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Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network 
(CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be 
active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. 
Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, includ-
ing cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix 
products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, 
fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state 
of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with 
fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed 
in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and 
differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and 
in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression 
of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated 
with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with 
leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal 
as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family 
members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
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Introduction

The bone marrow microenvironment

The bone marrow (BM) is the most important source of 
blood cells in the adult. It is the primary site where hemat-
opoietic stem cells (HSCs) reside and give rise to more 
restricted progenitor cells that mature to become the differ-
ent specialized blood cells. Besides hematopoietic cells, the 
BM contains mesenchymal stem cells, various more mature 
mesenchymal cells such as fibroblasts, adipocytes, osteo-
blasts, endothelial cells and perivascular stromal cells, as 
well neuronal cells and extracellular matrix (ECM), which 
together constitute the BM microenvironment. Integrins and 
selectins on the cell surface of stromal and hematopoietic 
cells mediate cell–cell and cell–matrix interactions (Anthony 
and Link 2014; Lindner et al. 2010).
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One of the most important functions of the BM micro-
environment is the formation of so called ‘niches’, local 
tissue microenvironments for the maintenance, regulation 
and differentiation of the HSCs (the stem cell niche) and 
other hematopoietic cells (Morrison and Spradling 2008). 
Different niches are recognized in the BM; the osteoblas-
tic (endosteal) niche localized at the inner surface of the 
bone cavity where calcium levels are high, the (peri)vascular 
niches subdivided into a (peri)sinusoidal niche and a (peri)
arteriolar niche containing high levels of stem cell factor 
(SCF) and CXC chemokine ligand-12 (CXCL12), the eryth-
roid niche with a central macrophage, and a niche for lym-
phopoiesis located in the perisinusoidal region where both 
CXCL12 and interleukin 7 (IL-7) levels are high (Acar et al. 
2015; Asada et al. 2017; Aurrand-Lions and Mancini 2018; 
Chasis and Mohandas 2008; Fujita et al. 2015; Ho and Mén-
dez-Ferrer 2020; Lazzari and Butler 2018; Morrison and 
Scadden 2014; Pinho and Frenette 2019; Wei and Frenette 
2018). Actively cycling, short-term HSCs as well as quies-
cent long-term HSCs are mainly localized in close proximity 
to vascular niches, but the different roles of the two vascular 
niches, arteriolar and sinusoidal, in HSC function are still 
not fully understood (Acar et al. 2015; Asada et al. 2017; 
Aurrand-Lions and Mancini 2018; Ho and Méndez-Ferrer 
2020; Lazzari and Butler 2018; Wei and Frenette 2018). 
Mesenchymal cells, which include mesenchymal stem/pro-
genitor cells and more differentiated mesenchymal cells such 
as perivascular stromal cells and osteoblasts, are important 
players in these niches as they secrete cytokines and other 
factors to support and regulate hematopoiesis (Morrison and 
Scadden 2014). When changed, the BM microenvironment 
can also support malignant hematopoiesis. Malignant niches 
differ from normal niches by the interaction with malignant 
cells. A role for malignant niche characteristics have been 
implicated in both myelodysplastic and myeloproliferative 
neoplasms as well as in lymphoid and myeloid leukemias 
(Arranz et al. 2014; Balderman et al. 2016; Battula et al. 
2013; Blau et al. 2007; Boyerinas et al. 2013; Guerrouahen 
et al. 2011; Korn and Mendez-Ferrer 2017; Lazzari and But-
ler 2018; Li and Calvi 2017; Sangaletti et al. 2017; Schepers 
et al. 2013).

Homeostasis of the BM microenvironment is tightly 
regulated by a complex and not fully elucidated interplay 
between different cell types, structural ECM components 
and soluble factors such as cytokines, hormones, growth fac-
tors and matricellular proteins. Matricellular proteins are 
proteins secreted into the extracellular environment, modu-
lating cell function and cell–matrix interactions by binding 
to cell-surface receptors, structural matrix proteins and other 
soluble matrix proteins (Bornstein 2009; Bornstein and Sage 
2002). The Cellular Communication Network (CCN) family 
forms an important group of matricellular proteins (Chen 
and Lau 2009). Bork was the first to conceive the different 

CCN proteins as members of a (single) family (Bork 1993), 
that now consists of six structural related proteins.

The CCN proteins act as central mediators of mecha-
notransduction and play important roles in, amongst others, 
angiogenesis, inflammation, connective tissue deposition, 
and a broad range of pathological processes including fibro-
sis and cancer (Chaqour 2020; Leask 2020). The proteins 
of the CCN family might play as a team and ideally should 
be assessed together rather than individually (Peidl et al. 
2019; Perbal 2018; Riser et al. 2009, 2010), but for most 
of them, little is known about their possible involvement in 
hematopoiesis and the BM microenvironment. Since CCN2 
is by far the most studied CCN protein in this field, it will 
therefore be the focus of this review, and the more limited 
available knowledge on the other CCN proteins is included 
at the end.

CCN2 protein

Although CCN2 was originally thought to be a classical 
growth factor and named connective tissue growth factor 
(CTGF), no high-affinity classical growth factor receptor for 
CCN2 has been discovered (Lau 2016). Instead, CCN2 has 
the capacity to interact with a range of cell surface receptors, 
ECM macromolecules, growth factors and proteases, thereby 
directly or indirectly regulating cellular function, which are 
features common to all matricellular proteins (Bornstein 
1995; Murphy-Ullrich and Sage 2014). Furthermore, all four 
structural domains of the CCN proteins are homologous to 
other ECM-associated proteins (Lau and Lam 1999). There-
fore, the protein originally called CTGF is nowadays consid-
ered a matricellular protein and has been renamed CCN2 by 
the HUGO Gene Nomenclature Committee (Brigstock et al. 
2003; Perbal et al. 2018).

CCN2 (Fig. 1) is a cysteine-rich 36–38 kDa (depending 
on the level of N-linked glycosylation) protein (Bradham 
et al. 1991; Yang et al. 1998), consisting of a secretory signal 
peptide and four functionally distinct and highly conserved 
domains/modules (Bork 1993; Holbourn et al. 2008). The 
N-terminal fragment of CCN2 is made up by an insulin-like 
growth factor binding protein (IGFBP) module and a von 
Willebrand factor C (VWC) module (Brigstock 1999; Lau 
and Lam 1999), which is linked by a hinge region to the 
C-terminal fragment consisting of a thrombospondin type 1 
repeat (TSP1) module and a C-terminal cysteine knot (CT) 
module (Brigstock 1999; Lau and Lam 1999). Each module 
interacts with other extracellular proteins and/or proteogly-
cans (Perbal 2018). CCN2 is mainly secreted as an extra-
cellular protein and has been identified in various human 
biological fluids (Bradham et al. 1991; Yang et al. 1998). 
Loss of its 2 kDa N-terminal secretory signal peptide leads 
to intracellular retention of the protein (Welch et al. 2015).
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The cysteine-free hinge region between modules 2 and 3 
contains multiple cleavage sites susceptible to proteolysis 
by a number of different proteases (de Winter et al. 2008; 
Grotendorst and Duncan 2005; Hashimoto et al. 2002). In 
addition, CCN2 can be cleaved between module 1 and 2 
and between module 3 and 4 into fragments that represent 
the individual motifs (de Winter et al. 2008; Grotendorst 
and Duncan 2005; Hashimoto et al. 2002). The different 
modules and fragments have been associated with specific 
biological roles (Abd El Kader et al. 2014; Ball et al. 2003; 
de Winter et al. 2008; Grotendorst and Duncan 2005; John-
son et al. 2017; Kubota et al. 2006; Mokalled et al. 2016; 
Tong and Brigstock 2006). As truncated proteins missing 
one or more modules have even been reported to possess 
enhanced biological activities, CCN2 has been suggested 
to be a prepro-protein that may undergo proteolytic cleav-
age in order to release biologically more active fragments 
(Abd El Kader et al. 2014; Kaasboll et al. 2018). On the 
other hand, some of the biological activities of CCN2 
require the intact, full length protein with the individual 
modules acting together (Kubota et al. 2006). Studying 
CCN2, however, remains challenging as it is difficult to 
purify larger amounts of native, biologically active CCN 
proteins in a stable form as pointed out by Perbal (2018).

CCN2 function and expression

CCN2 is expressed in a variety of tissues during embry-
onic development, with highest levels in vascular tissues 
and maturing chondrocytes (Hall-Glenn et al. 2012; Ivkovic 
et al. 2003). In the adult, CCN2 expression can be induced 
in various cell types, including endothelial cells (Bradham 
et al. 1991; Lee et al. 2015; Yan et al. 2014), vascular smooth 
muscle cells (Gao et al. 2007; Ko et al. 2012; Liu et al. 2008; 
Rodriguez-Vita et al. 2005), chondrocytes (Nakanishi et al. 
1997), fibroblasts (Grotendorst 1997; Guo et al. 2011; Hol-
mes et al. 2003; Igarashi et al. 1993) and mesangial cells 
(Goppelt-Struebe et al. 2001). CCN2 acts in an autocrine 
or paracrine fashion and its regulation and modes of action 
are complex and context dependent, depending on cell type, 
state of differentiation, and microenvironmental context 
(Cicha and Goppelt-Struebe 2009; Guo et al. 2011).

As previously reviewed, CCN2 and its fragments have 
been implicated in the regulation of a multitude of biologi-
cal phenomena, including cell proliferation, differentiation, 
adhesion, migration, cell survival, apoptosis and the produc-
tion of ECM products (de Winter et al. 2008; Jun and Lau 
2011; Takigawa 2018), as well as in embryonic develop-
ment, angiogenesis, chondrogenesis, osteogenesis, fibrosis, 
mechanotransduction and inflammation (Chaqour 2020; Jun 
and Lau 2011; Kubota and Takigawa 2013; Takigawa 2013, 
2018). It should be noted, however, that at least several of 
these propositions have not been based on robust assays 
using sufficiently characterized and purified CCN2 and its 
fragments. As discussed by Leask, adhesion assays are prob-
ably the only robust, universally agreed-upon in vitro assays 
for assessing CCN activity, at least of full-length CCN pro-
teins (Leask 2020).

CCN2 has the ability to interact with a wide variety of 
proteins and receptors by its different modules, and is con-
sidered to be active as a modifier of signaling activity of 
several different signaling pathways and as an orchestrator 
of their cross-talk (Leask 2020; Perbal 2018; Ramazani et al. 
2018). CCN2 can regulate biological processes in various 
ways (Fig. 2): (1) It can bind to several cell surface recep-
tors, thereby initiating signal transduction, (2) It can bind 
to growth factors, modulating their presentation and bind-
ing to cell-surface receptors, and subsequent initiation of 
downstream signaling pathways, (3) It has a modifying role 
in mediating matrix turnover by binding to (structural) ECM 
proteins, (4) It is involved in the regulation of the activ-
ity of cytokines and growth factors through modulation of 
crosstalk between signaling pathways, and (5) It has been 
reported to act intracellularly, after uptake into the cytosol 
via endocytic pathways and into the nucleus, where it may 
affect gene transcription (Kawata et al. 2006, 2012; Lau 
2016; Ramazani et al. 2018; Takigawa 2018; Wahab et al. 
2001).

