 

The spa gene (secretion of Ipa proteins) of Salmonella 

spp. has a GC content of ~30–40%, which is atypical of S. 

typhimurium coding sequences [68]. In addition, its homo-

logues are also not found among taxa closely related to Sal-

monella [68]. The mosaic pattern of GC content among spa 

genes suggest that like the rfa and rfb operons, (lipopoly-

saccharide synthesis) the spa operon may represent another 

example of an operon of genes assembled from different 

chromosomes. S. typhimurium oad (oxaloacetate decarbox-

ylase) operon have aberrant GC contents ~65% G+C and 

87% G+C in the third codon position. cat (chloramphenicol 

acetyltransferase) operon of Acinetobacter calcoaceticus 

has a mosaic structure indicative of recent assembly from 
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multiple sources [69]. rfa (35–39% GC); rfb (31–40% 

GC); pdu (59% GC); cob (alamin adenosyltransferase, 59% 

GC) all show GC contents atypical of the S. typhimurium 

genome`. A large number of S. enterica genes, which are 

absent in other enteric species including E. coli, have base 

compositions that differ signifi cantly from the overall 52% 

G+C content of the entire chromosome [64, 70]. Within 

S. enterica, certain serovars (with distinct fl agellar com-

position and /or lipopolysaccharide surface antigens) may 

contain more than a megabase of DNA not present in other 

serovars, as assessed by a genomic subtraction procedure. 

The base composition of these serovar-specifi c sequences 

suggests that at least half were gained through HGT [71]. 

The genome of Thermotaga maritima has an average

G+C content of 46%. Within the rRNA operon (16S-23S-

5S), the spacer regions are occupied by isoleucine transfer

RNA and alanyl tRNA. These spacer regions have a

signifi cantly higher G+C content of 62%. This contrasts 

with a region of signifi cantly lower G+C content (34%) en-

coding lipopolysaccharide biosynthesis (LPS) proteins. On 

the basis of analysis of G+C ratio, G-C skew (G-C/G+C) 

and asymmetric distribution of oligomers, a characteristic 

bacterial origin of replication identifi ed in T. maritima ge-

nome was also observed in the genomes of Archaea Metha-

nococcus jannaschii [72] and Archaeoglobus fulgidus [73]. 

Such evidences support HGT between archaea and bacteria 

[74]. 

Genome’s composition i.e., G+C content was initially 

proposed as its signature [60]. Due to periodicity of the 

DNA code, it was implied by the organization of the cod-

ing regions into codons. Since G+C content varies signifi -

cantly as a function of the position within the codon, four 

discrete G+C content signatures can be identifi ed. The fi rst 

corresponds to the overall G+C content and is computed 

by considering all of the nucleotides in a genome. Each 

of the remaining three signatures are denoted by G+C(k), 

with k = 1,2,3. Each number corresponds to the value of the 

G+C content as the latter is determined by considering only 

those nucleotides occupying the kth position within each 

codon; unlike the G+C signature which is computed across 

all genomic positions, only coding regions are used in the 

computation of G+C(k) [16].

A related variation of the G+C(k) content idea is the 

Codon Adaptation Index (CAI) [75], where only coding re-

gions are used in its computation, unlike the G+C signature 

which is computed across all genomic positions [16]. CAI 

measures the degree of correlation between a given gene’s 

codon usage and the codon usage that is deduced by consid-

ering only highly expressed genes from the organism under 

consideration [76]. Karlin et al [77] found that the codon 

biases observed in ribosomal proteins deviate the most from 

the biases of the average gene such as in E. coli. On the 

basis of this observation, they defi ned ‘alien’ genes as those 

genes whose codon bias was high in comparison to the one 

observed in ribosomal proteins and also exceeded a critical 

level when compared to that of the average gene.

