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Abstract
Rooted acyclic graphs appear naturally when the phylogenetic relationship of a set X of taxa involves not only speciations 
but also recombination, horizontal transfer, or hybridization that cannot be captured by trees. A variety of classes of such 
networks have been discussed in the literature, including phylogenetic, level-1, tree-child, tree-based, galled tree, regular, or 
normal networks as models of different types of evolutionary processes. Clusters arise in models of phylogeny as the sets � (v) 
of descendant taxa of a vertex v. The clustering system C

N
 comprising the clusters of a network N conveys key information on 

N itself. In the special case of rooted phylogenetic trees, T is uniquely determined by its clustering system C
T
 . Although this 

is no longer true for networks in general, it is of interest to relate properties of N and C
N

 . Here, we systematically investigate 
the relationships of several well-studied classes of networks and their clustering systems. The main results are correspond-
ences of classes of networks and clustering systems of the following form: If N is a network of type � , then C

N
 satisfies �  , 

and conversely if C  is a clustering system satisfying � , then there is network N of type � such that C ⊆ C
N

.This, in turn, 
allows us to investigate the mutual dependencies between the distinct types of networks in much detail.
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Introduction

Networks used to model phylogenetic relationships typically 
are directed acyclic graphs (DAGs) with a single root, i.e., a 
unique vertex from which all other vertices can be reached 
from. As usual in phylogenetics, the subset X of vertices 
without descendants (the leaves of the network) represents 
the extant taxa, while the remaining vertices model their 
ancestors.

Phylogenetic trees and networks cannot be observed 
directly. Instead, they need to be inferred from measurable 
information such as dissimilarities or relational data encod-
ing the relatedness of small subsets of taxa. Phylogenetic 
trees, for example, are determined by additive metric dis-
tances (Buneman 1974; Simões-Pereira 1969) (together with 
the knowledge of an outgroup to determine the root) as well 
as sets of rooted triples ab|c recording that taxa a and b are 
more closely related with each other than with c (Aho et al. 
1981). Similar results exist for certain types of networks, 
such as those determined by split-decomposable metrics 
and weakly compatible split systems (Bandelt and Dress 
1989, 1992). Classes of phylogenetic networks are typi-
cally introduced by means of convenient graph-theoretical 
properties rather than their connection to readily available 
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data. In most cases, it remains unknown whether the net-
works are uniquely determined by small building blocks. A 
notable exception are level-1 and level-2 networks, whose 
biconnected components have at most one or two minimal 
(hybrid) vertices, respectively, and so-called tree-child net-
works. These are encoded by their bi-nets and/or tri-nets, 
which can be seen as a generalization of rooted triples 
(Huber and Moulton 2013; van Iersel et al. 2017b; Van Ier-
sel et al. 2022; Van Iersel and Moulton 2014; Semple and 
Toft 2021).

In this contribution, we are interested in particular in 
the relationships between the structure of networks N with 
leaf set X and their associated clustering systems CN , which 
contains, for each vertex v of N, the subset � (v) ⊆ X of 
leaves that can be reached from v (Nakhleh and Wang 2005; 
Huson and Rupp 2008). In the literature on phylogenetic net-
works, the sets C ∈ CN are often called the “hardwired clus-
ters” of N. Clustering systems CN of a network are closely 
related to split systems (by associating C ∈ CN with splits 
C|(X ⧵ C) ∪ {∗} , where X is augmented by an additional out-
group ∗ ) (Dress 1997); on the other hand, clustering serves 
as a standard approach to analyze and interpret (dis)similar-
ity data. Thus, it is of theoretical and practical interest to 
understand to what extent clustering systems determine the 
networks from which they derive.

As a special case, there is a well-known 1-to-1 corre-
spondence between rooted phylogenetic trees T and hier-
archies C  (Semple and Steel 2003), i.e., clustering systems 
that do not contain pairs of overlapping clusters. Therefore, 
T is uniquely determined by CT = C  . This simple corre-
spondence, however, is no longer true for (phylogenetic) 
networks. Nevertheless, it is not difficult to find some net-
work N for a given clustering system C  such that CN = C  : 
It suffices to determine the Hasse diagram N = ℌ[C] of the 
inclusion partial order of the clustering system C  to obtain 
such a network. For a phylogenetic tree T, the Hasse diagram 
ℌ[CT ] and T are isomorphic. For general networks, however, 
the situation is much more complicated (Nakhleh and Wang 
2005; Huson and Rupp 2008; Zhang 2019).

Phylogenetic networks can be seen as a superposition of 
multiple rooted trees that correspond to alternative explana-
tions of the phylogenetic relationships of the leaves (Huson 
and Scornavacca 2011). This suggests to consider the union 
of the clusters of all trees contained in a network N, usu-
ally referred to as the softwired clusters of N. While the 
set CN of all hardwired clusters of N is of linear size (i.e., 
in O(|V(N)|) , there may be exponentially many softwired 
clusters of N. In general, phylogenetic networks N inter-
preted in the softwired sense are computationally hard to 
work with and even just checking whether N contains a 
softwired cluster is NP-hard (Kanj et al. 2008; Huson and 
Scornavacca 2011). The construction of minimal networks 
from softwired clusters is fixed parameter tractable in the 

level k of the network (Kelk and Scornavacca 2014). From 
a practical point of view, however, it seems at least very dif-
ficult to estimate softwired clusters directly from data such 
as sequence similarities. Therefore, we consider exclusively 
the set of hardwired clusters CN in this contribution.

A broad array of different types of networks have been 
studied in the literature in order to model different modes 
of non-tree-like evolution such as horizontal gene transfer, 
recombination, or hybridization, see Kong et al. (2022) for 
a current review. Naturally, the question arises how much 
information about the structure of N is contained in the clus-
tering system CN . We will in particular be concerned with 
the following, inter-related questions 

1.	 Which types of networks N satisfy N ≃ ℌ[CN]?
2.	 What are necessary properties of the clustering systems 

CN obtained for networks N of a given class?
3.	 Which types of networks N, if any, can be characterized 

in terms of properties of their clustering systems CN?
4.	 When is a network N uniquely determined by CN or by 

the corresponding multiset of clusters MN?
5.	 When is a clustering system C  compatible with a speci-

fied type of network N in the sense that there is network 
N of given type such that C ⊆ CN?

While addressing these questions, we will also consider the 
implications between the defining properties of the various 
network classes. To help the reader navigate this contribu-
tion, we summarize the properties of interest in Table 1 and 
point to their formal definitions. Complementarily, proper-
ties of clustering systems are compiled in Table 2. Many of 
the results established here are summarized in Table 3 and 
Fig. 19 in section “Summary”.