Fig. 1  CCN2 protein structure. Schematic representation of the full 
length CCN2 protein, which is made up by a signal peptide and 4 
protein domains, depicted by the blue cylinders. Domain 1 consists 
of the insulin-like growth factor binding protein (IGFBP) module 
and domain 2 contains the von Willebrand factor C (VWC) module, 
together forming the N-terminal fragment of the protein. Domain 
3 consists of the thrombospondin type 1 repeat (TSP1) module 
and domain 4 contains the C-terminal cysteine knot (CT) module, 
together forming the C-terminal fragment of the protein. The N- and 
C-terminal fragments are joint by a hinge region. Between the dif-
ferent domains, multiple cleavage sites are present, were CCN2 is 
cleaved by proteases, plasmin, chymotrypsin and matrix metallopro-
teinases. Loss of the signal peptide leads to intracellular retention of 
the protein. The protein contains 2 glycosylation sites. The functional 
relevance of glycosylation is, however, still unknown. Other (not 
depicted) posttranscriptional and posttranslational modifications to 
which the protein is subject to, are splicing, regulation by miRNAs 
and multimerisation
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The reported binding partners of CCN2 are summarized 
in Table 1 and depicted in Fig. 2. It should be noted here 
that at least some of the interactions of CCN2 with other 
molecules have been studied only in ex vivo conditions 

under circumstances that might not be fully representative 
of in vivo conditions. By binding to cell surface receptors, 
CCN2 can alter various intracellular signaling pathways, 
including the ERK pathway (Aoyama et al. 2012; Lee et al. 

Fig. 2  Overview of the complex regulation of CCN2 expression, and 
the diverse actions of the CCN2 protein, as reported in literature. 
Regulation of CCN2 expression. a Factors inducing CCN2 expres-
sion include growth factors, coagulation factors, hormones, bioactive 
lipids, glucose metabolism related factors, hypoxia and mechanical 
stress. b Factors inhibiting CCN2 expression include increased lev-
els of cyclic adenosine monophosphate (cAMP), cytokines, insulin‐
like growth factor binding protein‐4 (IGFBP-4), CCN3 and hepatic 
growth factor. c CCN2 expression is modified by posttranscrip-
tional and posttranslational factors, which includes splicing, regula-
tion by miRNAs, glycosylation, proteolytic cleavage and multim-
erisation of the protein. d CCN2 can induce its own expression by 
auto-induction, resulting in a positive feedback loop. Actions of the 
CCN2 protein: CCN2 exerts its function by binding to growth fac-
tors and cell surface receptors, thereby affecting intracellular signal-
ing, as well as by binding to extracellular matrix (ECM) and other 
proteins. e CCN2 binds to growth-differentiation factor 5 (GDF-5), 
platelet derived growth factor (PDGF), insulin-like growth factor-1 
and 2 (IGF1/2) and transforming growth factor-β (TGF-β). The effect 
of CCN2 on the binding of these ligands to their putative receptors is 
not fully elucidated. f CCN2 binds to bone morphogenetic proteins 
(BMPs), vascular endothelial growth factors (VEGFs) and fibroblast 
growth factor 2 (FGF2), thereby modulating their presentation and 
binding to cell-surface receptors, resulting in inhibited signal trans-

duction. *Only full-length CCN2 inhibits VEGFA and VEGFC, not 
its proteolytic fragments. g CCN2 binds directly to structural ECM 
proteins, matricellular proteins and other proteins, including aggre-
can, fibronectin, decorin, perlecan, CCN3, heparin, Wnt inhibitory 
factor 1 (Wif-1), Slit guidance ligand 3 (Slit-3), and von Willebrand 
factor (vWF). h CCN2 can bind directly to cell surface receptors, 
which include heparan sulphate proteoglycans (HSPGs), tropomyo-
sin receptor kinase A (TrkA), dendritic cell-specific transmembrane 
protein (DC-STAMP), integrins, insulin-like growth factor 2 receptor 
(IGF-2R), epidermal growth factor receptor (EGFR), formyl peptide 
receptor-like 1 (FPRL1), osteoprotegerin (OPG), lipoprotein receptor-
related proteins (LRPs), receptor activator of NF-κB (RANK), and 
fibroblast growth factor receptors (FGFRs). By CCN2 binding, intra-
cellular signaling pathways and their cross-talk can be altered and 
gene transcription affected. i Intracellular signaling pathways that are 
affected by CCN2 include the extracellular signal–regulated kinase 1 
and 2 (ERK1/2) pathway, the Rho GTPase pathway, the WNT path-
way, the c-Jun N-terminal kinase (JNK) pathway, the phosphati-
dylinositol 3-kinase (PI3K)/AKT pathway and the nuclear factor κB 
(NFκB) pathway the signaling mother against dexapentaplegic pep-
tides (Smad) pathway. j CCN2 has been reported to act intracellularly 
after being taken up into the cytosol via endocytic pathways and, after 
phosphorylation, into the nucleus where it may affect gene transcrip-
tion
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2015; Rayego-Mateos et al. 2013; Yang et al. 2004), WNT 
pathway (Liu and Leask 2013; Mercurio et al. 2004; Rooney 
et al. 2011), JNK pathway (Aoyama et al. 2015; Yosimichi 
et al. 2006), NFκB pathway (Aoyama et al. 2015; Edwards 
et al. 2011) and others (Wahab et al. 2005; Yosimichi et al. 
2006). Its binding to growth factors usually has an inhibitory 

effect: Binding to bone morphogenetic proteins (BMPs) 
inhibits BMP signaling (Abreu et al. 2002; Maeda et al. 
2009; Mundy et al. 2014; Nguyen et al. 2008), resulting in 
reduced phosphorylation of EKR and Smad 1/5/8 (Maeda 
et al. 2009; Mundy et al. 2014; Nguyen et al. 2008), and 
binding to vascular endothelial growth factor 165  (VEGF165) 

Table 1  Reported binding partners of CCN2

Factor Abbreviation References

Cell surface receptors
Integrins Babic et al. (1999), Ball et al. (2003), Chen et al. (2001), 

Gao and Brigstock (2004), Gao and Brigstock (2005), 
Jedsadayanmata et al. (1999), Kiwanuka et al. (2013), 
Lau (2016), Liu et al. (2012), Rayego-Mateos et al. 
(2013), Schober et al. (2002)

Lipoprotein receptor-related protein-1 -4, and -6 LRP-1, LRP-4, LRP-6 Gao (2003), Kawata et al. (2012), Mercurio et al. (2004), 
Ohkawara et al. (2020), Ren et al. 2013; Rooney et al. 
(2011), Segarini et al. (2001), Yang et al. (2004)

Neurotrophin receptors: Tropomyosin receptor kinase A 
and  P75NTR

TrkA,  P75NTR Edwards et al. (2011), Rayego-Mateos et al. (2013), 
Wahab et al. (2005), Wang et al. (2010)

Insulin-like growth factor 2 receptor/Cation-independ-
ent mannose-6-phosphate receptor

IGF-2-R/M6P Blalock et al. (2012)

Fibroblast growth factor receptor 1, 2 and 3 FGFR-1, FGFR-2, FGFR-3 Aoyama et al. (2012), Nishida et al. (2011b)
Epidermal growth factor receptor EGFR Rayego-Mateos et al. (2013)
Receptor activator of NF-κB RANK Aoyama et al. (2015)
Dendritic cell-specific transmembrane protein DC-STAMP Nishida et al. (2011a)
Osteoprotegerin OPG Aoyama et al. (2015)
Formyl peptide receptor-like 1 FPRL1 Lee et al. (2015)
Growth factors
Transforming growth factor beta TGF-β Abreu et al. (2002) and Khattab et al. (2015) 
Bone morphogenetic protein 2, 4 and 7 BMP-2, BMP-4, MBP-7 Abreu et al. (2002), Maeda et al. (2009), Nguyen et al. 

(2008)
Platelet derived growth factor-B and -BB PDGF-BB, PDGF-B Khattab et al. (2015), Pi et al. (2012)
Vascular endothelial growth factors-A and -C VEGF-A, VEGF-C Heroult et al. (2004), Inoki et al. (2002), Khattab et al. 

(2015), Kinashi et al. (2017)
Fibroblast growth factor 2 FGF2 Nishida et al. (2011b)
Insulin-like growth factors 1 and 2 IGF1/2 Kim et al. (1997), Lam et al. (2003)
Growth-differentiation factor 5 GDF-5 Khattab et al. (2015)
Structural matrix proteins
Perlecan Nishida et al. (2003)
Aggrecan Aoyama et al. (2009)
Fibronectin Hoshijima et al. (2006), Pi et al. (2008)
Decorin Vial et al. (2011)
Other
Heparin Ball et al. (2003), Brigstock et al. (1997), Frazier et al. 

(1996), Gao (2003), Kireeva et al. (1997)
Heparan sulphate proteoglycans (cell surface and matrix 

associated)
HSPGs Ball et al. (2003), Chen et al. (2001), Gao (2003), Gao 

and Brigstock (2004), Kireeva et al. (1997), Nishida 
et al. (2003)

CCN2 Hoshijima et al. (2012)
CCN3 Hoshijima et al. (2012)
Wnt inhibitory factor 1 (Wif-1) Wif-1 Surmann-Schmitt et al. (2012)
Slit guidance ligand 3 Slit-3 Pi et al. (2012)
von Willebrand factor vWF Pi et al. (2012)
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inhibits its angiogenic activity by interrupting binding to 
its major receptor VEGFR-2 (Heroult et al. 2004; Inoki 
et al. 2002). Binding of the CT module, but not full length 
CCN2, to fibroblast growth factor 2 (FGF2) inhibits its 
binding to fibroblast growth factor receptor-1 (FGFR1) and 
thereby its activation (Nishida et al. 2011b). Furthermore, 
there are indications that CCN2 has an inhibitory effect on 
insulin-like growth factor (IGF) signaling and WNT sign-
aling (Smerdel-Ramoya et al. 2008). Binding of CCN2 to 
transforming growth factor beta (TGF-β) has been reported 
to enhance TGF-β signaling (Abreu et al. 2002). This inter-
esting notion has, however, not been reproduced in more 
recent literature.

In addition to its direct effects on cell surface receptors 
and growth factors, CCN2 can increase the level of matrix 
metalloproteinases (MMPs), a large family of enzymes play-
ing a central role in the ECM by the degradation of specific 
ECM components and cleavage of growth factors and their 
binding proteins, by upregulating their gene expression in 
fibroblasts and endothelial cells (Chen et al. 2001; Fan and 
Karnovsky 2002; Kondo et al. 2002). On the other hand, 
CCN2 itself is a substrate of several MMPs, by which it can 
be cleaved in the hinge region (Dean et al. 2007; Hashimoto 
et al. 2002; Tam et al. 2004). For an overview and more 
detail of CCN2 binding partners and intracellular signaling 
pathways we like to refer to several recent reviews (Chaqour 
2020; Lau 2016; Ramazani et al. 2018; Takigawa 2018).