Abnormal sequence similarity 

A gene sequence from a particular organism shows the 

strongest similarity to a homolog from a distant taxon 

forms the basis for horizontal transfer hypothesis. For ex-

ample, TM0005 of T. maritima (a bacteria) is most similar 

to archaeal genes: of these, 451 (24%) have best-hits in 

Archaea. These may be the thermophilic genes. Majority 

of housekeeping functions are most similar to orthologues 

in eubacterial species. In contrast, 49% of transporters and 

42% of conserved hypothetical proteins are most similar 

to archaeal genes [74]. Wide variation has been observed 

in the size and organization of 19 genomes analysed, and 

the amount of horizontally acquired DNA represented - as 

those open reading frames (ORFs) whose sequence charac-

teristics depart from the prevalent features of their resident 

genome - ranges from virtually none in some organisms 

with small genome sizes, such as Rickettsia prowazekii, 

Borrelia burgdorferi and Mycoplasma genitalium, to nearly 

17% in Synechocystis PCC6803 [60]. 

Unusual Phyletic Patterns

Phyletic patterns represent the distribution of clusters of 

orthologous groups (COGs) across genomes [78, 79]. 

These are useful for tracking the evolutionary events such 

as vertical gene inheritance, gene loss and horizontal trans-

fer. These can also be used as a post-homology method of 

predicting protein function and provide clues to the prevail-

ing trends in genome evolution [80]. This was based on the 

assumption that genes/COGs encoding functionally linked 

proteins are co-inherited (simultaneously present or simul-

taneously absent) in the same subsets of genomes. Phyletic 

patterns are coded as strings of bits, standing for presences 

or absences of homologs in different genomes. The Ham-

ming distance of 3 bits or less between phyletic patterns is a 

useful similarity threshold for detecting functionally linked 

genes [81]. Generally speaking, phyletic patterns are binary 

vectors in species space and distance between them can be 

measured in different ways: primarily through a graph in 

which the number of automatically identifi able, biologi-

cally relevant clusters are maximized. These unusual, rare 

patterns are of particular interest, suggesting the possibility 

of differential gene loss and horizontal transfer of genes 
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[78, 79]. Of the COGs represented in all archaea, 16 so far 

have no members from other domains of life and comprise 

a unique archaeal genomic signature, whereas 61 are exclu-

sively archaeo-eukaryotic. This archaeo-eukaryotic com-

ponent shows that the process of evolution has been more 

complex than simple vertical inheritance and has involved 

extensive HGT between archaea and bacteria, at least out-

side the core gene set [82-84]. Phylogenetic reconstruction 

might be more reliable method for identifying HGTs [85].

Anomalous phylogenetic distribution 

Another method that has been used to determine whether 

HGT has occurred involves inferring evolutionary trees 

for many genes in many genomes. It takes into account the 

presence or absence of a gene (or gene family) on a phylo-

genetic tree. Consistent gene presence in a clade indicates 

that the corresponding gene was present in the ancestor of 

that clade, whereas occasional absence of a gene might 

result from gene loss. A fragmented distribution of a gene 

family across very distantly related species is indicative 

of horizontal gene transfer (HGT) events [59]. And these 

phylogenies of individual genes or proteins are not in com-

plete accord with ribosomal RNA (rRNA) phylogeny [86]. 

Thus it is important that at least two criteria are matched 

for constructing phylogenetic trees: 1) establish orthol-

ogy relationships between genes; and 2) translate gene 

presence-absence data into a tree structure. These targets 

can be achieved by various routes: i) defi ning orthologus 

as intergenomic best hits (BeTs) and converting it in to 

intergenomic distances; using these to build hierarchical 

classifi cation trees [87-89] ii) using BLAST E-values to 

establish homology for computing intergenomic distances 

and construct trees [90] iii) using intergenomic FASTA 

z-scores followed by single linkage clustering to identify 

orthologous groups, then apply PARSIMONY ANALYSIS 

to reconstruct trees [91,92]; iv) use clusters of orthologous 

groups of proteins (COGs) [79] and build either parsimony 

[93] or least-squares trees [94] which are good for small 

set of gene sequences [57,95,96]; or apply distance based 

method, for larger set of gene sequences [97]; v) use the 

co-effi cient of co-occurrence of genomes in COGs for 

calculating intergenomic distances and construct neigh-

bour-joining trees [98]; vi) compute the ratio of orthologs 

(identifi ed as reciprocal BeTs) to the number of genes in 

the smaller genome and construct least-squares trees [99]; 