It is important to note that the literature on phylogenetic 
networks does not always utilize the same nomenclature. 
In particular, properties such as binary, separated, conven-
tional, or phylogenetic are—more often than not—taken 
for granted in a given publication and explicitly or tacitly 
included in the definition of “phylogenetic network.” Here, 
we start from a very general setting of rooted DAGs, called 
“networks” throughout. All additional properties are made 
explicit throughout. We furthermore strive to prove all 
statements as general as possible. The reader will therefore 
on occasion find results that are well known in the field, 
although earlier proofs pertain to a more restrictive setting.

This paper is organized as follows. In section “Prelimi-
naries”, we provide the basic terminology and definitions 
used throughout this paper. In section “Networks and clus-
tering systems”, we start with a closer look at phylogenetic 
networks (“Basic Concepts” section) and related concepts 
which includes graph modifications such as arc-contractions 
or expansions (“Arc-expansion and arc-contraction” section) 
as well as the structural properties of non-trivial biconnected 
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components (called blocks) in networks (“Blocks” section). 
We then continue in section “Clusters, Hasse diagrams, and 
regular networks” to characterize the structure of the Hasse 
diagram of clustering systems. In particular, we provide new 
characterizations of regular networks, that is, networks that are 
isomorphic to the Hasse diagram of some clustering system.

In section“Semi-regular networks”, we consider semi-
regular networks, i.e., networks that do not contain so-called 
shortcuts and satisfy the path-cluster-comparability (PCC) 
property as introduced in section “Path-cluster comparabil-
ity”. (PCC) simply ensures that one of the clusters � (u) and 

� (v) is a subset of the other one whenever the vertices u and v 
are connected by a directed path in N. Although this property 
does not seem to have been studied so far, it turns out to play 
a fundamental role in the relationships between networks and 
their clustering systems. Regular networks, as it turns out, 
are precisely the semi-regular networks that do not contain 
vertices with outdegree 1. In addition, we show how to obtain 
regular networks N′ from networks N that only satisfy (PCC) 
such that CN = CN� . In section “Separated networks and clus-
ter networks”normal, and tree-based networks, we consider 
separated networks (networks for which each vertex with 

Table 1   Summary of networks considered in this paper

Network N is/satisfies References

Tree (level-0) N does not contain hybrid vertices
Shortcut-free N does not contain shortcuts
Phylogenetic cf. Definition 1 (N2) Definition 1
Separated All hybrid vertices of N have outdegree 1 Definition 2
Binary Every tree vertex v is either a leaf or has outdeg (v) = 2 , and every hybrid vertex v satisfies indeg (v) = 2 and 

outdeg (v) = 1

Definition 3

Level-k Each block B of N contains at most k hybrid vertices (distinct from the “root” of B) Definition 9
Regular There is a prescribed isomorphism between N and the Hasse diagram ℌ[C

N
] of the clusters in N Definition 11

Path-cluster-com-
parability (PCC)

For all u, v ∈ V(N) , u and v are ⪯
N

-comparable if and only if � (u) ⊆ � (v) or � (v) ⊆ � (u) Definition 12

Semi-regular N is shortcut-free and satisfies (PCC) Definition 13
Cluster network N satisfies (PCC), and, three additional properties based on the clusters and respective vertices in N Definition 14
Tree-child For every v ∈ V

0(N) , there is a “tree-child,” i.e., u ∈ child (v) with indeg (u) = 1 Definition 16
Normal N is tree-child and shortcut-free Definition 17
Tree-based There is a base tree T of N that can be obtained from N in a prescribed manner Definition 18
Cluster-lca (CL) lca ( � (v)) is defined for all v ∈ V(N) Definition 21
lca-network lca (A) is well defined, i.e., if |LCA (A)| = 1 for all non-empty subsets A ⊆ X Definition 22
Strong lca-network N is an lca-network and, for every non-empty subset A ⊆ X , there are x, y ∈ A such that lca ({x, y}) = lca (A) Definition 23
Galled tree Every non-trivial block in N is an (undirected) cycle Definition 26
Conventional (i) All leaves have indegree at most 1 and (ii) Every hybrid vertex is contained in a unique non-trivial block Definition 30
Quasi-binary indeg

N
(w) = 2 and outdeg

N
(w) = 1 for every hybrid vertex w ∈ V(N) and, additionally, outdeg

N
(maxB) = 2 

for every non-trivial block B in N
Definition 32

Table 2   Properties of clustering systems considered in this paper

Clustering system C  is/satisfies References

Hierarchy For all C,C� ∈ C  , it holds C ∩ C
� ∈ {�,C,C�} Definition 5 

Closed C  is closed under intersection, i.e., 
⋂

C∈C� C ∈ C∪⋅ {�} holds for all C′
⊆ C Definition 10

Pre-binary For every pair x, y ∈ X , there is a unique inclusion-minimal cluster C such that {x, y} ⊆ C Definition 20
Binary Pre-binary and, for every C ∈ C  , there is a pair of vertices x, y ∈ X such that C is the unique 

inclusion-minimal cluster containing x and y
Definition 24

Weak hierarchy For all C1,C2,C3 ∈ C  , it holds C1 ∩ C2 ∩ C3 ∈ {C1 ∩ C2,C1 ∩ C3,C2 ∩ C3} Definition 24
(L) C1 ∩ C2 = C1 ∩ C3 for all C1,C2,C3 ∈ C  where C1 overlaps both C2 and C3 Definition 25
(N3O) C  contains no three distinct pairwise overlapping clusters Definition 27
Paired hierarchy Every C ∈ C  overlaps with at most one other cluster in C Definition 29
(2-Inc) For all clusters C ∈ C  , there are at most two inclusion-maximal clusters A,B ∈ C  with A,B ⊊ C 

and at most two inclusion-minimal clusters A,B ∈ C  with C ⊊ A,B

Definition 31
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indegree greater than 1 has outdegree 1) and cluster networks 
in the sense of Huson and Rupp (2008) (whose definition is 
somewhat more involved). As we shall see, cluster networks 
are precisely the networks that are semi-regular, separated, 
and phylogenetic. We then show in section “Cluster multi-
sets of semi-regular networks” that semi-regular networks are 
uniquely determined by their multisets of clusters and that, 
in turn, cluster networks, as a subclass of regular networks, 
are uniquely determined by their clustering systems. Sec-
tion “Tree-child, normal, and tree-based networks” makes a 
short excursion to so-called tree-child, normal, and tree-based 
networks and their mutual relationships.

In “Least common ancestors and LCA-networks” section, 
we then have a closer look at the concept of least common 
ancestors ( lca ) in networks. In contrast to rooted trees, the 
lca of a pair of leaves (or more generally, a subset of leaves) 
is in general not uniquely defined. We introduce in “Basics” 
section several classes of networks in which the lca is unique 
for at least certain subsets of leaves. This leads to the cluster-
lca property (CL) which is satisfied by a network N when-
ever lca ( � (v)) is uniquely determined for all v ∈ V(N) . We 
shall see that every network that satisfies (PCC), and this in 
particular includes all normal networks, also satisfy (CL). 
In “LCA-networks” section, we consider lca-networks, i.e., 
networks in which lca (A) is uniquely determined for all leaf 
sets A ⊆ X . Among other results, we show that a clustering 
system C  is closed (under intersection) if only if it is the 
clustering systems CN of an lca-network. We then consider 
in “Strong LCA-networks and weak hierarchies” section the 
subclass of strong lca-networks, in which, for all A ⊆ X , it 
holds that lca (A) = lca ({x, y}) for a suitably chosen pair of 
leaves x and y. These are closely related to weak hierarchies.