Regulation of CCN2 expression

TGF-β is a powerful and well-known inducer of CCN2 tran-
scription (Brunner et al. 1991; Grotendorst et al. 1996; Holmes 
et al. 2001; Igarashi et al. 1993; Yang et al. 1998), but many 
other factors, summarized in Table 2 and depicted in Fig. 2, 
can also directly or indirectly induce CCN2 mRNA expression 
through the initiation of signaling pathways and the activation 
of transcription factors, as previously reviewed (Chaqour 2020; 
Jun and Lau 2011; Ramazani et al. 2018; Takigawa 2018). For 
example, on mechanical stress, the transcriptional regulators 
YAP (Yes-associated protein) and TAZ (transcriptional coac-
tivator with PDZ-binding motif) induce CCN2 gene transcrip-
tion (Dupont et al. 2011; Nagasawa-Masuda and Terai 2017; 
Preisser et al. 2016; Raghunathan et al. 2014). FAK (focal 
adhesion factor) is an important factor in mechanotransduc-
tion, which controls the nuclear translocation and activation 
of YAP and subsequent CCN2 gene expression in response 
to mechanical activation (Lachowski et al. 2018). In addition, 
CCN2 can induce its own expression by auto-induction, result-
ing in a positive feedback loop (Riser et al. 2000; Shimo et al. 

2001b). Other factors, summarized in Table 3 and depicted in 
Fig. 2, can directly or indirectly inhibit CCN2 expression. For 
involvement of specific regulatory elements in the CCN2 gene 
we refer to Leask et al. (2009). Furthermore, CCN2 expression 
can be regulated at the posttranscriptional and posttranslational 
level by various factors, including VEGF (Kondo et al. 2006), 
hypoxia (Kondo et al. 2002), tumor necrosis factor α (TNF-
α), interferon gamma (IFN-γ) (Cooker et al. 2007; Laug et al. 
2012), and a host of different microRNAs (miRNAs) (Cai et al. 
2018; Che et al. 2019; Chen et al. 2016, 2019; Ernst et al. 
2010; Fox et al. 2013; He et al. 2017; Mu et al. 2016; Qiao 
et al. 2017; Sun et al. 2016). For example, CCN2 and miRNA-
21 are components of a positive feedback loop in pancreatic 
stellate cells, that may serve as an amplification mechanism for 
enhanced collagen production (Charrier et al. 2014a). On the 
other hand, CCN2 can increase the expression of miRNA-302, 
which targets the TGFβ type II receptor and thereby decreases 
its expression, constituting a negative feedback loop (Faherty 
et al. 2012). 

CCN2 and disease

CCN2 has been implicated in the pathophysiology of many 
diseases; increased CCN2 expression has been demonstrated 
in the tissue of a range of diseases that are accompanied by 
fibrosis such as fibrotic lung diseases, scleroderma, chronic 
pancreatitis, renal fibrosis, liver cirrhosis, myocardial infarc-
tion, and Crohn’s disease (Abou-Shady et al. 2000; di Mola 
et al. 1999, 2004; Ito et al. 1998; Ohnishi et al. 1998; Pan et al. 
2001; Shi-wen et al. 2000), as well as in diabetic retinopathy 
and in the osteoarthritic cartilage of patients with osteoarthritis 
(Omoto et al. 2004; Tikellis et al. 2004). In addition, increased 
levels of CCN2 cleavage products have been demonstrated in 
human extracellular fluids, including plasma, urine, dermal 
interstitial fluid and vitreous fluid, of patients with fibrotic 
diseases, correlating with the severity of fibrosis (Leask et al. 
2009). Furthermore, increased CCN2 plasma levels have been 
associated with cardiac dysfunction and increased risk of car-
diovascular events in patients with atherosclerotic disease 
(Behnes et al. 2014; Gerritsen et al. 2016; Koitabashi et al. 
2008), and altered CCN2 expression has been demonstrated 
in more than 25 different forms of cancer, with deregulation 
of CCN2 expression usually correlating with worse clinical 
outcome (Wells et al. 2015). Besides altered CCN2 expression 
in tumor cells, elevated CCN2 expression in stromal fibroblasts 
is implicated in the desmoplastic response in various cancer 
types, and CTGF expression in stromal cells can advance 
tumor growth or promote invasion as reviewed by Wells et al. 
(2015).
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CCN2 and the normal BM microenvironment 
(Fig. 3)

CCN2 expression and function in mesenchymal stem 
and stromal cells

Mesenchymal stem cells are essential for the maintenance 
of the BM microenvironment; they can self-renew and have 
the capacity to differentiate into other mesenchymal cell 
types, including chondrocytes, adipocytes, fibroblasts and 

osteoblasts. They also stimulate the production of the ECM 
(Huang et al. 2016), and maintain hematopoiesis by the 
secretion of cytokines that stimulate proliferation of hemat-
opoietic progenitor cells (Huang et al. 2016). Mesenchymal 
stem cells are rare, constituting only 1 in 3.4 × 104 nucleated 
BM cells (Wexler et al. 2003). As it is difficult to identify 
mesenchymal stem cells on a per cell basis, mesenchymal 
stem cell-enriched cell populations of both true mesenchy-
mal stem cells and more differentiated mesenchymal stromal 
cells are used in most experimental settings (Lindner et al. 

Table 2  Reported (direct or indirect) inducers of CCN2 mRNA expression

a TNF-α has also been reported to inhibit CCN2 mRNA expression (see Table 3)

Factor References

Growth factors
TGF-β Gao and Brigstock (2005), Goppelt-Struebe et al. (2001), Grotendorst et al. (1996), 

Holmes et al. (2003), Igarashi et al. (1993), Nakanishi et al. (1997), Riser et al. 
(2000), Wunderlich et al. (2000)

PDGF Gao and Brigstock (2005)
Epidermal growth factor (EGF) Wunderlich et al. (2000)
Basic fibroblast growth factor (bFGF) Wunderlich et al. (2000)
BMP-2 Nakanishi et al. (1997)
VEGF Lee et al. (2015), Suzuma et al. (2000)
Hormones
Steroids Dammeier et al. (1998), Kubota et al. (2003), Moritani et al. (2005), Okada et al. 

(2006), Pereira et al. (2000)
Angiotensin II Gao et al. (2007), Gu et al. (2012)
Endothelin-1 Kemp et al. (2004), Rodriguez-Vita et al. (2005), Shi-Wen et al. (2007)
Aldosteron Lee et al. (2004)
Coagulation factors
Thrombin Bai et al. (2013), Chambers et al. (2000)
Factor Xa Chambers et al. (2000)
Glucose metabolism related
Glucose Lam et al. (2003), Murphy et al. (1999), Paradis et al. (2001), Riser et al. (2000)
Glycolysis—via adenosine triphosphate (ATP) Akashi et al. (2018)
Advanced glycosylation end products Twigg et al. (2001)
Insulin Paradis et al. (2001)
Cytokines
Tumor necrosis factor alpha (TNF-α)a Cooker et al. (2007)
Other
Bioactive lipids Chowdhury and Chaqour (2004), Goppelt-Struebe et al. (2001), Muehlich et al. (2004)
Ethanol and acetaldehyde Charrier et al. (2014b), Gao and Brigstock (2005)
UV-light Kafi et al. (2004), Quan et al. (2009)
Mechanical stress (shear and cell stretch) Guo et al. (2011), Honjo et al. (2012), Kessler et al. (2001), Riser et al. (2000), Schild 

and Trueb (2002), Schild and Trueb (2004), Wong et al. (2003), Yamashiro et al. 
(2001)

Hypoxia—via hypoxia-inducible-factor-1 (HIF-1α) Higgins et al. (2004), Kondo et al. (2002), Shimo et al. (2001a), Valle-Tenney et al. 
(2020)

Nitric oxide (NO) Tsai et al. (2014)
CCN2 Bradham et al. (1991), Kawaki et al. (2008), Parada et al. (2013), Riser et al. (2000), 

Shimo et al. (2001b)
Insulin-like growth factor-binding protein 5 (IGFBP-5) Nguyen et al. (2018)
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2010). The mesenchymal stem and stromal cells from the 
cited studies are therefore further referred to as mesenchy-
mal stem/stromal cells (MSCs).

BM-derived MSCs show high expression of CCN2 
mRNA (Battula et  al. 2013, 2017; Cheung et  al. 2014; 
Djouad et al. 2007; Igarashi et al. 2007; Ren et al. 2011; 

Table 3  Reported (direct or indirect) inhibitors of CCN2 mRNA expression

a TNF-α has also been reported to induce CCN2 mRNA expression (see Table 2)

Factor References

Growth factors
Hepatocyte growth factor Inoue et al. (2003), Kroening et al. (2009)
Cytokines
Tumor necrosis factor alpha (TNF-α)a Abraham et al. (2000), Dammeier et al. (1998), Laug et al. (2012), 

Lin et al. (1998), Moritani et al. (2005)
Interferon-gamma (IFN-γ) Laug et al. (2012)
Interleukin 1 beta (IL-1β) Masuko et al. (2010)
Elevators of cyclic adenosine monophosphate (cAMP) levels
Cholera toxin Duncan et al. (1999), Kothapalli et al. (1998), Masuko et al. (2010)
Prostaglandin E2 Masuko et al. (2010), Ricupero et al. (1999)
Other
CCN3 Kawaki et al. (2008)
Insulin‐like growth factor binding protein‐4 (IGFBP-4) Su et al. (2019)
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Fig. 3  CCN2 in the bone marrow microenvironment. CCN2 mRNA, 
depicted by , is present in different bone marrow (BM) mesenchy-
mal cells, including endothelial cells, osteoblasts, adipocytes and 
fibroblasts, with highest levels ( ) reported in mesenchymal 
stem/stromal cell (MSC) and CXCL12-abundant reticular (CAR) 
cells. CCN2 exerts different actions in the BM. a In the presence of 
interleukin 7 (IL-7), CCN2 promotes pro-B cell to pre-B cell differen-
tiation. b CCN2 produced by MSCs affects the (long-term) qualities 
of hematopoietic stem cells (HSCs). HSCs, in turn, upregulate CCN2 

expression by MSCs. c CCN2 enhances the differentiation of MSCs 
into endothelial cells, osteoblast and fibroblasts, but has an inhibitory 
effect on the differentiation of MSCs into adipocytes. d CCN2 might 
induce the production of the ECM proteins collagen type I and type 
III, fibronectin, decorin, TGFβ-2 and lysyl oxidase by fibroblast. e 
CCN2 binds to fibronectin, perlecan and decorin, known constituents 
of the BM extracellular matrix. The effects hereof in the BM are yet 
unknown.
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Schutze et  al. 2005; Shinde et  al. 2014), which can be 
induced in vitro by Wnt3a and BMPs (Luo et al. 2004). 
CCN2 is important for MSC function as indicated by several 
in vitro and mouse studies. Although cell numbers and pro-
portions of MSCs isolated from the BM of newborn CCN2-
knockout mice were unchanged compared with those from 
wild-type (WT) mice (Cheung et al. 2014), MSCs from tis-
sues of CCN2 homozygous knockout mice were not able 
to generate colony-forming unit fibroblast-like cells in vitro 
(Battula et al. 2013), implying a functional defect. Indeed, a 
role for CCN2 in MSC cell growth has been demonstrated, 
as CCN2 is shown to enhance proliferation and inhibit apop-
tosis of MSCs in vitro (Battula et al. 2013; Wang et al. 2009; 
Wells et al. 2016). In addition, CCN2 enhances MSC cell 
migration and recruitment, shown by either the addition of 
exogenous CCN2 or through plasmid induced expression 
of CCN2 (Luo et al. 2004; Wang et al. 2009). Furthermore, 
CCN2 affects MSC differentiation. Although knockdown 
of endogenous CCN2 expression in MSCs did not affect 
their capacity to differentiate into osteoblasts or chondro-
cytes (Battula et al. 2013), increase of CCN2 by either 
exposure to recombinant CCN2 (rCCN2) or transfection of 
CCN2-expressing plasmids did enhance the differentiation 
of human BM MSCs into osteoblasts and chondrocytes as 
well as fibroblasts in culture (Lee et al. 2010; Nishida et al. 
2004; Wang et al. 2009). MSCs can also be differentiated 
into myofibroblasts by the addition of rCCN2, but only when 
stimulated subsequently with TGF-β (Lee et al. 2010; Wang 
et al. 2009). On the other hand, knockdown of CCN2 expres-
sion in MSCs enhanced adipocytic differentiation (Battula 
et al. 2013), suggesting an inhibitory effect of CCN2 on 
adipogenesis. When MSCs differentiate into these progeni-
tor cells with lineage commitment, CCN2 expression was 
shown to decrease (Luo et al. 2004; Schutze et al. 2005).