vii) build dendograms on the basis of the predicted protein 

fold composition of genomes [94,100]. Comparisons of 16S 

rRNA sequences have revolutionized the understanding of 

the diversity and phylogenetic relationships of all organ-

isms [101]. Therefore, to better understand the extent of 

mosaicism within species, it is important to compare and 

contrast the relationships of other molecules with those of 

16S rRNA. 

Although the trees produced by these different approach-

es may not be directly comparable, however, several major 

trends are recognizable. The major factor, which determines 

tree topology, appears to be the magnitude of gene loss dur-

ing evolution. The major lineages and plasticity of prokary-

otic genomes can be assigned to selective pressure during 

the adaptation to the environment e.g., parasitism in Proteo-

bacteria. Removal of parasites from the analysis [91,92] or 

normalization of the intergenomic distances [88,89] results 

in reasonable phylogenetic reconstructions. Deletion of 

obviously foreign (horizontally transferred) genes from 

the analysis strengthens the ribosomal gene trees [102]. 

Ribosomal gene-based analysis was also substantiated by 

those constructed on the basis of gene content in the entire 

genomes [91]. On the other hand, a combination of any of 

these methods and a proper calculation of evolutionary dis-

tances results in correct trees. 

Tree of Life

Molecular systematics has become the primary way to 

determine evolutionary relationships among microorgan-

isms because morphological and other phenotypic char-

acters are either absent or change too rapidly to be useful 

for phylogenetic inference [103, 104]. Living organisms 

were categorized as eubacteria and eukaryotes, until Woese 

[105, 106] gave a new dimension to this concept. Accord-

ing to rRNA trees, the Archaea has two major kingdoms: 

Crenarchaeota and Euryarchaeota [103]. The kingdom 

Crenarchaeota generally consists of hyperthermophiles or 

thermoacidophiles where as the kingdom Euryarchaeota 

spans a broader ecological range to encompass hyperther-

mophiles, methanogens, halophiles and even thermophilic 

methanogens. Archaea have certain metabolic regimes, 

which differ greatly from those operating in Bacteria and 

eukaryotes [107–109]. Evolutionary trends derived from 

single-gene trees of metabolic and biosynthetic enzymes 

provide no clear support for any particular grouping of 

domains. On the other hand, gene-trees based on informa-

tional enzymes, tend to more solidly support the sisterhood 

of the Archaea and eukaryotes. Many potential candidates 

have been chosen to generate phylogenetic trees similar 

to those generated from 16S rRNA, for example HSP70 

(eukaryotic chaperonin), GroEL (bacterial chaperonin), EF-

TU (Translation Elongation factor Tu), ATPase-ß-subunit, 

23S rRNA, RNA polymerases and RecA (Recombinase A) 
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[101]. Prokaryotic and eukaryotic evolutionary pattern has 

been drawn largely on the basis of some highly conserved 

gene portions of 16S rRNA [100, 101]. The accumulating 

database of 16S rRNA sequences, which now includes over 

471,792 annotated (16S rRNA) sequences, provides an ex-

tra incentive to focus on this molecule [110]. Although 16S 

rRNAs have been stably transferred between species, other 

genes may not have been similarly transmitted [111]. Inci-

dentally, even ribosomal RNA shows evidence of HGT over 

certain portions [112]. A combination of cladistic analysis 

and traditional phylogenetics has the potential of making a 

convincing case for HGT [113].