A very prominent role in phylogenetics is played by 
level-1 networks. Section “Level-1 networks” is devoted 
to establishing structural results for level-1 networks and 
their underlying clustering systems. After establishing basic 
results, we derive in section “Property (L)” a simple con-
dition, called property (L), for clustering systems that is 
defined in terms of the intersection of its elements. As a 
main result of this contribution, we obtain in section “Char-
acterization of clustering systems of level-1 networks” a 
simple characterization of the clustering systems of (phy-
logenetic, separated) level-1 network as the ones that are 
closed and satisfy (L). We then show in section “Compatibil-
ity of clustering systems and intersection closure” that prop-
erty (L) is sufficient to ensure that clustering systems are 
“compatible” with a (phylogenetic, separated) level-1 net-
work. Moreover, we provide a polynomial time algorithm to 
check if C  is compatible with some level-1 network and, in 
the affirmative case, to construct such a network. We finally 
consider in section “Special subclasses of level-1 networks” 
several subclasses of level-1 networks as, e.g., galled trees 
or binary, conventional, separated, or quasi-binary level-1 

networks, and characterize their clustering systems. Finally, 
we show that quasi-binary level-1 networks are encoded by 
their multisets of clusters. In section “Summary”, we pro-
vide a summary of the main results (see in particular Table 3 
and Fig. 19).

Preliminaries

The power set of a given set X is denoted by 2X . Two sets A 
and B overlap if A ∩ B ∉ {�,A,B}.

We consider graphs G = (V ,E) with finite vertex set 
V(G)∶=V  and arc set E(G)∶=E . A graph G is undirected if 
E is a subset of the set of two-element subsets of V and G is 
directed if E ⊆ (V × V)⧵{(v, v) ∣ v ∈ V} . Thus, arcs e ∈ E 
in an undirected graph G are of the form e = {x, y} and in 
directed graphs of the form e = (x, y) with x, y ∈ V  being 
distinct. The degree of a vertex v ∈ V  in an undirected or 
directed graph G, denoted by degG(v) , is the number of arcs 
that are incident with v. If G is directed, we furthermore 
distinguish the indegree indeg G(v) = |{u ∣ (u, v) ∈ E}| and 
the outdegree outdeg G(v) = |{u ∣ (v, u) ∈ E}| . A graph H is 
a subgraph of G, in symbols H ⊆ G , if V(H) ⊆ V(G) and 
E(H) ⊆ E(G) . A subgraph H ⊆ G is induced by some sub-
set W ⊆ V(G) if V(H) = W  and, additionally, {x, y} ∈ E(G) 
(resp., (x, y) ∈ E(G) ) and x, y ∈ W implies that {x, y} ∈ E(H) 
(resp., (x, y) ∈ E(H) ). In the latter case, we write H = G[W] . 
Moreover, G − v denotes the induced subgraph G[V ⧵ {v}].

A path P in an undirected (resp. directed) graph G is a 
subgraph consisting of k ≥ 1 distinct vertices {v1,… , vk} and 
arcs {vi, vi+1} ∈ E (resp. (vi, vi+1) ∈ E ) for all 1 ≤ i ≤ k − 1 . 
We call such paths also v1vk-paths. In case G is undirected, 
v1vk-paths are also vkv1-paths. However, if G is directed, the 
existence of a v1vk-paths does not imply that there is a vkv1
-paths. We will often write undirected path for a subgraph P 
of a directed graph G that has vertices {v1, v2,… , vk} , k ≥ 1 , 
and the forward arc (vi, vi+1) or the corresponding backward 
arc (vi+1, vi) for all 1 ≤ i ≤ k − 1 . The vertices v1 and vk in a 
directed or undirected path P are the endpoints of P and all 
other vertices (in P) are its inner vertices. A path P with ver-
tices {v1, v2,… , vk} in a directed graph G is induced (in G) if 
(vi, vj) ∈ E(G) precisely if j = i + 1 , for all i ∈ {1,… , k − 1}.

A directed cycle K in a directed graph G is a subgraph 
with vertices {v1, v2,… , vk} , k ≥ 2 , and arcs (vi, vi+1) ∈ E for 
all 1 ≤ i ≤ k − 1 and additionally (vk, v1) ∈ E . In analogy to 
undirected paths, an undirected cycle K in a directed graph 
G is a subgraph with k ≥ 3 vertices that can be ordered in 
the form {v1, v2,… , vk} such that the forward arc (vi, vi+1) or 
the corresponding backward arc (vi+1, vi) for 1 ≤ i ≤ k − 1 as 
well as the forward arc (vk, v1) or the backward arc (v1, vk) 
are exactly the arcs of K.

An undirected graph G = (V ,E) is bipartite if there is 
a partition of V into subsets W and W ′ such that every arc 
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in G connects one vertex in W to one vertex in W ′ . If in 
addition, x ∈ W  and x� ∈ W � imply {x, x�} ∈ E , then G is 
complete bipartite.

Graph connectivity

An undirected graph is connected if, for every two vertices 
u, v ∈ V  , there is a path connecting u and v. A directed 
graph is connected if its underlying undirected graph is 
connected. A connected component of G is a maximal 
induced subgraph that is connected. A vertex v is a cut 
vertex in a graph G if G[V(G) ⧵ {v}] consists of more con-
nected components than G. Similarly, a directed or undi-
rected arc (u, v) is a cut arc in G if the graph G′ with vertex 
set V(G�) = V(G) and arc set E(G�) = E(G) ⧵ {(u, v)} con-
sists of more connected components than G.

An undirected or directed graph is biconnected if it con-
tains no vertex whose removal disconnects the graph. A 
block of an undirected or a directed graph is a maximal 
biconnected subgraph (Gambette et al. 2012). A block B is 
called non-trivial if it contains an (underlying undirected) 
cycle. Equivalently, a block is non-trivial if it is not a sin-
gle vertex or a single arc. An arc that is at the same time 
a (trivial) block is a cut arc. For later reference, we state 
here the following observations that are immediate con-
sequences of the fact that two distinct blocks in a graph 
share at most one vertex (West 2001, Proposition 4.1.19):

Observation 1  If two biconnected subgraphs share two ver-
tices, then their union is contained in a common block.

Observation 2  If B and B′ are distinct blocks of a directed 
graph, then B and B′ are arc-disjoint.