CCN2 expression and function in endothelial 
and perivascular cells

Endothelial cells and perivascular stromal cells are part of 
the (peri)vascular niche and contribute to the microenvi-
ronment by the production of SCF and other growth fac-
tors, cytokines, chemokines and adhesion molecules such 
as E-selectin and CXCL12 (Ding and Morrison 2013; Sac-
chetti et al. 2007; Sipkins et al. 2005; Sugiyama et al. 2006; 
Winkler et al. 2012; Zhao et al. 2019).

CCN2 has been shown to induce neovascularisation 
and to promote the adhesion, migration, proliferation and 
survival of vascular endothelial cells in vitro (Babic et al. 
1999; Shimo et  al. 1998, 1999). CCN2 mRNA expres-
sion in endothelial cells increases in vitro by the addition 
of bioactive lipids such as sphingosine-1-phosphate and 
lysophosphatidic acid (Muehlich et al. 2004). Also, addition 
of freshly isolated platelets to endothelial cells upregulates 

their CCN2 mRNA expression (Muehlich et al. 2004), possi-
bly due to the release of constituents of lipoproteins, TGF-β 
and other CCN2-inducing compounds by platelets.

As expected, CCN2 mRNA is present in endothelial cells 
derived from the BM as well (Cheung et al. 2014). The 
perivascular region of the BM contains a heterogeneous pop-
ulation of stromal cells characterized by very high CXCL12 
expression, including the CXCL12-abundant reticular 
(CAR) cells, which are mesenchymal progenitor cells impor-
tant for the maintenance of both HSC and B-cells (Eltoukhy 
et al. 2016; Sugiyama et al. 2006). These CAR-cells were 
shown to have the highest expression of CCN2 mRNA of all 
investigated BM stromal cells (Cheung et al. 2014). The cell 
numbers and the proportions of endothelial cells and CAR 
cells isolated from CCN2+/− and CCN2−/− newborn mice 
are unchanged compared with those from WT mice (Cheung 
et al. 2014), but their function has not been studied in these 
knock-out models. The role of CCN2 in the perivascular 
niche thus remains to be established.

CCN2 expression and function in osteoblasts

Osteolineage cells contribute to the BM microenvironment 
by secreting factors such as granulocyte colony stimulat-
ing factor (G-CSF) (Taichman and Emerson 1994), throm-
bopoietin (TPO) (Yoshihara et al. 2007), and CXCL12 (Jung 
et al. 2006), although their effect on hematopoiesis is not 
fully determined (Ho and Méndez-Ferrer 2020). Osteoline-
age cells also express CCN2 (Luo et al. 2004; Safadi et al. 
2003; Xu et al. 2000).

CCN2 is long known for its importance in endochondral 
ossification, and crucial for normal development, growth 
and regeneration of bone (Ivkovic et al. 2003; Kanyama 
et al. 2003; Lambi et al. 2012; Xu et al. 2000; Yamaai et al. 
2005). Its mRNA and protein expression have been detected 
in normal long bones during the period of growth and (re)
modeling, and have been located to osteoblasts lining meta-
physeal trabeculae and those lining active, osteogenic sur-
faces in fracture callus (Safadi et al. 2003). CCN2 null mice 
show severe skeletal abnormalities involving both cartilage 
and bone, and die shortly after birth due to respiratory dis-
tress and cyanosis caused by severe rib cage malformations 
as well as by disruption of normal lung development due to 
reduced proliferation and increased apoptosis op pulmonary 
cells (Baguma-Nibasheka and Kablar 2008; Cheung et al. 
2014; Falke et al. 2020; Ivkovic et al. 2003; Lambi et al. 
2012; Yamaai et al. 2005).

As discussed above, increased CCN2 expression 
enhances the differentiation of human BM MSCs into oste-
oblasts (Wang et al. 2009). The osteoblast lineage-specific 
differentiation of MSCs is at least in part regulated by Wnt 
signaling and osteogenic BMPs, especially BMP-9 (Luo 
et al. 2004). Of note, in MSCs stimulated by Wnt3a and 
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osteogenic BMPs, CCN2 was among the most significantly 
up-regulated genes (Luo et  al. 2004). Prolonged CCN2 
expression, in turn, inhibited both Wnt3a and BMP induced 
osteogenic differentiation, suggesting a regulatory role for 
CCN2 in normal osteogenesis (Luo et al. 2004).

The differentiation of pre-osteoblasts into bone forming 
osteoblasts encompasses the following phases in devel-
opment: 1. proliferation, 2. maturation and extra-cellular 
matrix synthesis, and 3. matrix mineralization (Neve et al. 
2011). A bimodal pattern of CCN2 mRNA levels is observed 
in primary osteoblast cultures; high CCN2 levels during 
the proliferative phase of early osteoblast progenitor cells 
(pre-osteoblasts), diminished CCN2 expression as the pro-
genitor cells show terminal differentiation towards commit-
ted osteoblasts (Luo et al. 2004; Xu et al. 2000), and again 
high CCN2 mRNA levels during the mineralization phase 
(Safadi et al. 2003). Several studies showed that addition of 
rCCN2 increases the proliferation as well as mineralization 
of osteoblasts (Nishida et al. 2000; Safadi et al. 2003; Wang 
et al. 2009). Furthermore, delivery of rCCN2 into the femo-
ral marrow cavity induced osteogenesis in vivo, which was 
associated with increased angiogenesis (Safadi et al. 2003; 
Wang et al. 2009).

Thus, CCN2 expression is important in the proliferation 
and differentiation of BM osteoblasts and is thereby at least 
indirectly of importance for the formation and maintenance 
of the BM microenvironment. A direct effect of CCN2 
expression by osteoblasts on hematopoiesis still needs to 
be determined.

CCN2 expression and function in adipocytes

Several studies indicate a regulatory role of adipocytes 
in hematopoiesis, although their effect might be context-
dependent. Some studies indicate an inhibitory effect of 
BM adipocytes on hematopoiesis, as adipocyte-rich marrow 
spaces in mice contain less HSCs and hematopoietic pro-
genitors cells, and adipocytes inhibit hematopoietic recov-
ery (Ambrosi et al. 2017; Naveiras et al. 2009; Zhu et al. 
2013). Another study, in contrast, shows that BM adipocytes 
express high levels of SCF and have a stimulatory effect 
on hematopoiesis, increasing hematopoietic recovery after 
irradiation (Zhou et al. 2017). The latter, however, seems 
location dependent as adipocytes in long bones promote 
hematopoietic recovery after irradiation, while those in the 
caudal vertebrae inhibit hematopoietic recovery, despite SCF 
production (Zhou et al. 2017). The factors responsible for 
these disparate observations remain to be identified.

The effect of CCN2 on adipogenesis seems inhibitory; 
when CCN2 is knocked down in MSCs, they differentiate 

into adipocytes at a six fold higher rate (Battula et al. 2013). 
Furthermore, when CCN2 knockdown MSCs are used to form 
humanized extramedullary bone, this contains less cortical 
bone and more adipose-like marrow tissue when compared 
with that derived from normal MSCs (Battula et al. 2013). 
The possible impact hereof on hematopoiesis still remains to 
be elucidated.

CCN2 expression and function in the extracellular 
matrix

The ECM is a fibrillar basement network that plays a key role 
in cell proliferation, differentiation and migration, as well as 
in interactions between cells (Midwood et al. 2004). The BM 
ECM is composed of structural and non-structural (soluble) 
proteins. The structural matrix proteins include collagens, pro-
teoglycans and other glycoproteins, the most abundant being 
collagens I-XI, fibronectin, laminin, tenascin, thrombospondin 
and elastin (Klamer and Voermans 2014). The soluble ECM 
proteins include growth factors, cytokines, hormones and 
matricellular proteins, including those of the CCN family.

CCN2 is expressed by various BM stromal cells, which 
include mesenchymal stem cells as well as more differenti-
ated mesenchymal cells such as osteoblasts and CAR cells 
(Battula et al. 2013, 2017; Cheung et al. 2014; Igarashi et al. 
2007; Istvanffy et al. 2015; Luo et al. 2004; Ren et al. 2011; 
Safadi et al. 2003; Schutze et al. 2005; Xu et al. 2000). Further-
more, BM stromal cells show a high level of CCN2 binding 
through the low density lipoprotein receptor-related protein-1 
(LRP1) (Segarini et al. 2001), a well-known binding partner 
of CCN2. CCN2 is expected to bind many other factors in the 
BM as it contains many known binding partners of CCN2, 
such as integrins, heparan sulphate proteoglycans and growth 
factors. CCN2 might also induce the production of BM ECM 
proteins, as one study reports that BM stromal cells incubated 
with recombinant human CCN2 (rhCCN2) show increased 
expression of genes associated with ECM synthesis, including 
collagen type I and type III, lysyl oxidase, fibronectin, decorin 
and TGFβ-2 (Wells et al. 2016). It should be noted here that, 
typically, it has been difficult to show such activity of rCCN2 
per se in other experiments.

Thus, as a matricellular protein, CCN2 can be expected to 
regulate intercellular signaling in the BM ECM. Furthermore, 
the relevance of ECM-characteristics for HSC biology and 
blood cell maturation underscores that CCN2 regulation might 
indirectly affect hematopoiesis through ECM-modification 
(Durand et al. 2018; Ho and Méndez-Ferrer 2020; Klamer 
and Voermans 2014).
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CCN2 and normal hematopoiesis

CCN2 expression and function in hematopoietic 
stem cells, myelopoiesis and lymphopoiesis

CCN2 has not been detected in HSCs, and transplant stud-
ies showed that HSCs of CCN2−/− or WT neonatal mice 
transplanted into WT recipients had similar HSC prop-
erties after transplantation, indicating that CCN2 indeed 
has minimal cell-autonomous effects in HSCs (Cheung 
et al. 2014). HSCs, however, are able to upregulate CCN2 
expression in BM stromal cells (Istvanffy et al. 2015) and 
there is substantial evidence that stromal CCN2 does affect 
hematopoiesis.