Save or abandon the tree

The ribosomal RNA (rRNA) sequence based phylogenetic 

analysis resulted in a “standard model” of evolutionary 

(species) tree [103, 104, 114, 115]. However, in the pres-

ent genome era, the validity of rRNA based species tree 

is being questioned as incongruencies between topologies 

and phylogenetic taxonomy are recorded rather frequently 

[13, 19–21, 38, 58, 66, 86]. Genome comparisons indicate 

that HGT and differential gene loss are major evolutionary 

phenomena that involve a large fraction of genes in pro-

karyotes. The magnitude of these happenings casts doubt 

on the “Tree of Life’. The present trend of constructing evo-

lutionary tree is more of a genome-scale gene trees rather 

than a “complete” demonstration of evolutionary process. 

The ring like representation provides a broad phylogenetic 

framework for testing theories for the origin and evolution 

of eukaryotic genomes [15]. This scheme based on analyz-

ing whole genome sequences thus is a radical departure 

from conventional thinking. It allows HGT to be used in 

assessing genome based phylogeny and it recovers the con-

nection between prokaryotes and eukaryote genomes [14]. 

Microbes frequently involved in HGT 

Extent of HGT

The availability of complete genomic sequences provides 

an opportunity to quantify the amount of horizontally trans-

ferred sequences among diverse microbes, which varies 

from virtually none in some organisms (with small genome 

size) such as R. prowazekii, B. burgdoferi and Mycoplasma 

genitalium to nearly 17% in Synechocystis PCC6803 ge-

nome [60]. Recent evidences suggest that HGT is a major 

and continuing force in archaeal and bacterial evolution 

e.g., 18% ORFs in E. coli genome [116] were introduced 

since this species diverged from the Salmonella genomes 

supports HGT. Methanococcus jannaschii has informa-

tional genes for translation, transcription, replication and 

protein secretion being much more similar to eukaroytes 

than bacteria. The operational genes, responsible for the eu-

karyote on the other hand were most closely related to their 

counterparts found in E. coli and Synechocystis [117]. 

Methanogen, A. fulgidus [73] bears many genes for 

fatty acid metabolism that are unknown in other archaeal 

genomes. Tryptophan biosynthesis pathway A. fulgidus 

seems very closely related to eubacterium Bacillus subtilis 

even though large distances separate these two on the 16S 

rRNA tree. The hyperthermophilic Eubacteria Aquifex aeo-

licus and T. maritima each contain a large number of genes 

that are most similar in their protein sequences and in some 

cases, in their arrangements, to homologues in thermophilic 

archaea. Twenty four per cent of Thermotaga’s 1,877 ORFs 

[74] and about 16% of Aquifex’s 1,512 ORFs display their 

highest match to an Archaeal protein. On the other hand, 

mesophilic organisms such as E. coli, B. subtilis and Syn-

echocystis have much lower proportion of genes that are 

most similar to Archaeal homologues [38]. Signifi cant 

transfer of genes from plants to bacterium, Deinococcus 

radiodurans [118] illustrates the scope of HGT. Table 1 

illustrates certain microbes that are frequently involved in 

HGT. 

Transcription and regulatory activities

DNA dependent RNA polymerases (DdRp) that catalyze 

gene transcription in all cells are complex enzymes which 

consist of 5–15 subunits. Four of these subunits (α, β′ and 

ω) constitute the structural core and is conserved in all cells. 

Comparative analysis of the domain architectures of β-β′ 

subunits (which form active sites) and σ [70] of DdRp and 

their phylogenetic analysis revealed a fundamental split 

among bacteria. A striking deviation was observed in Aqui-

fex, whose DdRp clustered with Proteobacteria, Chlamydia, 

Spirochaetes, Cytophaga-Chlorobium and Planctomycetes 

where as its ribosomal proteins group with Thermotoga. 