The latter is justified by the fact that if blocks B and B′ 
share a common arc, then B ∪ B� is biconnected and thus 
B = B� since blocks are always maximal biconnected sub-
graphs. We will frequently make use of

Theorem 1  (West 2001, Theorem 4.2.4) For a graph G 
with at least three vertices, the following statements are 
equivalent: 

1.	 G is biconnected.
2.	 For all x, y ∈ V(G) , there are at least two internally 

vertex-disjoint (undirected) paths connecting x and y.
3.	 For all x, y ∈ V(G) , there is an (undirected) cycle con-

taining x and y.

Corollary 1  Any two vertices of a non-trivial block B lie on 
a common (undirected) cycle in B.

The following well-known result will also be useful 
throughout:

Proposition 1  (Diestel 2017, Proposition 3.1.1) Let H be a 
biconnected subgraph of G and P be a path in G that only 
shares its endpoints with H. Then, the subgraph obtained by 
adding P to H is again biconnected.

Directed acyclic graphs

A directed graph G = (V ,E) is acyclic if it does not contain 
a directed cycle. In particular, every undirected cycle in a 
directed acyclic graph (DAG) contains at least one forward 
and one backward arc. In a DAG G, a vertex u ∈ V is called 
an ancestor of v ∈ V  and v a descendant of u, in symbols 
v ⪯G u , if there is a directed path (possibly reduced to a sin-
gle vertex) in G from u to v. We write v ≺G u if v ⪯G u and 
u ≠ v . If u ⪯G v or v ⪯G u , then u and v are ⪯G-comparable 
and otherwise, ⪯G-incomparable. Moreover, if (u, v) ∈ E , we 
say that u is a parent of v, u ∈ par G(v) , and v is a child of u, 
v ∈ child G(u) . Following Huber et al. (2019a), we call a ver-
tex v that is ⪯G-minimal in a block B a terminal vertex (of B). 
Note that every terminal vertex v of a non-trivial block B must 
always have indegree at least 2 since, by Corollary 1, v lies on 
some undirected cycle in B and, by ⪯G-minimality of v in B, its 
two incident vertices on this cycle must both be in-neighbors. 
Below we will consider DAGs in which terminal vertices are 
a type of so-called hybrid vertices.

An arc (u, w) in a DAG G is a shortcut if there is a vertex 
v ∈ child (u) ⧵ {w} such that w ≺G v (or, equivalently, if there 
is a vertex v� ∈ V(G) such that w ≺G v′ ≺G u ). In other words, 
an arc (u, w) of N is a shortcut if G has a directed path from 
u to w avoiding (u, w) (Linz and Semple 2020; Döcker et al. 
2019). A DAG without shortcuts is shortcut-free.

Observation 3  Let G be a DAG. The following statements 
are equivalent: 

1.	 G is shortcut-free.
2.	 For all u ∈ V(G) , v,w ∈ child G(u) are ⪯G-comparable 

if and only if v = w.
3.	 For all u ∈ V(G) , v,w ∈ par G(u) are ⪯G-comparable if 

and only if v = w.

Networks and clustering systems

Basic concepts

We define (phylogenetic) networks here as a slightly more 
general class of DAGs than what is customarily considered 
in most of the literature on the topic.
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Definition 1  A (rooted) network is a directed acyclic graph 
N = (V ,E) such that 

(N1)	� There is a unique vertex �N , called the root of N, with 
indeg (�N) = 0.

 A network is phylogenetic if 

(N2)	� There is no vertex v ∈ V  with outdeg (v) = 1 and 
indeg (v) ≤ 1.

 A vertex with v ∈ V  is a leaf if outdeg (v) = 0 , a hybrid 
vertex if indeg (v) > 1 , and tree vertex if indeg (v) ≤ 1 . The 
set of leaves is denoted by X.

We emphasize that all networks considered here are 
rooted and thus we always use the term “network” instead 
of “rooted network.”

We note that a leaf x ∈ X  is always either a hybrid 
vertex or a tree vertex. Networks without hybrid verti-
ces are trees. The set of inner vertices of a network N is 
V0∶=V0(N)∶=V(N)⧵X . A leaf x ∈ X  is a strict descend-
ant of v ∈ V  if every directed path from the root �N to x 
contains v. In contrast to the even more general definition 
(Definition 3 Huson and Scornavacca 2011), we use the 
term “phylogenetic” here to mean that vertices with inde-
gree 1 and outdegree 1 do not appear. Moreover, the root is 
either the single leaf or has outdeg (�N) ≥ 2 . Rooted phylo-
genetic networks thus generalize rooted phylogenetic trees. 
Since the root is an ancestor of all vertices, N is connected.

For a vertex v of N, the subnetwork N(v) of N rooted at 
v, is the network obtained from the subgraph N[W] induced 
by the vertices in W∶={w ∈ V(N) ∣ w ⪯N v} and by sup-
pression of w if it has indegree 0 and outdegree 1 in N[W] 
or hybrid vertices of N that have in- and outdegree 1 in 
N[W].

A network N with leaf set X is often called a network 
on X. Two networks N1 = (V1,E1) and N2 = (V2,E2) on 
X are graph isomorphic, in symbols N1 ∼ N2 , if there is 
a graph isomorphism between N1 and N2 , i.e., a bijec-
tion � ∶ V1 → V2 such that (u, v) ∈ E1 if and only if 
(�(u),�(v)) ∈ E2 for all u, v ∈ V1 . Moreover, if addition-
ally N1 and N2 are networks on the same leaf set X, we 
say that N1 and N2 are isomorphic in symbols N1 ≃ N2 if 
N1 ∼ N2 (via the graph isomorphism � ) and �(x) = x for 
all x ∈ X . We say that a network N on X is unique w.r.t. 
some property (or some set of properties), if N ≃ N� for 
every network N′ that also satisfies the desired property 
(or properties).

Many studies into phylogenetic networks require that 
reticulation events and speciation events are separated, i.e., 
outdeg (v) = 1 for all hybrid vertices.

Definition 2  A network is separated if all its hybrid vertices 
have outdegree 1.

In particular, all leaves have indegree 1 in a separated 
network (or indegree zero if the network consists of a single 
vertex).

The properties phylogenetic and separated are part of the 
definition of networks in many publications in the field, see, 
e.g., Jetten and van Iersel (2018); Pons et al. (2019); Zhang 
(2019). However, we opted for the more general definition 
of networks for several reasons. On the one hand, we aim 
to explore which restrictions are actually needed to estab-
lish the relationship of different properties or classes of net-
works. On the other hand, separated networks do not include 
regular networks (Baroni et al. 2004), which are, as we shall 
see, a class of networks that is intimately linked with cluster-
ing systems.