The effects of stromal CCN2 on hematopoiesis have 
been investigated by in vitro and in vivo studies. Murine 
HSCs co-cultured on stroma with decreased CCN2 protein 
content (shCCN2 stroma) showed reduced colony forma-
tion with increased number of hematopoietic stem and 
progenitor cells in  G0 phase and senescence, and delayed 
time to first cell division, indicating that stromal CCN2 
supports the growth and proliferation of HSCs and hemat-
opoietic progenitor cells (Istvanffy et al. 2015). Stromal 
CCN2 seems to regulate the  G0/G1 transition in murine 
HSCs by concerted action on TGF-β and WNT signal-
ing pathways (Istvanffy et al. 2015). Furthermore, HSCs 
cultured on shCCN2 stroma and subsequently transplanted 
into recipient WT mice in a competitive setting, showed 
normal initial engraftment, but at later time points (10 
and 16 weeks), there was a significant decline of mye-
loid and B-lymphoid but not T-lymphoid engraftment 
(Istvanffy et al. 2015). Adding rCCN2 to these cultures 
partly compensated for the diminished CCN2 production 
by stromal cells, significantly enhancing both the number 
of B- and T-cells, whereas the number of myeloid cells did 
not change (Istvanffy et al. 2015). In addition, when the 
donor HSCs isolated from primary recipients were again 
transplanted in equal numbers into secondary recipients, 
none of the secondary recipients of HSCs from shCCN2 
stromal co-cultures engrafted more than 1% in the periph-
eral blood, BM, and spleen in contrast to control co-cul-
tures (Istvanffy et al. 2015). Thus, co-culturing HSCs with 
CCN2-deficient stroma affects HSC properties in mice, 
with stromal CCN2 supporting HSC maintenance and 
longtime survival as well as supporting both myelopoiesis 
and B-lymphopoiesis.

CCN2 involvement in myelopoiesis and B-lymphopoie-
sis is also demonstrated by another study, showing that 
myeloid cell numbers in newborn CCN2−/− mice were 
decreased in the liver, although unaltered in BM and 
spleen, whereas B-cell numbers in the same mice were 
increased in the liver, while decreased in BM and spleen 

(Cheung et al. 2014). T-cells were the same in all the 
compartments compared with WT mice (Cheung et al. 
2014). The opposite effects of CCN2 on myelopoiesis and 
B-lymphopoiesis in BM and spleen versus liver might 
relate to differences in microenvironmental context in 
these compartments, although this has not been further 
explored. In the associated transplant study, the authors 
found similar results for B-cells; mice receiving liver-
derived cells containing high numbers of HSCs, showed 
significantly decreased numbers of B-cells in both BM and 
spleen when these cells were derived from CCN2−/− neo-
natal mice compared with that from WT mice, indicating 
that presence of CCN2 in the microenvironment of devel-
oping HSCs supports B-lymphopoiesis in BM and spleen 
(Cheung et al. 2014). As for the lower numbers of B-cells 
in the BM of mice receiving CCN2−/− cells, pre-B and 
later differentiation stages were herein most affected, while 
pro-B populations remained unchanged and overall B-cell 
function was not affected (Cheung et al. 2014). This effect 
on B-lymphopoiesis is supported by in vitro studies, show-
ing that CCN2, in the presence of IL-7, could potentiate 
B-cell proliferation and promote pro-B to pre-B cell differ-
entiation, but not the further differentiation into sIgM + B 
cells (Cheung et al. 2014). In contrast to B-cells, the mye-
loid population in the BM of recipients transplanted with 
cells from CCN2−/− mice was more abundant, which points 
to a possible inhibitory effect of CCN2 on myelopoiesis 
in this compartment (Cheung et al. 2014). The apparent 
discrepancy with the aforementioned study by Istvanffy 
et al., reporting that HSCs cultured on shCCN2 stroma 
transplanted into recipient WT mice showed a decline of 
myeloid engraftment, suggesting a supportive effect of 
stromal CCN2 on myelopoiesis (Istvanffy et al. 2015), 
might relate to the differences in experimental set up.

In all, it can be concluded that stromal/environmental 
CCN2 is important for maintenance and longtime survival of 
HSCs and affects both myelopoiesis and B-lymphopoiesis. 
The effect on the latter two is likely to be highly dependent 
on the local microenvironment of the different tissue com-
partments and the precise effect of CCN2 on especially the 
myelopoiesis needs to be further determined.

CCN2 expression in peripheral blood, 
megakaryopoiesis and erythropoiesis

Normal mononuclear cells derived from peripheral blood 
show very low to undetectable CCN2 mRNA levels (Kim 
et al. 1997; Sala-Torra et al. 2007; Vorwerk et al. 2000). 
Plasma and serum mainly contain the N-terminal fragment 
of CCN2, while the full-length protein is abundant in plate-
lets and released upon platelet stimulation (Cicha et al. 2004; 
Kubota et al. 2004; Miyazaki et al. 2010; Roestenberg et al. 
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2004). The CCN2 content of a single platelet is estimated to 
be more than 20-fold higher than that of any other growth 
factor reported in platelets such as TGF-β, insulin-like 
growth factor-1 (IGF1), and platelet derived growth factor 
(PDGF)-AB (Kubota et al. 2004).

Platelets do not produce CCN2 themselves as CCN2 tran-
scripts are absent in platelets (Gnatenko et al. 2003). Also, 
normal megakaryocytes do not seem to contain or produce 
CCN2 as neither cells from the megakaryocytic CMK cell 
line nor megakaryocytes differentiated from human HSCs 
showed any detectable CCN2 protein production or gene 
expression in vitro (Sumiyoshi et al. 2010). In addition, no 
appreciable CCN2 was detected in normal megakaryocytes 
in vivo (Astrom et al. 2015; Cicha et al. 2004; Sumiyoshi 
et al. 2010), although immunohistochemical staining indi-
cated strong expression of CCN2 in megakaryocytes of 
primary myelofibrosis and in a subpopulation of megakar-
yocytes in patients with X-linked thrombocytopenia with 
thalassemia (Astrom et al. 2015). Thus, platelets are likely to 
take up CCN2 from the environment via endocytosis, similar 
to other molecules (Escolar et al. 2008), which is supported 
by the observation that human platelets are able to absorb 
exogenous CCN2 in vitro (Sumiyoshi et al. 2010). Possible 
receptors for endocytosis of CCN2 by platelets are LRP1 and 
integrin αIIbβ3, which are both known to bind CCN2 and to 
mediate endocytosis of their ligands (Jedsadayanmata et al. 
1999; Kawata et al. 2006, 2012). The source of this platelet 
CCN2 is hypothesized to come from mesenchymal cells in 
the microenvironment, including chondrocytes and stromal 
fibroblasts. The transcription factor Myeloid Zinc Finger 
1 (MZF1) can directly regulate CCN2 gene expression of 
BM stromal cells by binding to its promoter (Piszczatowski 
et al. 2015), and in vitro treatment of stromal fibroblasts 
with either vitamin A or D activates the MZF1 pathway, 
which increases CCN2 production and results in enhanced 
loading of CCN2 into developing platelets (Rozado et al. 
2014). Whether other cells and factors are involved in CCN2 
loading of platelets is undetermined.

To our knowledge, no data are available on the role of 
CCN2 in erythropoiesis.

CCN2 and malignant hematopoiesis

CCN2 has been implicated in more than 25 different forms 
of cancer, mostly based on correlations (either positively 
or negatively) with clinical outcome (Wells et al. 2015). 
Altered CCN2 expression has been reported in tumor cells 
as well as in supporting stromal cells (Wells et al. 2015).

Several studies have investigated the role of CCN2 in leu-
kemia. Lymphoblast from both pediatric and adult B-acute 
lymphoblastic leukemias (B-ALL) show moderate to highly 
increased CCN2 mRNA expression compared with control 

cells (often CD34 positive cells,  CD19+igM− cells or mono-
nuclear cells) in the majority (60–80%) of cases (Boag et al. 
2007; Sala-Torra et al. 2007; Vorwerk et al. 2000, 2002). 
MSCs isolated from the BM of acute myeloid leukemia 
(AML)-bearing mice showed increased CCN2 expression 
compared with MSCs from control mice (Battula et  al. 
2017). CCN2 expression has occasionally been described 
in chronic myeloid leukemia (CML) cells (Vorwerk et al. 
2000), although this has not been confirmed by later stud-
ies. CCN2 gene amplification or mutations have not been 
reported.

CCN2 expression, effect and regulation in acute 
lymphoblastic leukemias

CCN2 expression and prognostic effect in ALL

High CCN2 mRNA expression is frequently observed in the 
lymphoblasts of B-ALL, but rarely in T-ALL (Advani et al. 
2010; Boag et al. 2007; Gandemer et al. 2007; Kang et al. 
2010; Lu et al. 2014; Sala-Torra et al. 2007; Tesfai et al. 
2012; Vorwerk et al. 2002, 2000; Welch et al. 2013, 2015). 
It could be hypothesized that this is related to the fact that 
CCN2 plays a role in normal B-cell development while no 
effects in T-cell development have been reported (Cheung 
et al. 2014).

Several studies investigated the prognostic effect of 
CCN2 expression in pediatric and adult B-ALL. In pedi-
atric B-ALL, increased CCN2 expression has been asso-
ciated with certain cytogenetic subgroups; B-ALL with 
BCR-ABL, ETV6-RUNX1 (TEL-AML1) or translocations 
of MLL showed high CCN2 expression (Boag et al. 2007; 
Gandemer et al. 2007; Tesfai et al. 2012), while those with 
hyperdiploidy showed low CCN2 expression, and B-ALL 
with an E2A-PBX1 translocation showed hardly any CCN2 
expression (Boag et al. 2007). Thus, with the exception of 
ETV6-RUNX1, high CCN2 expression is associated with 
poor prognostic cytogenetics, and low/no CCN2 expres-
sion with favorable cytogenetics. In addition, high CCN2 
gene expression was part of the high risk profile in a study 
on pediatric ALL patients with high risk features (Kang 
et al. 2010). This study used a 38-gene expression classi-
fier predictive of relapse-free survival (RFS) to distinguish 
2 groups, one with low relapse risk (81% 4-year RFS) and 
one with high relapse risk (50% 4-year RFS). Patients with 
very high-risk features (BCR-ABL1 or hypodiploidy) were 
excluded, as well as those with low-risk features (triso-
mies of chromosomes 4 or 10; t[12;21][ETV6-RUNX1]) 
unless they had central nervous system disease or testicular 
localization. In an earlier study on pediatric B-ALL, CCN2 
expression of lymphoblasts at diagnosis was not found to be 
predictive of relapse, as the same number of patients with 
a relapse had CCN2 expressing lymphoblasts at diagnosis 



37CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal…

1 3

as those in continued remission (Vorwerk et al. 2002). This 
study, however, differed from the later published study in 
that it did not select for high-risk patients. Furthermore, it 
merely looked at absence or presence of CCN2 expression 
without taking the level of CCN2 expression into account. 
As discussed above, low CCN2 expression has been asso-
ciated with favorable cytogenetics. Therefore, the level of 
CCN2 expression, and not merely its presence or absence, 
seems to be important for its prognostic value.

In adult B-ALL, higher CCN2 expression levels have also 
been associated with worsening of overall survival (Advani 
et al. 2010; Sala-Torra et al. 2007). In a study on 79 adult 
ALL specimens, a higher CCN2 expression level in blood 
or BM lymphoblasts was an independent negative predictor 
of survival in a multivariate proportional hazards model and 
correlated with the percentage of CD34 expressing blasts, 
although there was no correlation between CCN2 expres-
sion levels and rate of complete remission or resistant dis-
ease (Sala-Torra et al. 2007). There were also no significant 
differences in CCN2 expression when analyzed according 
to sex, age, French–American–British (FAB) classifica-
tion, SWOG performance status, white blood cell counts, 
and number of blasts in peripheral blood or BM (Sala-Torra 
et al. 2007). Similar findings were reported in a smaller 
study on 33 adult ALL patients with relapsed or refractory 
disease; CCN2 expression was not predictive for complete 
remission rate nor for resistant disease, but there was a trend 
for patients with higher expression of CCN2 in circulating 
lymphoblasts to have an inferior overall survival (Advani 
et al. 2010).