Although evolution of DdRp appeared to be generally 

dominated by vertical inheritance, HGT of some or all of 

the subunits, might have played a role in displacement of 

ancestral genes in several lineages, such as Aquifex, Ther-

motoga and Fusobacterium [12, 119].

Phosphofructokinase (PFK) a key regulator enzyme 

of glycolysis has an intricate evolutionary history. Amino 

acids essential for ATP-PFK and PPi-phosphofructokinase 

(PFP) at 104 and 124 position [120]. Several duplication 

and HGT fl ux the phylogeny of PFK [121]. Conservation 
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Table 1 Organisms involved in horizontal gene transfer

Organisms / Phylogenetic similarity Character acquired through HGT References

Anabaena sp., Synechocystis sp., Thermosynechococcus 

elongatus and Eukaryota.

Phosphoglycerate kinase and phosphopyruvate  

hydratase (Carbohydrate metabolism)

[158] 

Aquifex aeolicus and Thermotoga  maritima Large number of genes that are most similar in their 

protein

[117]

Archaeoglobus fulgidus
 

Fatty acid metabolism; Tryptophan biosynthesis 

pathway closely related to eubacterium Bacillus  

subtilis 

[73, 117]

Bacillus subtilis and B. halodurans Prophage like regions [117]

Bacteria  and fungi ß-glucuronidase (gus) genes [159]

Bacteria and archaea FtsZ, a cell division protein [160, 161]

Bacteria and rumen Ciliates Expressed genes [162]

Chlamydia trachomatis Polymorphic membrane protein C gene [163]

Clostridium acetobutylicum 3-Isopropylmalate dehydratase, small subunit 

3-Isopropylmalate dehydratase,  large subunit 2-

Isopropylmalate synthase

[164]

Cyanobacteria and  α-proteobacteria (Rickettsia and 

Ehrlichia) are nearest to chloroplast and mitochondria

HSP60, a major bacterial antigenic protein [165, 166]

Cyanobacteria and γ-proteobacteria ArsC gene (arsenate reductase) [167]

Cyanobacteria and chloroplast genome of Euglena 

myxocylindracea

psbA intron [168]

Deinococcus radiodurans dTDP-4- dehydrorhamnose epimerase 

(Lipopolysaccharide biosynthesis)

[118, 164]

Escherichia coli 70 kb PAI-1 and 35 kb LEE island [57, 58]

E. coli, B. halodurans, and archaea Subunits of acyl-CoA: acetate CoA transferase [113]

Eukaryotes and archaea Large RNAP subunits [169, 170]

Eukaryotes and bacteria Mg2+- or Mn2+-dependent protein phosphatases (PPMs) [171–173]

Flowering plants and Gnetum Mitochondrial nad1 intron 2 and adjacent exons b and 

c

[174]

Haloarcula vallismortis and eukaryotes, bacterial homologs Isoforms of GAPDH [175]

Methanobacterium thermoformicium and Neisseria  

gonorhoeae 

Type II restriction enzyme systems [176]

Methanococcus jannaschii Informational genes resistance to eukaryotes than 

bacteria. Operational genes closely related to E. coli 

and Synechocystis.

[117]

Mycoplasma and ε-proteobacteria RuvB clusters [164]

Neisseria meningitidis and N. gonorrhoeae Resistance to antibiotics [49–51]

Plant-like host organism and Chlamydia High proportion of proteins [177]

Rickettsia conorii and R. prowazekii Preprotein translocase subunit SecE (Ribosomal 

proteins); Undecaprenyl pyrophosphate Synthase 

(Lipid metabolism)

[164]

Salmonella enterica 17 kb SP1-3 island and Unique genes [57, 165]

Shigella fl exneri 24 kb SH1-3 island [55, 56]

Streptococcus pneumoniae Resistance to antibiotics [48]

Sulfolobus  and eukaryotes Amido- synthetase domains (carB genes) [178]

Ureaplasma urealyticum F0F1-type ATPase (α-subunit, δ-subunit, ε-subunit) [164]

Vibrio cholerae Virulence determinants [47]

Bacillus cereus ATCC14579 (Firmicutes) and 

Chlorogloeopsis fritschii (Cyanobacteria)

phaC gene involved in polyhydroxyalkanoate 

biosynthesis

[147]
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of 2 distally related PFK enzymes in a single species could 

be explained in terms of adaptability, each copy allowing 

the use of either phospho- donor or the other, potentially 

enhancing the fi tness of the species [120].