An even more restrictive class of networks that is often 
considered are binary networks (Gambette and Huber 2012; 
Bordewich and Semple 2016; Kong et al. 2022):

Definition 3  A network is binary if every tree vertex v is 
either a leaf or has outdeg (v) = 2 , and every hybrid vertex 
v satisfies indeg (v) = 2 and outdeg (v) = 1.

By construction, binary networks are always phylogenetic 
and separated.

Throughout this paper, several other properties and dis-
tinct classes of networks are considered. For convenience, all 
these types are listed in Table 1. More formal definitions or 
more precise explanations are given in the remainder of the 
paper. A further essential ingredient to our paper are clusters 
and clustering systems as defined next.

Definition 4  Let N be a network with vertex set V, leaf set 
X, and partial order ⪯N . Then, for each v ∈ V  , the associated 
cluster is � (v)∶= � N(v)∶={x ∈ X ∣ x ⪯N v} . Furthermore, 
we write C∶=CN∶={ � (v) ∣ v ∈ V}.

Note that � (v) = � (w) may be possible for distinct 
v,w ∈ V  . However, C  is considered as a set and thus each 
cluster appears only once in CN . The clusters in CN are usu-
ally called the hardwired clusters of N, see, e.g., Huson and 
Scornavacca (2011).

Definition 5  (Barthélemy and Brucker 2008; Semple and 
Steel 2003) A clustering system on X is a set C ⊆ 2X such 
that (i) � ∉ C  , (ii) X ∈ C  , and (iii) {x} ∈ C  for all x ∈ X . A 
clustering system is a hierarchy if it does not contain pair-
wise overlapping sets.

We will mainly focus on clustering systems CN of net-
works N (cf. Lemma 14). As shown in Fig. 1, the information 
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conveyed by CN is often insufficient to determine N, i.e., 
there are non-isomorphic networks N and N′ for which 
CN = CN� . A natural generalization is to consider the multiset 
of clusters MN , in which each cluster C ∈ CN appears once 
for every vertex v ∈ V(N) with � (v) = C . We say that MN 
encodes N within a given class ℙ of networks if N,N� ∈ ℙ 
and MN� = MN implies N� ≃ N.

As for networks, we will also consider plenty of different 
types of clustering systems equipped with certain properties 
and, for convenience, list them in Table 2.

Arc‑expansion and arc‑contraction

As mentioned above, often only separated networks are 
considered, stipulating that (1) leaves, i.e., vertices v with 
outdeg (v) = 0 have indeg (v) = 1 ; (2) hybrid vertices v have 
indeg (v) ≥ 2 and outdeg (v) = 1 . Such networks are obtained 
from the ones in Definition 1 by means of a simple refine-
ment operation that replaces every “offending” vertex by a 
pair of vertices connected by single arc. More precisely, we 
define the following operation on a network N, which is also 
part of (Alg. 6.4.2 Huson and Scornavacca 2011): 

EXPD (v)	� Create a new vertex v′ , replace arcs (u, v) by 
(u, v�) for all u ∈ par N(v) , and add the arc (v�, v).

The operation EXPD (v) is illustrated in Fig. 2. It will also 
useful to consider the reversed operation for arcs (v�, v) that 
are not shortcuts: 

CNTR (v�, v)	� Replace arcs (u, v�) by (u,  v) for all 
u ∈ par N(v

�) ⧵ par N(v) ; replace arcs (v�,w) 
by (v, w) for all w ∈ child N(v

�) ⧵ child N(v) ; 
and finally delete (v�, v) and v′.

 The notation CNTR is chosen in compliance with the litera-
ture where arc contraction is a commonly used operation. 
For our purpose, however, it will be useful to have this 
more formal definition in order to precisely keep track 
of the vertex sets upon execution of multiple operations. 

Observe that, e.g., since (u, v�), (u, v) ∈ E is possible, 
applying first CNTR (v�, v) and then EXPD (v) does not nec-
essarily yield a network that is isomorphic to the original 
network. Furthermore, we remark that the condition that 
(v�, v) is not a shortcut cannot be dropped since otherwise 
directed cycles are introduced (cf. Fig. 3A).

We are now in the position to define least-resolved 
networks:

Definition 6  A network N is least-resolved (w.r.t. its cluster-
ing system C∶=CN ) if there is no network N′ with CN = CN� 
that can be obtained from N by a non-empty series of short-
cut removal and application of CNTR (v�, v) for some arc 
(v�, v) that is not a shortcut.

In many applications, phylogenetic networks are con-
sidered. However, CNTR (w�,w) applied on a phylogenetic 
network may result in a non-phylogenetic network. By way 
of example, see Fig. 3C, if u is a tree vertex with par-
ent u′ and two children w and w′ which are leaves, then 
CNTR (u,w) will “locally” result in a path with arcs (u�,w) 
and (w,w�) , i.e., indeg (w) = outdeg (w) = 1 . Similarly, 
CNTR (u,w) in a block that contains a shortcut can result 
in a network N′ that is not phylogenetic, see Fig. 3D. To 
circumvent this issue, we must “suppress” w to obtain a 
phylogenetic network. To this end, we define the following 
operation to make a network N phylogenetic: 

PHYLO (N)	� Repeatedly apply CNTR (u,w) for an arc (u, w) 
such that outdeg (u) = 1 and indeg (u) ≤ 1 until 
no such operation is possible.

Now, contraction of an arc (v�, v) that is not a shortcut and 
“suppression” of superfluous vertices can be combined in: 

CNTR ⋆(v�, v)	� Apply CNTR (v�, v) to obtain N′ and then 
PHYLO (N�).

The term “ancestor-preserving”—which is rigorously 
defined below—has been used in particular for mappings 
between certain network (Huber and Scholz 2020; Hellmuth 

Fig. 1   Three non-isomorphic (binary) level-1 networks (cf.  Defini-
tion 9) with the same clustering system C = {{a}, {b}, {a, b}} . While 
they are indistinguishable in terms of their clustering systems, they 
are encoded by their multisets of clusters, see Theorem 15, i.e., they 
are distinguished by the multiplicities of the clusters {a} , {b} , and 
{a, b}

Fig. 2   The expansion operation EXPD (v) introduces a new vertex v′ 
that becomes the single parent of v and the k original parents of v 
become parents of v′ . Note that v may be an inner vertex or a leaf
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et al. 2019). For our purposes, a slightly simplified version 
is sufficient.

Definition 7  Let N and N′ be networks such that V(N�) ⊆ V(N) . 
Then, N and N′ are (N,N�)-ancestor-preserving if for all 
v, v� ∈ V(N�) , it holds that v ⪯N v� if and only if v ⪯N� v�.

Lemma 1  Let N be a network on X and (u,w) ∈ E(N) be a 
shortcut. Then, removal of (u, w) in N results in a network 
N′ with leaf set X and V(N) = V(N�) . Moreover, N and N′ 
are (N,N�)-ancestor-preserving and � N(v) = � N� (v) holds 
for all v ∈ V(N�) = V(N) . In particular, it holds CN = CN�.