Several in vitro and in vivo studies support the notion 
that CCN2 has a pro-leukemic effect in B-ALL. In vitro, 
knockdown of CCN2 in B-ALL cell lines reduces leukemia 
cell growth due to reduced proliferation as well as increased 
apoptosis (Lu et al. 2014; Wells et al. 2016). The reduced 
proliferation is likely due to inhibition of the  G1/S transi-
tion, associated with decreased levels of phospho-AKT and 
increased levels of p27, whereas the increased apoptosis is 
associated with increased levels of the pro-apoptotic BCL-2 
family protein BIM (Lu et al. 2014). In vivo, mice injected 
with genetically engineered B-ALL cells with overexpressed 
CCN2 showed reduced survival (Wells et al. 2016). Mice 
injected with B-ALL with knocked down CCN2 showed less 
engraftment in the BM compared with mice transplanted 
with control cells (B-ALL cells with empty vector) (Wells 
et al. 2016). Thus, reduced survival associated with elevated 
CCN2 expression seems related to increased engraftment, 
proliferation, and apoptosis resistance (Wells et al. 2016).

B-ALL cells can also secrete CCN2 (Boag et al. 2007; 
Welch et  al. 2015; Wells et  al. 2016), and addition of 
rhCCN2 promotes adhesion of B-ALL cells to stromal cells 
in vitro, which induces them to overexpress genes associated 

with cell cycle, intracellular transport and ECM synthesis 
(Wells et al. 2016). Therefore, CCN2 secreted by B-ALL 
cells might also enhance leukemia engraftment due to its 
modifying effects on the microenvironment and ECM inter-
actions (Wells et al. 2016).

Seemingly in contrast to the above, one study showed 
increased leukemic engraftment when CCN2 was knocked 
down in MSCs, which suggests a protective effect of stro-
mal CCN2, diminishing leukemic outgrowth (Battula et al. 
2013). This study used CCN2 knockdown MSCs to form 
humanized extramedullary BM (EXM-BM) in WT mice. 
Increased leukemic engraftment of ALL cells was observed 
in this EXM-BM compared with that in the control EXM-
BM derived from normal MSCs (Battula et al. 2013). This 
disparity suggests that not only the effects of CCN2 can 
be cell-type dependent, but also that the source of CCN2 
might be critical (leukemic blast versus stromal cell). 
Another explanation might relate to the fact that actions of 
CCN proteins are context dependent. In the latter study, the 
CCN2 knockdown MSCs are used to induce newly formed 
bone and BM when injected together with human endothe-
lial colony-forming cells (Battula et al. 2013). The EXM-
BM derived from these CCN2 knockdown MSCs proved to 
be more adipocyte-rich, attributed to an inhibitory effect of 
CCN2 on adipogenesis, and expressed significantly higher 
levels of CXCL12 and of the adipocyte growth factor lep-
tin than the EXM-BM derived from normal MSCs (Battula 
et al. 2013). Thus, there is not merely a down-regulation of 
CCN2 expression in the knockdown MSCs, but a profound 
change in the microenvironment they contribute to, which 
can be attributed to the effects of CCN2 on MSC differen-
tiation. In particular, the enhanced leukemic engraftment in 
this setting might be due to the enhanced fat content of the 
BM with increased leptin and CXCL12 expression, possibly 
overruling a negative effect of CCN2 deficiency, as leptin 
enhances leukemic cell growth (Konopleva et al. 1999; Tabe 
et al. 2004) and CXCL12 is a known homing factor for leu-
kemia cells (Möhle et al. 2000).

Epigenetic and post‑transcriptional regulation of CCN2 
in acute lymphoblastic leukemia

Both epigenetic regulation and post-transcriptional regula-
tion of CCN2 might play a role in the pathophysiology of 
ALL.

DNA methylation is the only epigenetic modification of 
CCN2 studied in ALL. The CCN2 locus contains a dense 
CpG island at the 5′ end of the coding region and demeth-
ylation of this region was shown to be a common feature of 
pediatric B-ALL; mononuclear cells extracted from BM of 
these patients showed this locus to be largely unmethylated, 
regardless of the level of CCN2 gene expression (Welch 
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et al. 2013). Remarkably, CD34 + cells from normal BM also 
showed extensive hypomethylation of the CCN2 locus, while 
BM lymphoblasts from T-ALL patients, not expressing 
detectable levels of CCN2 mRNA, showed hypermethylation 
focused at either end of the CCN2 CpG island (Welch et al. 
2013). In B-ALL cell lines, an inverse correlation between 
the methylation state of the CCN2 locus and CCN2 gene 
expression was found: B-ALL cell lines with unmethylated 
CCN2 CpG islands showed high levels of CCN2 expression, 
while those with methylated CCN2 CpG islands showed no 
measurable CCN2 expression (Welch et al. 2013). In conclu-
sion, while in B-ALL cell lines, demethylation of the CCN2 
locus was associated with increased CCN2 expression, dem-
ethylation in ALL BM samples was commonly present but 
not related to CCN2 gene expression. Further studies are 
needed to elucidate the exact role of the CCN2 methylation 
status in ALL.

Alternative splicing of CCN2 in B-ALL is described by 
one study, which showed several novel short CCN2 mRNA 
isoforms (alternative splice forms) in B-ALL cell lines and 
B-ALL specimens (Welch et al. 2015). The splice forms 
all exhibited variable loss of sequences corresponding to 
exons 1–3, and in some cases loss of exon 4, but always full 
retention of exon 5 containing the CT domain (Welch et al. 
2015). The short isoform encoding only the CT domain was 
the most frequently observed CCN2 alternative splice form, 
being present in 70% of the investigated B-ALL specimens 
expressing full length CCN2 (Welch et al. 2015). The shorter 
transcripts (but not the full length transcript) showed higher 
expression during the most active phase of cell growth, sug-
gesting that they may be associated with the proliferation 
of B-lineage ALL cells (Welch et al. 2015). The truncated 
CCN2 protein with only the CT domain can still strongly 
bind to heparin, mediate cell adhesion and induce prolifera-
tion (Ball et al. 2003; Brigstock et al. 1997; Holbourn et al. 
2009), but differences in biological activity of alternative 
splice products, compared to those of full length CCN2, 
largely remain to be elucidated.

MiRNAs play an important regulatory role in hemat-
opoiesis and leukemogenesis (Fernandes 2017; Grobbelaar 
and Ford 2019; Schotte et al. 2009; Yeh et al. 2016; Yen-
damuri and Calin 2009; Zhang et al. 2018). The miRNA-
17–92 cluster is essential for B-cell development, regulating 
pro-B to pre-B cell development and apoptosis of B-cells, 
and amplification of the miR-17–92 coding region has been 
associated with lymphoproliferative disease (Koralov et al. 
2008; Ventura et al. 2008; Xiao et al. 2008). CCN2 is a 
predicted target of several miRNAs, including the miRNA-
17–92 cluster (Chen et al. 2016; Ernst et al. 2010; Fox et al. 
2013). It is, however, still unknown if and how miRNAs 
might relate CCN2 expression to ALL biology.

CCN2 expression and effect in acute myeloid 
leukemia

CCN2 expression has not been demonstrated in AML blast 
cells. But similar to normal HSCs, AML cells can induce 
CCN2 expression in MSCs, which relies on BMP-mediated 
signaling (Battula et al. 2017; Li et al. 2019). The CCN2 
gene in MSCs from AML-bearing mice is upregulated 12- 
to 33-fold across various AML genotypes compared with 
that in MSCs from non-AML bearing control mice (Battula 
et al. 2017).

The effect of stromal CCN2 on AML engraftment is not 
fully established. One study indicates a pro-leukemic effect; 
transgenic mice overexpressing CCN2 in stromal cells, 
injected with AML cells, show: (1) a fourfold (time-depend-
ent) enhancement of leukemia engraftment, (2) a higher 
percentage of leukemia cells in the peripheral blood, and 
(3) more leukemia engraftment in spleens compared with 
WT mice (Battula et al. 2017). Another study, however, sug-
gests an opposite effect of stromal CCN2. Increased leuke-
mic engraftment was observed in humanized extramedullary 
BM (EXM-BM) in mice when this BM was formed from 
CCN2 knockdown MSCs (Battula et al. 2013). As has been 
discussed above in more detail in the section on CCN2 and 
ALL, the EXM-BM derived from CCN2 knockdown MSCs 
proved to be more adipocyte-rich, which can be attributed 
to the inhibitory effect of CCN2 on the adipogenic differen-
tiation of MSCs, and expressed higher levels of leptin and 
CXCL12 than the EXM-BM derived from normal MSCs 
(Battula et al. 2013). Thus, there is not merely a down-reg-
ulation of CCN2 expression in MSCs, but a complete change 
in microenvironment, with more adipose tissue and higher 
levels of leptin and CXCL-12, factors known to enhance 
leukemic growth and homing, possibly overruling a negative 
effect of CCN2.

CCN2 expression and effect in myeloid neoplasms 
with fibrosis

As described above, CCN2 enhances differentiation of cul-
tured human BM MSCs into (myo)fibroblasts when stimu-
lated subsequently with TGF-β (Lee et al. 2010). CCN2 is 
required for the differentiation of progenitor cells into con-
tractile myofibroblasts through the regulation of extracellular 
matrix, cytoskeleton, cell adhesion, and cell migration genes, 
at least in dermal fibroblasts, as well as for the recruitment 
of progenitor cells to the fibrotic lesion in response to bleo-
mycin, as has been shown by two different mouse models 
(Liu et al. 2014; Tsang et al. 2020; Liu et al. 2014). Another 
mouse fibrosis model has shown that either CCN2 mRNA or 
an application of exogenous CCN2 protein seems required 
for the development of persistent fibrosis (Mori et al. 1999). 
Although initially there has been some misconception that 
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CCN2 would be merely a down-stream mediator of TGF-β, 
it has now been shown that CCN2 rather acts as cofactor 
mediating and amplifying the profibrotic actions of TGF-β 
through domain-specific interactions with TGF-β and its 
receptor (Holmes et al. 2001; Khankan et al. 2011; Mori 
et al. 2008), and that TGF-β and CCN2 have overlapping 
and distinct fibrogenic effects (Gore-Hyer et al. 2002). In a 
wide variety of in vivo systems, CCN2 is required for experi-
mental fibrosis. CCN2 is important as a key central mediator 
of the feed-forward system that both initiates and perpetu-
ates fibrosis since adhesive signaling/mechanotransduction, 
mediated by FAK and YAP/TAZ, is required for fibrosis and 
CCN2 activates this pathway (Dupont et al. 2011; Lachowski 
et al. 2018).

Higher mRNA levels of TGF-β and CCN2 have been 
demonstrated in BM of myelodysplastic syndrome (MDS) 
with fibrosis than in MDS without fibrosis (Hussein et al. 
2018), suggesting a role for both in its pathophysiology. The 
TGF-β pathway has already been implicated in the patho-
genesis of many BM disorders, including myeloid neoplasms 
(Bataller et al. 2019), and TGF-β is known to play a central 
role in the induction of BM fibrosis in myeloproliferative 
neoplasms (Agarwal et al. 2016). The role of CCN2 in mye-
loproliferative neoplasms or other BM diseases with fibrosis 
still needs to be elucidated.