RecX is a bacterial regulatory protein which acts as an 

anti-recombinase to quell inappropriate recombinational 

repair during normal DNA metabolism [122, 123]. It is 

found in bacteria and some plants (Arabidopsis thaliana & 

Oryza sativa) but not in archaea. Plant Rec-X like protein 

was found to have evolved by a gene fusion event between 

N-terminal domain of unknown origin and RecX domain 

within plant cells. Gene fusion events probably occurred in 

plant cells [124].

Microtubules of the eukaryotic cytoskeleton are built by 

αβ-tublin heterodimers. These are thought to be unique to 

eukaryotes, however their homologues FtsZ can be found 

in bacteria. BtubA and BtubB of free living bacterium, 

Prosthecobacter, shows higher sequence homology to eu-

karyotic tubulin than to FtsZ and were perhaps transferred 

from a eukaryotic cell by HGT [125]. 

Niche enhancing abilities

Genome degradation and exploitation of host cellular 

processes by Rickettsia, Orientia and Wolbachia genomes 

show a few genes potentially acquired by HGTs such as the 

paralogous gene family coding for proteins with ankyrin 

repeat domains. Variably present gene may refl ect host-ad-

aptation processes and give hints to the differences in life-

style and host preferences [126]. Reduction in Helicobacter 

pylori and H. acinonychis genome sizes compared to H. 

hepaticus has been suggested as a result of a host adapta-

tion process following a host jump [127]. The presence of 

a large number of genome islands indicates a large fl exible 

gene pool for this group of bacteria. The most prominent 

of these PAIs is related to cytotoxin-associated gene (cag). 

The cag PAI encodes a bacterial type IV secretion system, a 

bacterial virulence factor for acute infection. Type IV secre-

tion systems are widespread among other bacteria includ-

ing the genera Agrobacterium, Bartonella and Bordetella 

[128,129]. These systems refl ect of potential HGT enhance-

ment mechanisms.

Many Gram-negative bacteria, pathogens and symbionts 

of animals and plants, have developed secretion systems, 

termed type III secretion systems (TTSS) that mediate

elaborate interactions with their hosts. Genes encoding 

TTSS are predominantly located on unstable genetic ele-

ment - plasmids or PAIs: PAI-1 and PAI-2 in S. enterica se-

rovar Typhimurium, LEE on enteropathogenic E. coli, hrp-

PAI in Pseudomonas syringae and plasmid of S. fl exneri, 

Yersinia enterocolitica and Ralstonia solanacearum. Thus 

TTSS could have been acquired by one or more HGT events 

[130].

Pseudomonas is a unique bacterium with abilities to 

infect plants and animals [131]. The large P. aeruginosa 

PA14, pathogenicity island (PAPI-1) is a cluster of 108 

genes that encode for a number of virulence features and 

play an important role in the evolution of P. aeruginosa by 

expanding its natural habitat from soil & water to animals 

& human infections. The genes int (integrase) and soj (chro-

mosome partitioning protein), located at the opposite ends 

of PAPI-1, stabilize the circular form and are required for 

inter-strain transfer [132]. 

Pox viruses (Pox viridae) are a family of double stranded 

DNA viruses with no RNA stage. Orthopoxvirus (OPV) are 

highly invasive and virulent. OPVs are among the most 

dreaded pathogens on earth. Poxvirus are possible vector 

for horizontal transfer of the retroposons from reptiles (ad-

vanced snakes) to mammals [133], since up to 50% of the 

poxvirus gene families show some evidence of HGT from 

other hosts [134]. 