Proof  Let N be a network on X and (u, w) be a shortcut in N. 
Since (u, w) is a shortcut, there is a w� ∈ child (u) ⧵ {w} such 
that w ≺N w′ . Hence, there is a w′w-path P in N. Since N is 
acyclic and w′ ≺N u , u is not a vertex in P since otherwise 
u ⪯N w� . Therefore, w has indegree larger than 1 in N. In par-
ticular, there is a uw-path P′ in N′ formed by the arc (u,w�) 
and w′w-path P. Since removal of (u, w) only decreases the 
indegree of w and indeg N(w) ≥ 2 , �N = �N� is still the only 
vertex with indegree 0 in N′ . Moreover, removal of arcs 
clearly preserves acyclicity, and thus, N′ is a rooted network.

Now, let v, v� ∈ V(N) = V(N�) . If v N v′ , then there is 
no v′v-path in N. Clearly, removal of arcs changes nothing 
about this and thus v N′ v′ . Suppose now that v ⪯N v� and 
thus let Pv′v be a v′v-path in N. If Pv′v does not contain the 
arc (u, w), then Pv′v is still a v′v-path in N′ . Otherwise, the 
path obtained from Pv′v by replacing (u, w) by the uw-path 
P′ is a v′v-path in N′ . Hence, v ⪯N v� holds in both cases. In 
summary, we have v ⪯N v� if and only if v ⪯N� v�.

By the latter arguments, N′ is a network with leaf set X 
and we have x ⪯N v if and only if x ⪯N� v for all x ∈ X and 
all v ∈ V(N) = V(N�) . Therefore, x ∈ � N(v) if and only if 
x ∈ � N� (v) for all x ∈ X and all v ∈ V(N) = V(N�) , and thus, 
� N(v) = � N� (v) . Together with V(N) = V(N�) , this implies 
CN = CN� . 	�  ◻

Note that deletion of a shortcut from a phylogenetic net-
work does not necessarily result in a phylogenetic network.

Lemma 2  If a network N is shortcut-free and has no vertex 
of outdegree 1, then for every vertex w ∈ V(N) ⧵ {�N} , there 
is a vertex v ∈ child N( par N(w)) such that v and w are ⪯N

-incomparable. In this case, N is phylogenetic.

Proof  Since N is shortcut-free, siblings v�, v�� ∈ child N(u) , 
v′ ≠ v′′  a re  ⪯N - incomparable .  Thus ,  t here  i s 
v ∈ child N( par N(w)) that is ⪯N-incomparable with w if and 
only if par N(w) ≠ � and outdeg ( par N(w)) > 1 . Both condi-
tions are satisfied by assumption. 	�  ◻

Lemma 3  Let N be a network on X and (u,w) ∈ E(N) be 

an arc that is not a shortcut. Then, CNTR (u,w) applied on 

N results in a network N′ with leaf set X or X ⧵ {w} and 

V(N�) = V(N) ⧵ {u} . Moreover, for all v, v� ∈ V(N�) , 

1.	 v ⪯N v� implies v ⪯N� v� , and
2.	 v ⪯N� v� implies (i) v ⪯N v� or (ii) w ⪯N v� and v ⪯N w� for 

some w� ∈ child N(u) ⧵ {w} that is ⪯N-incomparable with w.

In particular, v ≺N′ v′ always implies v ≺N v′ or v and v′ are 
⪯N-incomparable.
Proof  The proof is rather lengthy and technical and is, there-
fore, placed to “Expansion, contraction, and blocks” section 
in “Appendix.” 	�  ◻

Lemma 4  Let N be a network on X and (u,w) ∈ E(N) such 
that outdeg N(u) = 1 . Then, CNTR (u,w) results in a network 
N′ with leaf set X and V(N�) = V(N) ⧵ {u} that is (N,N�)

-ancestor-preserving. Moreover, � N(v) = � N� (v) for all 
v ∈ V(N�) = V(N) ⧵ {u} and, in particular, CN = CN�.

Fig. 3   Complications arising in 
the contraction of arcs. The arcs 
to be contracted are highlighted 
in blue. A Contraction of a 
shortcut (u, w) introduced 
directed cycles. B Application 
of CNTR (u,w) to a shortcut-
free network N can result in 
a network N′ that contains 
a shortcut (r.h.s., shortcut 
indicated by the red arc). C, 
D Contraction of an arc (u, w) 
in a phylogenetic network N 
can yield a network N′ that 
is no longer phylogenetic. 
Application of PHYLO (N�) can 
resolve this issue (color figure 
online)
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Proof  Let N be a network on X and (u,w) ∈ E(N) 
such that outdeg N(u) = 1 . Since an arc (u,w) ∈ E(N) 
with outdeg N(u) = 1 cannot be a shortcut and satisfies 
child N(u) ⧵ {w} = � , and thus, condition (ii) in Lemma 3 
cannot occur, N′ is a network with leaf set X or X⧵{w} and 
(N,N�)-ancestor-preserving. Moreover, since w is the only 
out-neighbor of u, we do not add any out-neighbors for w. 
Hence, N′ has leaf set X.

By the latter argument, N′ is a network with leaf set 
X and we have x ⪯N v if and only if x ⪯N� v for all x ∈ X 
and all v ∈ V(N�) = V(N)⧵{u} . Therefore, x ∈ � N(v) 
if and only if x ∈ � N� (v) holds for all x ∈ X  and all 
v ∈ V(N�) = V(N) ⧵ {u} . Hence, we have � N(v) = � N� (v) 
for all v ∈ V(N�) = V(N) ⧵ {u} . Moreover, since w is 
the unique out-neighbor of u, one can easily verify that 
� N(u) = � N(w) (cf. Observation 5 for further arguments) 
and thus � N(u) = � N� (w) ∈ CN� . Taken together, we obtain 
CN = CN� . 	�  ◻

As an immediate consequence of Lemma 1 and 4, we 
obtain

Corollary 2  Every least-resolved network N is shortcut-free 
and does not contain vertices v with outdeg N(v) = 1.

Lemma 5  Let N be a network and N′ be obtained from N by 
applying EXPD (w) for some w ∈ V(N) . Then, N′ is a net-
work such that N and N′ are (N�,N)-ancestor-preserving. 
Moreover, � N(v) = � N� (v) for all v ∈ V(N) ⊆ V(N�) and, in 
particular, it holds CN = CN� . Moreover, if N is phylogenetic, 
then N′ is phylogenetic if and only if w is a hybrid vertex and 
outdeg N(w) ≠ 1.