CCN2 expression and effect in plasma cell neoplasia

Only 1 study investigated the role of CCN2 in plasma cell 
neoplasia. This study reported significantly lower plasma 
levels of whole CCN2 in multiple myeloma (MM) patients 
compared with healthy controls, and in MM patients with 
bone disease compared with those without (Munemasa et al. 
2007). Therefore, lowered CCN2 might be an indicator of 
bone disease in MM patients.

Other CCN protein family members

CCN2 is just one representative of the family of closely 
related CCN genes, which also includes CCN1 (Cysteine 
rich 61/Cyr61), CCN3 (Nephroblastoma overexpressed/
NOV), CCN4 (Wnt-inducible-secreted protein (WISP)-1), 
CCN5 (WISP-2) and CCN6 (WISP-3) (Brigstock et al. 1997; 
Perbal 2018).The CCN family members can work in concert 
to orchestrate a multitude of biological processes in simi-
lar but also partly opposite ways (Peidl et al. 2019; Perbal 
2018; Riser et al. 2009, 2010). Therefore, the CCN family 
genes should ideally be studied together rather than separate. 
Unfortunately, the limited availability of well characterized 
tools including purified individual CCN proteins and the 
high complexity of their individual biologies have largely 
prevented such studies thus far.

As discussed in the reviews on CCN proteins in cancers 
and their tumor microenvironment, the role of a particu-
lar CCN protein in either potentiating or inhibiting tumor 
progression is related to the tumor type, and altered protein 
expression can be observed in either tumor cells or in tumor 
associated stromal cells (Wells et al. 2016; Yeger and Perbal 
2016). With respect to their role in the BM microenvironment 
and in normal or malignant hematopoiesis, we have found 
no integrative studies involving multiple CCN genes. The 
available data on the individual non-CCN2 protein family 
members are discussed below and their expression in hema-
tologic malignancies of the BM is summarized in Table 4.

CCN1

High levels of CCN1 mRNA and protein have been demon-
strated in human BM stromal cells (Djouad et al. 2007; John-
son et al. 2014; Li et al. 2012; Long et al. 2015; Schutze et al. 
2005). The highest CCN1 expression is observed in MSCs, 
which decreases during osteogenic, adipogenic and chondro-
genic differentiation (Djouad et al. 2007; Schutze et al. 2005).

In (T- and B-) ALL and CML, CCN1 expression has been 
detected in cell lines, and increased CCN1 levels have been 
demonstrated in BM-derived mononuclear cells, BM aspirate 
supernatant, and plasma samples of ALL and CML patients 
(Cao et al. 2019; Song et al. 2019; Zhu et al. 2016). In ALL, 
BM and plasma CCN1 levels correlate with the percentage 

Table 4  Expression of CCN proteins in hematologic malignancies of 
the bone marrow

Increased (↑), decreased (↓), or unaltered (–) expression of CCN 
proteins in tumor cells and tumor associated stromal cells as far as 
reported in literature
N/R not reported, ALL acute lymphoblastic leukemia, CML chronic 
myeloid leukemia, AML acute myeloid leukemia, MM multiple mye-
loma

CCN1 CCN2 CCN3 CCN4

B-ALL
Tumor cell ↑ ↑ n/r ↑
Stromal cell n/r n/r n/r n/r
T-ALL
Tumor cell ↑ - n/r n/r
Stromal cell n/r n/r n/r n/r
CML
Tumor cell ↑ n/r ↓ n/r
Stromal cell n/r n/r n/r n/r
AML
Tumor cell ↑ n/r n/r n/r
Stromal cell ↑ ↑ n/r n/r
MM
Tumor cell –/↑ ? n/r n/r n/r
Stromal cell ↑ n/r n/r ↓
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of blasts (Zhu et al. 2016). In both ALL and CML, CCN1 
enhances leukemic cell survival in vitro by decreasing apop-
tosis through enhanced BCL2 expression via the NF-κB 
pathway (Song et al. 2019; Zhu et al. 2016). In ALL, AKT 
but not ERK1/2 affects in vitro NF-κB signaling by CCN1 

(Zhu et al. 2016), whereas in CML, AKT nor ERK1/2 are 
involved in in vitro NF-κB signaling by CCN1 (Song et al. 
2019). Direct and indirect effects of CCN1 in CML and ALL 
are depicted in Fig. 4a, b, respectively. CCN1 inhibition 
increases Imatinib-induced apoptosis of CML cells in vitro 

Figure 4  a Direct and indirect intracellular effects of CCN proteins in 
chronic myeloid leukemia (CML). CCN1 expression is increased in 
CML cells, inhibiting apoptosis through enhanced expression of the 
anti-apoptotic protein BCL2 via the NF-κB pathway, without involve-
ment of AKT or ERK1/2. CCN3 expression is decreased in CML 
cells, decreasing its inhibitory effect of CCN3 on ERK and AKT 
phosphorylation, resulting in elevated levels of phosphorylated ERK 
and AKT. This leads to less apoptosis, presumably via the NF-κB 
pathway. In addition, decreased CCN3 levels result in less caspase 
3 cleavage, thereby also reducing apoptosis. Furthermore, decreased 
CCN3 levels lead to less inhibition of NOTCH1 signaling, resulting 
in higher levels of NOTCH. This results in decreased expression of 
p27, disrupting cell cycle regulation. b Direct and indirect intracel-

lular effects of CCN proteins in acute lymphoblastic leukemia (ALL). 
The effects have been demonstrated for CCN1 in B- and T-ALL, for 
CCN2 in B-ALL and for CCN4 in T-ALL cells. In these cells, CCN1, 
CCN2 as well as CCN4 expression is increased, all inhibiting apopto-
sis through enhanced expression of the anti-apoptotic protein BCL2. 
Both CCN1 and CCN2 activate AKT, whereas CCN4 activates AKT 
as well as ERK1/2. Involvement of the NF-κB pathway has been 
demonstrated for CCN1 and CCN4. In addition, increased CCN2 and 
CCN4 levels lead to decreased expression of the pro-apoptotic pro-
teins BIM and BAX, respectively, both resulting in less apoptosis. 
Furthermore, increased CCN2 levels are associated with decreased 
p27 expression, thereby affecting cell cycle regulation
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and restores the sensitivity of CML cells to Imatinib in vivo 
(Song et al. 2019). Similarly, CCN1 decreases Cytarabine 
chemosensitivity in ALL cells via NF-κB pathway activation, 
and inhibition of CCN1 can restore ALL cell response to 
Cytarabine in vitro (Cao et al. 2019). Thus, CCN1 expression 
of leukemic cells seems to enhance tumor cell growth as well 
as drug resistance in both CML and ALL.

In AML, CCN1 expression has been demonstrated in leu-
kemic cells as well as in stromal cells (Long et al. 2015; Niu 
et al. 2014). CCN1 expression in AML cells was upregulated 
by co-culturing them with BM stromal cells (Long et al. 
2015). The amount of CCN1 expression in AML cells varies, 
with some BM samples and cell lines showing high expres-
sion, while others having low or no detectable expression (Niu 
et al. 2014). CCN1 promotes growth and survival of AML 
cells through the MEK/ERK pathway, with up-regulation 
of c-Myc and Bcl-xL, an anti-apoptotic protein of the Bcl2-
family, and down-regulation of Bax, a pro-apoptotic member 
of the Bcl-2 family (Niu et al. 2014). The β-catenin/survivin 
pathway does not seem to be involved (Niu et al. 2014). Inhi-
bition of stromal CCN1 partially reverses the stroma-induced 
resistance to mitoxantrone by increasing the mitoxantrone-
induced apoptosis by AML cells (Long et al. 2015), suggest-
ing a role for CCN1 in stroma-mediated chemoresistance. 
Spleen tyrosine kinase (SYK) is involved in this CCN1 sign-
aling (Long et al. 2015). Thus, in AML, CCN1 seems to have 
a pro-leukemic effect in both tumor and stromal cells. CCN1 
gene polymophisms have been associated with either a low-
ered or increased risk of AML (Niu et al. 2014).

Increased CCN1 protein and gene expression have also 
been demonstrated in BM of patients with a plasma cell 
neoplasia (Johnson et al. 2014; Liu et al. 2017). Contradict-
ing results, however, have been reported regarding cell type 
(plasma cells versus stromal cells) expressing CCN1 and 
its effect on tumor cell growth. Johnson et al. found high 
CCN1 gene expression in multiple myeloma (MM) associ-
ated BM stromal cells, but no CCN1 expression in cultured 
(normal or malignant) plasma cells (Johnson et al. 2014), 
whereas Dotterweich et al. did demonstrated CCN1 mRNA 
and protein in the cells of their MM cell line, which could be 
markedly increased by MSC contact or addition of recombi-
nant CCN1 (Dotterweich et al. 2014). And whereas Johnson 
et al. showed recombinant CCN1 to inhibit growth of MM 
cells (Johnson et al. 2014), the viability of primary myeloma 
cells in the study of Dotterweich et al. increased significantly 
after CCN1 incubation, implying a pro-myeloma effect of 
CCN1 (Dotterweich et al. 2014). The contradicting results of 
CCN1 on MM cells might be explained by the use of differ-
ent cell lines (H929 versus INA-6 MM cell line), difference 
between cell lines versus patient samples, and differences in 
experimental conditions as the effects of CCN proteins are 
known to be dependent on the micro-environment including 
the presence of certain cytokines.

Two studies imply that CCN1 has a favorable clinical 
effect in plasma cell neoplasms; Johnson et al. showed ele-
vated serum CCN1 levels to be associated with a longer 
time to progression of monoclonal gammopathy of undeter-
mined significance (MGUS) to overt MM and as such with 
a superior overall survival (Johnson et al. 2014), and Liu 
et al. showed increased CCN1 protein levels in the BM to 
be inversely associated with the severity of myeloma associ-
ated bone lesions (Liu et al. 2017). In addition, both studies 
confirmed in mouse models that overexpressed CCN1 in 
engrafted MM cells results in reduced bone disease (Johnson 
et al. 2014; Liu et al. 2017). This effect seems opposite to 
that of CCN2, showing decreased levels in MM patients with 
bone disease (Munemasa et al. 2007).

CCN3

CCN3 gene expression has been demonstrated in HSCs 
and hematopoietic progenitor cells (Bruno et  al. 2004; 
Gupta et al. 2007; Ishihara et al. 2014; Kimura et al. 2010) 
as well as in MSCs (Djouad et al. 2007). In MSCs, CCN3 
expression increases two- to threefold after chondrogenesis 
(Djouad et al. 2007). In HSCs, CCN3 is essential for self-
renewal, which seems to be at least in part due to its effect 
on cell cycling and NOTCH signaling (Gupta et al. 2007).