Metabolic activities

Salinibacter ruber is a remarkable bacterium whose phe-

notype resembles that of hyperhalophilic Archaea (Halo 

archaea). The genome sequence supports the convergence 

of its four rhodopsins: one of which resembles bacterial 

proteorhodopsin and three are of haloarcheal type [85]. To 

asses the nature and number of potential HGTs in S. ruber 

genome, “competitive matching” query method was em-

ployed [135]. In this method, any ORF that has a match 

only to genomes outside the Bacteroides/ Chlorobi group or 

a match at least 0.05 normalized BLAST score units better 

outside this group was counted as a potential HGT; 1470 

ORFs showed such discordant similarities by this BLAST-

based method [85]. NosZ of the nos cluster in Salinibacter 

encodes a nitrous oxide reductase similar to that found in a 

variety of proteobacteria and in Haloarcula marismortui. 

Similarly, ccoO and ccoN, components of a cbb3-type 

Desulfi tobacterium hafniense (Firmicutes) and N. 

meningitidis MC58 (β-Proteobacteria)

phaB gene involved in polyhydroxyalkanoate 

biosynthesis

[147]

Sinorhizobium meliloti (α-Proteobacteria) and  Z. ramigera 

(β-Proteobacteria)

phaA gene involved in polyhydroxyalkanoate 

biosynthesis

[147]
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cytochrome oxidase were acquired likely by HGT from a 

β-proteobacteria. Although Salinibacter does not posses a 

ccoP gene, which is thought to be an essential subunit of 

cbb3-type cytochrome oxidase, a gene fl anking ccoON, ap-

pears to have been acquired through HGT from a β-proteo-

bacterium and may be a substitute for CcoP function [85].

Phylogenetic distribution distinguishes two structurally 

distinct classes of MoFe nitrogenase and is not consistent 

with organismal phylogeny. The patchy distribution of 

genes has been attributed by some to HGT while others ex-

plained the uneven distribution to loss of function in certain 

limneages [136].

Aerobic degradation of Hexachlorocyclohexane (HCH) 

is carried out mostly by strains of Sphingomonas pauci-

mobilis and Rhodanobacter lindaniclasticus. The primary 

enzyme in γ-HCH degradation is HCH dehydrochlorinase 

encoded by the linA gene. In addition to other evidences, 

the G+C content of all the linA genes reported so far are 

lower than those of linB, linC, linD and linE genes, sug-

gesting that linA gene might have been acquired by HGT, 

through the involvement of IS6100 [33]. New pathway(s) 

for the degradation of β- and δ-HCH exist in Sphingobium 

indicum B90A, which appear to be independent of that in-

volving α- and γ-HCH [32].

Exploiting natural HGT for engineering biosynthetic 

pathways 

On the top of the organizational and societal agenda are 

themes such as environmental pollution and bioenergy 

for sustainable development. Biofuels such as bioethanol, 

biodiesel, bio-oil, hydrogen (H
2
), methane, etc. have the 

potential to provide a sustainable energy system for the so-

ciety [137]. The whole issue of bioenergy revolves around 

the feed and the organisms with abilities to produce them 

[138]. Biological wastes of plant and animal origins as 

feed have a great potential to provide organic matter for 

microbial action. These wastes are available in large quanti-

ties and from diverse sources [137]. Anaerobic digestion is 

one of the most effi cient approaches to completely degrade 

and stabilize biowastes. This multiple step bioconversion 

process involves hydrolytic bacteria, hydrogen producer, 

polyhydroxyalkanoates (PHA, bioplastic) producers, sec-

ondary metabolite producers, metabolic enzyme producers 

and ultimately methanogens [139–142]. We need robust 

microbes for effi cient and economical treatment of wastes. 