Proof  Let N be a network on X. We show first that N′ is a 
network. By construction, w is the only vertex in N whose 
in-neighborhood changes and it has the new vertex w′ as 
its unique in-neighbor in N′ . If w ≠ �N , then w has at least 
one in-neighbor in N, which becomes an in-neighbor of w′ . 
Hence, �N is still the only vertex with indegree 0 in N′ . If 
w = �N , then it has no in-neighbors in N and thus w′ has no 
in-neighbors in N′ . Together with the fact that w no longer 
has indegree 0, w′ is the only vertex with indegree 0 in N′ 
in this case. Now, assume that N′ contains a directed cycle 
K comprising the vertices v1, v2,… , vk , k ≥ 2 , in this order, 
i.e., (vi, vi+1) , 1 ≤ i ≤ k − 1 and (vk, v1) are arcs in N′ . If all 
arcs in K are in N, then K is a directed cycle in N, a contra-
diction. If K contains an arc that is not in N, then K must 
contain the new vertex w′ since all new arcs are incident 
with w′ . Suppose w.l.o.g. that w� = v1 . Since w′ has a unique 
out-neighbor w and exactly the vertices of par N(w) as in-
neighbors, we must have v2 = w and vk ∈ par N(w) , respec-
tively. In particular, this implies v2 ≠ vk and (vk, v2) ∈ E(N) . 
Since w′ appears in K at most once, (vk, v1) and (v1, v2) are the 

only arcs in K that are incident with w′ , and thus, all other 
arcs of K are also arcs in N. In particular, there is a v2vk-path 
in N. Together with the fact that (vk, v2) ∈ E(N) , this implies 
that N contains a directed cycle, a contradiction. Therefore, 
N′ must be acyclic. Since moreover N′ has a unique root, it 
is a network.

The operation EXPD (w) on a network N creates a network 
N′ with an additional vertex w′ such that w is the unique 
out-neighbor of w′ and par N� (w�) = par N(w) . Therefore, N 
is recovered from N′ by applying CNTR (w�,w) . This obser-
vation together with Lemma. 4 implies that N and N′ are 
(N�,N)-ancestor-preserving.

Suppose now that N is phylogenetic. Assume first 
that w is a hybrid vertex and outdeg N(w) ≠ 1 . Then, 
by construction, the newly created vertex w′ satis-
f ies  indeg N� (w�) = indeg N(w) ≥ 2  and ,  moreover, 
we have outdeg N� (w) = outdeg N(w) ≠ 1 .  The only 
other vertices whose neighborhoods are affected are 
the vertices u ∈ par N(w) . More precisely, their out-
neighbor w is replaced by an out-neighbor w′ and thus 
indeg N� (u) = indeg N(u) and outdeg N� (u) = outdeg N(u) for 
any u ∈ par N(w) . Together with the fact that N is phylo-
genetic, the latter arguments imply that there is no vertex 
v ∈ V(N�) with outdeg N� (v) = 1 and indeg N� (v) ≤ 1 . Hence, 
N′ is phylogenetic. Now, assume that w is a not hybrid ver-
tex or outdeg N(w) = 1 . If w is not a hybrid vertex, then 
indeg N� (w�) = indeg N(w) ≤ 1 . Moreover, outdeg N� (w�) = 1 
holds by construction, and thus, N′ is not phylogenetic. If 
outdeg N(w) = 1 , then outdeg N� (w) = 1 since the out-neigh-
borhood of w does not change. In addition, w′ is the unique 
in-neighbor of w in N′ by construction. Hence, N′ is not 
phylogenetic. In summary, it holds that N′ is phylogenetic if 
and only if w is a hybrid vertex and outdeg N(w) ≠ 1.

By the latter arguments, N′ is a network with leaf set 
X. The newly created vertex w′ has a unique child w. The 
statement “ � N(v) = � N� (v) for all v ∈ V(N) ⊆ V(N�) and, in 
particular, CN = CN� ” therefore follows immediately from 
Lemma 4 and the fact that N is recovered from N′ by apply-
ing CNTR (w�,w) . 	� ◻

The following result shows that the expansion opera-
tion does not introduce shortcuts and is an immediate 
consequence of Lemma 72 in “Expansion, contraction, 
and blocks” section.

Corollary 3  Let N be a network and N′ be the network 
obtained from N by applying EXPD (w) for some w ∈ V(N) . 
Then, N is shortcut-free if and only if N′ is shortcut-free.

We remark that an analogue of Corollary 3 does not hold 
for the contraction operation CNTR (u,w) . Figure 3B shows 
an example where contraction introduces a shortcut.
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Blocks

The blocks of N will play a key role in the following. We 
first establish several technical results that will allow us effi-
ciently reason about the block structure of a network.

Lemma 6  Let N be a network and u, v ∈ V(N) be two ⪯N

-incomparable vertices. Then, u and v are connected by 
an undirected path P that contains at least 3 vertices and 
of which all inner vertices w satisfy u ≺N w or v ≺N w . In 
addition, we have w N u and w N v for every such inner 
vertex w.

Proof  There are directed paths Pu and Pv from �N to both u 
and v, respectively. Let w∗ be the ⪯N-minimal vertex of Pu 
that is also a vertex of Pv , which exists since at least �N is 
contained in both paths. It must hold that w∗ ∉ {u, v} since 
otherwise u and v would be ⪯N-comparable. In particular, 
u ≺N w∗ and v ≺N w∗ . Let P′

u
 and P′

v
 be the subpaths of Pu 

and Pv from w∗ to u and v, respectively. By construction, P′
u
 

and P′
v
 only have vertex w∗ in common, which moreover is 

an outer vertex of both paths. Now, consider the path P that 
is the union of the underlying undirected version of P′

u
 and 

P′
v
 . By construction, P contains at least the three vertices 

u, v, and w∗ and all of its inner vertices w satisfy u ≺N w or 
v ≺N w . Assume, for contradiction, that w ⪯N u for some of 
these inner vertices. Since u ≺N w is not possible, we must 
have v ≺N w . But then v ≺N w and w ⪯N u imply that v and 
u are ⪯N-comparable, a contradiction. Hence, w N u must 
hold. One shows analogously that w N v . 	�  ◻

Paths of the form described in Lemma 6 connecting two 
leaves u and v are called “up-down-paths” in Bordewich and 
Semple (2016).

Lemma 7  Let B be a block in a network N and u, v ∈ V(B) 
such that v ⪯N u . Then, every uv-path in N is completely 
contained in B.

Proof  Let P be a uv-path in N, which exists since v ⪯N u . 
The statement holds trivially if B is an isolated vertex, v = u , 
or B is the arc (u, v). Thus, suppose B is a non-trivial block. 
Suppose, for contradiction, there is a vertex w ∈ V(P)⧵V(B) . 
Let wa and wd be the ⪯N-minimal ancestor and the ⪯N-maxi-
mal descendant, resp., of w in P (both of which exist since 
u, v ∈ V(P) ). Consider the subpath P′ of P from wa to wd . 
By Proposition 1, the subgraph of N obtained by adding P′ 
to B is again biconnected. Together with w ∈ V(P�) ⧵ V(B) , 
this contradicts that B is a block. Hence, such a vertex can-
not exist. Therefore, and since blocks are always induced 
subgraphs, the statement follows. 	�  ◻

Lemma 8  Every block B in a network N has a unique ⪯N

-maximal vertex maxB . In particular, for every v ∈ V(B) , 
there is a directed path from maxB to v and every such path 
is completely contained in B.