Similar to the other CCN family members, expression of 
CCN3 is strongly influenced by cytokines from the micro-
environment. Without stimulation, HSCs show low levels 
of CCN3, but its expression can increase over 100-fold 
upon stimulation (Kimura et al. 2010). Interleukin 3 (IL-3) 
is the key cytokine for CCN3 induction in HSCs, directly 
increasing CCN3 expression by inducing STAT5A/B 
binding to a γ-interferon-activated sequences site in the 
CCN3 gene promoter (Kimura et al. 2010). Furthermore, 
exogenous CCN3 can induce endogenous expression of 
CCN3 in HSCs by binding to integrin αvβ3 on their cell 
surface, thereby affecting the long-term repopulating activ-
ity of HSCs (Ishihara et al. 2014). This process is context 
dependent; TPO mediates CCN3 binding to integrin αvβ3, 
inducing CCN3 expression likely through STAT5 activa-
tion, thereby supporting the long-term repopulating activ-
ity of HSCs (Ishihara et al. 2014). IFN-γ, however, impairs 
this TPO-induced expression of CCN3, likely through the 
activation of STAT1, inhibiting the long-term repopulating 
activity of HSCs (Ishihara et al. 2014).

In the transplant setting, exposure of umbilical cord 
blood to CCN3 can enhance engraftment by increased 
recruitment of cells with the highest long-term HSCs 
function, as these are preferentially bound to CCN3 
through integrin α6 (a.k.a. CD49f) (Gupta et al. 2007).

In CML, the CCN3 gene is down-regulated and its pro-
tein expression decreased as a direct consequence of the 
BCR-ABL tyrosine kinase activity, mediated at least in 
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part by microRNAs 130a/b (McCallum et al. 2006; Suresh 
et al. 2011). The decreased cellular CCN3 protein con-
tent was shown to correlate with increased CCN3 secre-
tion (McCallum et al. 2006). Treatment with Imatinib 
increases CCN3 expression (McCallum et al. 2006). On 
the other hand, overexpression of CCN3 by transfection 
or treatment with the recombinant protein, significantly 
reduces tumor cell growth by enhancing Imatinib induced 
apoptosis (McCallum et al. 2009, 2012). CCN3 induced 
reduced cell growth and enhanced apoptosis is associated 
with enhanced caspase 3 cleavage and reduced phospho-
rylation of ERK and AKT (McCallum et al. 2009, 2012). 
Furthermore, CCN3 upregulates the expression of β4 
integrin, which might affect the re-installation of growth 
control mechanisms (McCallum et al. 2012). In addition, 
CCN3 inhibits NOTCH1 signaling in CML, which is 
associated with increased expression of p27, thereby con-
tributing to the restoration of cell cycle regulation (Suresh 
et al. 2013). Thus, the oncogenic BCR-ABL protein in 
CML enhances cell survival at least in part through its 
inhibitory effect on CCN3, resulting in reduced apopto-
sis and enhanced cell growth. These direct and indirect 
effects of CCN3 in CML are depicted in Fig. 4a.

A possible pathogenic role for the increased amount of 
secreted CCN3 needs to be determined. Furthermore, meth-
ylation of the CCN3 promoter was significantly increased in 
peripheral blood samples of CML patients compared with 
healthy controls, but this was unaffected by Imatinib treat-
ment (Vatanmakanian et al. 2019). Whether hypermethyla-
tion of CCN3 is important in the pathophysiology in CML 
needs to be further investigated.

CCN4–6

CCN4, CCN5 and CCN6 expression has been demonstrated 
in MSCs (Djouad et al. 2007; Schutze et al. 2005). Like 
CCN3, CCN4 expression increases after chondrogenesis, 
whereas CCN6 expression decreases (Djouad et al. 2007; 
Schutze et al. 2005). CCN5 expression declines during adi-
pogenic differentiation (Schutze et al. 2005).

Two studies investigated CCN4 in malignant hemat-
opoiesis. The first describes a threefold decrease in mRNA 
expression of CCN4 in BM MSCs in MM compared with 
healthy age-matched controls, which meaning remains to be 
established (Corre et al. 2007). The other study shows vari-
able and sometimes high mRNA and protein expression of 
CCN4 in T-ALL cell lines (Zhang et al. 2015). Knockdown 
of CCN4 in the cell line with the highest expression inhib-
ited proliferation and induced apoptosis by down-regulating 
expression of, amongst others, p-AKT, p-ERK and Bcl-2, 
and upregulation of Bax, suggesting a possible pro-leukemic 
effect of CCN4 in T-ALL (Fig. 4b) (Zhang et al. 2015). We 

found no studies on CCN5 or CCN6 with regard to normal 
or malignant hematopoiesis.

Summary of CCN protein family members

In summary, the collected data on CCN1-6 with respect 
to BM microenvironment and normal or malignant 
hematopoiesis show, as far as the different experimental 
approaches allow such a comparison, many similarities 
and some differences between the CCN family members. 
In normal BM, expression of all CCN proteins have been 
demonstrated in MSCs, often at high levels and declining 
during lineage commitment and further differentiation, 
whereas only CCN3 expression has been found in HSCs. 
CCN3 directly affects the maintenance of HSCs, while 
CCN2 indirectly supports it through its secretion by MSCs. 
In hematologic malignancies of the BM, the CCN family 
members are often altered in either tumor cells or in the 
stromal cells (Table 4), usually, but not always, displaying 
pro-tumor effects. Many aspects of the CCN proteins in the 
various hematologic malignancies, however, remain to be 
elucidated.

CCN2 therapeutic options

Targeting CCN2 may be a therapeutic option for diseases 
associated with increased CCN2 expression, malignant as 
well as non-malignant. CCN2 can be inhibited by:

1. The use of an anti-CCN2 antibody (Aikawa et al. 2006; 
Alapati et al. 2011; Barbe et al. 2020a, b; Bickelhaupt 
et al. 2017; Dornhofer et al. 2006; Finger et al. 2014; 
Makino et al. 2017; Moran-Jones et al. 2015; Neesse 
et al. 2013; Ohara et al. 2018; Raghu et al. 2016; Rich-
eldi et al. 2020; Sakai et al. 2017),

2. Gene expression silencing by antisense oligonucleotides 
(ASOs) or small interfering RNAs (siRNAs) (Chen et al. 
2014; Gale et al. 2018; Gibson et al. 2017; Jensen et al. 
2018; Kang et al. 2020; Li et al. 2006; Okada et al. 2005; 
Sisco et al. 2008; Sung et al. 2013; Yokoi et al. 2004; 
Yoon et al. 2016),

3. Drugs that indirectly (and less specifically) inhibit 
CCN2 expression, for example by targeting Sirtuin 1 
(Sirt1) (Ren et al. 2017), peroxisome proliferator-acti-
vated receptor gamma (PPARγ) (Sun et al. 2006; Zhao 
et al. 2006), the CCN2 transcriptional regulators YAP 
and TAZ (Ji et al. 2018), or proteins involved in signal-
ing pathways affecting CCN2 transcription such FAK 
(Peidl et al. 2019),

4. The use of CCN3, as it can antagonize the effects of 
CCN2 (Peidl et al. 2019; Riser et al. 2009, 2010, 2014).
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Of the above, only the use of an anti-CCN2 antibody and the 
use of ASOs and siRNAs have made it to clinical trials for 
their direct effect on CCN2 (Gale et al. 2018; Jensen et al. 
2018; https ://www.prnew swire .com/news-relea ses/rxi-pharm 
aceut icals -annou nces-posit ive-resul ts-from-phase -12-trial 
-with-rxi-109-for-retin al-scarr ing-30069 0078.html; http://
www.scien cedir ect.com/scien ce/artic le/pii/S0190 96221 
40081 47). The PPARγ agonist Rosiglitazone is an FDA 
approved drug for the treatment of type 2 diabetes mellitus 
and has anti-fibrotic effects with in vitro and in vivo reduc-
tion of CCN2 expression in different organs (Gao et al. 2007; 
Guo et al. 2012; Ihm et al. 2010; Jeon et al. 2015). The FAK 
inhibitor GSK2256098 is and has been tested in phase 1 
and 2 studies for pulmonary hypertension and solid tumors, 
respectively (http://www.clini caltr ials.gov), whereas the 
FAK inhibitor PF573228 blocks CCN2 expression in vitro 
(Peidl et al. 2019). Several Sirt1 activators have been tested 
in clinical trials as reviewed by Dai et al. (2018), although 
their suppressive effects on CCN2 expression have only been 
demonstrated in animal models (Ren et al. 2017). The Hippo 
pathway is important in oncogenesis and many currently used 
drugs restrict YAP/TAZ activities, whereas several novel 
YAP/TAZ inhibitors are under development, as is reviewed 
by Pobbati and Hong (2020). The use of CCN3 as a counter-
regulator and a potential therapeutic agent has thus far been 
tested in experimental models (Riser et al. 2014).

The only therapeutic option for targeting CCN2 that has 
been studied in BM diseases, is the use of the humanized mon-
oclonal anti-CCN2 antibody FG-3019 (Pamrevlumab), which, 
in combination with conventional chemotherapy, significantly 
prolonged the survival of mice injected with a primary xeno-
graft of B-ALL cells (Lu et al. 2014). Pamrevlumab showed a 
very favorable clinical safety profile in a phase 2 study of idi-
opathic pulmonary fibrosis (Raghu et al. 2016; Richeldi et al. 
2020). Two other phase 2 studies, on Pamrevlumab in Duch-
enne muscular dystrophy [https ://clini caltr ials.gov/ct2/show/
NCT02 60613 6] and on Pamrevlumab in hospitalized patients 
with acute COVID-19 disease [https ://clini caltr ials.gov/show/
NCT04 43229 8], are ongoing. Furthermore, three phase 3 
studies, including one on locally advanced pancreatic cancer, 
have started [https ://clini caltr ials.gov/ct2/show/NCT03 95514 
6; https ://clini caltr ials.gov/ct2/show/NCT04 37166 6 and https 
://clini caltr ials.gov/ct2/show/NCT03 94109 3], while a fourth 
one is announced [https ://clini caltr ials.gov/ct2/show/NCT04 
41955 8]. Pamrevlumab has neither been tested in clinical trials 
on ALL, nor in other BM diseases.

Concluding remarks

The BM microenvironment is a complex and not fully 
unraveled milieu made up of many different cell populations, 
structural matrix proteins and soluble factors communicating 

with each other and forming different niches essential for 
normal hematopoiesis. It is subject to modulation by many 
different factors. One of these is CCN2, a matricellular pro-
tein with a wide variety of functions, known to be important 
in ECM for both the production of ECM proteins and the 
coordination of signaling pathways. CCN2 is produced by 
MSCs and other mesenchymal cells of the BM. It is involved 
in many different aspects of MSC biology, including prolif-
eration, migration and differentiation. In addition, it plays a 
role in normal B-cell development and has been implicated 
in the maintenance and longtime survival of HSCs. Fur-
thermore, CCN2 is shown to be overexpressed in leukemic 
cells of B-ALL, the most studied BM disease in this regard, 
in which it is associated with reduced overall survival. In 
AML samples, increased CCN2 expression is demonstrated 
in MSCs, which also affects leukemic engraftment, but in a 
way that still needs to be determined.

All other CCN family members are expressed in MSCs as 
well, whereas only CCN3 expression has been demonstrated 
in HSCs. Except for CCN5 and CCN6, which have not been 
studied in this context, all CCN protein family members have 
been associated with hematologic malignancies and often, 
but not always, their expression is increased in either tumor 
cells or in stromal cells, mostly displaying pro-tumor effects.

With this review, the authors hope to increase awareness 
of the CCN proteins, especially CCN2, as important play-
ers in the BM and as attractive subject for further studies on 
the BM microenvironment and BM diseases. These studies 
should include the use of anti-CCN therapies for their effect 
in neoplastic diseases such as ALL, but also for their possi-
ble disease modifying activities, for example on BM fibrosis.
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