These organisms should not only be capable of producing 

the desired product such as H
2
 and PHA but also be able 

to survive and metabolize the wastes which are otherwise 

labeled as pollutants. In the last few decades, in spite of 

immense efforts to search effi cient H
2
 and PHA producers, 

there has been little progress through conventional meth-

ods [138, 143]. In this post genomic era, the availability 

of 940 bacterial, 48 archaeal and 162 eukaryotic sequenced 

genomes (http://www.ncbi.nlm.nih.gov/sutils/genom_

table.cgi), has infact “fl ooded” us with a large amount of 

data. With the use of bioinformatics tools, it has been pos-

sible to detect novel organisms with properties such as H
2
-, 

PHA-, antibiotic- production [144–146]. These studies have 

also revealed those organisms, which are at present catego-

rized as “non”-producers, because they lack a gene or two 

of the biosynthetic pathway. Comparative genomic analysis 

of 253 sequenced genomes for phaA, phaB, and phaC genes 

of PHA biosynthesis has revealed incongruencies in the 

phylogenetic trees for these genes. Further analysis of these 

phylogenetic discrepancies for parameters such as G+C 

content, CAI and Chi-square tests lead to the suggestion 

that HGT may be a major contributor for the evolution of 

this stress induced metabolic pathway [147] (Table 1). It has 

been possible to trace the potential donors for transforming 

the non-producers into producers through genome shuffl ing 

[147]. This technique can be extended to other metabolic 

pathways and the process of HGT can exploited to generate 

naturally engineered organisms.

Conclusions

New discoveries about novel microorganisms infl uence our 

thinking process. Intragenomic plasticity and inter-species 

horizontal mobility of operons are thought to be important 

facets of archaeal, bacterial and eukaryotic genome evolu-

tion. It has led to the view that HGT is a “major force”, 

rather than an interesting but anecdotal event [88]. An in-

creasing quantum of evidence of HGT suggests the impor-

tance of these phenomena for evolution. It is well-known 

among bacteria, its occurrence has become recognized 

among higher plants and animals in the last decade or so. 

The scope for HGT is essentially the entire biosphere. Here, 

bacteria and viruses act as genes reservoirs and aid in their 

traffi cking. However, the prevalence and importance of 

HGT in the evolution of multicellular eukaryotes remain 

unclear [148]. Horizontal transfer of genes from bacteria to 

some fungi, especially the yeast Saccharomyces cerevisiae, 

has been well documented [149]. The role of Wolbachia. an 

endosymbiont as important potential source of genetic ma-

terial has been reported in adzuki bean beetle [150] and in 

arthropods and fi larial nematodes [151]. On the other hand, 

evidences exist where mitochondrial genes were reported to 

be horizontally transferred to parasites of the Raffl esiaceae 

plant family from their hosts [152, 153] and from eukary-
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otic chloroplasts to the mitochondria of the bean Phaseolus 

[154]. 

Different studies suggest that evolution occurred in 

a communal, a loosely knit, diverse conglomeration of 

primitive cells that evolved as a unit. Subsequently it 

developed into several distinct communities: bacteria, 

archaea and eukaryotes). By swapping genes freely, these 

diverse organisms shared various of their talents with their 

contemporaries [155]. In order to meet the ultimate chal-

lenge of comprehending the ecosystem as a whole, we 

need to understand the principles underlying the assembly 

of biogeochemical systems and the fl ow of materials and 

energy [42]. Increasingly powerful search tools and further 

developments in theoretical and experimental approaches 

will be needed to help expand our understanding of the 

role of HGT in ecosystem dynamics and evolutionary pro-

cesses. In view of the signifi cance of HGT, a new line of 

comprehensive evolution coupling vertical and HGTs has 

been drawn [156]. A polyphasic approach is expected to 

make signifi cant clarity in the science of bacterial evolution 

[157]. In conclusion, we agree that HGT generates greater 

genetic diversity which is likely to increase resource use 

and ecosystem resilience [42].
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