Proof  The statement is trivial for a block that consists only 
of a single vertex or arc. Otherwise, suppose there are two 
distinct ⪯N-maximal vertices v1 and v2 in B. By assumption, 
v1 and v2 must be ⪯N-incomparable. By Lemma 6, v1 and v2 
are connected by an undirected path P that contains at least 3 
vertices and of which all inner vertices w satisfy v1 ≺N w or 
v2 ≺N w . By ⪯N-maximality of v1 and v2 , none of these inner 
vertices can be contained in B. By Proposition 1, adding P 
to B preserves biconnectivity, and thus, B is not a maximal 
biconnected subgraph, a contradiction. In particular, for 
every v ∈ V(B) , we have v ⪯N maxB , i.e., there is a path 
from maxB to v and by Lemma 7, each every such path is 
completely contained in B. 	�  ◻

Corollary 4  If B is a non-trivial block in network N, then 
maxB has at least two out-neighbors in B.

Proof  Since B is non-trivial, maxB lies on an undirected 
cycle in B and thus is incident with two distinct vertices 
in B. By ⪯N-maximality of maxB in B, these must be out-
neighbors of maxB . 	�  ◻

Lemma 9  Let N be a network and suppose that v ∈ V(N) is 
contained in the blocks B and B′ of N. If v ∉ {maxB, maxB�} , 
then B = B�.

Proof  Assume that vertex v is contained in the blocks B 
and B′ of N but v ∉ {maxB, maxB�} . By Lemma 8, there 
exists a directed path P in B from maxB to v. Similarly, 
there is a directed path P′ in B′ from maxB′ to v. Since 
v ∉ {maxB, maxB�} , both P and P′ contain at least one arc.

Assume first that P and P′ share an arc e and thus, that B 
and B′ share the arc e. In this case, contraposition of Obser-
vation 2 implies that B = B� . Hence, in the following we 
assume that P and P′ are arc-disjoint.

Consider first the case maxB� ⪯N maxB . Let u be the 
unique ⪯N-minimal vertex in P such that maxB� ⪯N u . 
Together with v ≺N maxB′ , this implies that u ≠ v . Let Pu,v 
be the subpath of P from u to v and note that Pu,v contains at 
least one arc. Since maxB� ⪯N u , we can find a directed path 
Pu,maxB′ (possible only containing a single vertex u = maxB� ) 
from u to maxB′ . The paths Pu,v and Pu,maxB′ only have ver-
tex u in common since u is the unique ⪯N-minimal vertex in 
P with maxB� ⪯N u . Since N is acyclic, Pu,maxB′ and P′ are 
arc-disjoint. In summary, P′ , Pu,v , and Pu,maxB′ are pairwise 
arc-disjoint. Hence, maxB′ and v are connected by two arc-
disjoint undirected paths that correspond to P′ and the union 
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of Pu,v and Pu,maxB′ . Therefore, maxB′ and v are contained in 
a common block B′′ . In particular, B and B′′ share all arcs in 
Pu,v , and thus at least one arc. Similarly, B′ and B′′ share all 
arcs in P′ , and thus at least one arc. By Observation 2, it fol-
lows that B = B�� = B� . Similarly, maxB ⪯N maxB� implies 
B = B�.

Suppose now that maxB and maxB′ are ⪯N-incompara-
ble. Recall that P and P′ are arc-disjoint and each contain 
at least one arc. Let P̆ be the undirected path corresponding 
to the union of P and P′ and observe that all of its inner 
vertices w that satisfy w ⪯N maxB or w ⪯N maxB� . Since 
maxB and maxB′ are ⪯N-incomparable, Lemma 6 implies 
that they are connected by an undirected path P⌢ that con-
tains at least 3 vertices and of which all inner vertices w′ 
satisfy w′ N maxB and w′ N maxB′ . As a consequence, 
P̆ and P⌢ only have their endpoints maxB and maxB′ in 
common. Hence, maxB and maxB′ are contained in a com-
mon block B′′ . In particular, B and B′′ share all arcs in P, 
and thus at least one arc. Similarly, B′ and B′′ share all arcs 
in P′ , and thus at least one arc. By Observation 2, it follows 
that B = B�� = B� . 	�  ◻

By definition, N is a tree if and only if it contains no undi-
rected cycle, i.e., if all blocks are trivial. Thus, N is a tree if 
and only if there are no hybrid vertices.

Definition 8  Let N be a network and B a non-trivial block 
in N with terminal vertices {m1,m2,… ,mh} , h ≥ 1 . Then,

is the interior of B.

As an immediate consequence of Lemma 9, we have

Observation 4  Let B1 and B2 be two distinct blocks in N. 
Then, B0

1
∩ B0

2
= �.

Lemma 10  Let N be a network and w ∈ V(N) be a hybrid 
vertex. Then, w and all of its in-neighbors are contained in 
a non-trivial block B.

Proof  Let w be a hybrid vertex, i.e., indeg N(w) ≥ 2 , and let 
v and v′ be two distinct in-neighbors of w. If v′ ≺N v , then 
there is a directed path P from v to v′ that contains at least 
one arc. Moreover, w is not a vertex of P since otherwise 
v� ⪯N w would contradict w ≺N v′ . Therefore, P together 
with w and arcs vw and v′w form an undirected cycle. An 
analogous argument applies if v ≺N v′ . If v and v′ are ⪯N

-incomparable, then Lemma 6 implies that they are con-
nected by an undirected path P that contains at least 3 ver-
tices and of which all inner vertices w′ satisfy w′ N v and 
w′ N v′ . Together with w ≺N v, v′ , this implies that w is not 

(1)B0∶=B ⧵ {maxB,m1,m2,…mh}

contained in P. Therefore, P together with w and arcs vw and 
v′w form an undirected cycle. In summary, in all cases, w is 
contained in a non-trivial block Bv′ that, in particular, also 
contains v, v′ , and the arc vw. Since v′ was chosen arbitrarily 
among the in-neighbors of w that are distinct from v and the 
blocks Bv′ for all of these vertices share the arc vw, Observa-
tion 1 implies that w and all of its in-neighbors are contained 
in a non-trivial block B. 	�  ◻

A hybrid vertex w is properly contained in a block B if 
w ∈ V(B) and all of its in-neighbors are also contained in B. 
As an immediate consequence of Lemma 10, every hybrid 
vertex is properly contained in exactly one block.

Lemma 11  Let N be a network, w a hybrid vertex in N, 
and B be a block of N. Then, the following statements are 
equivalent: 

1.	 w is properly contained in B, i.e., w and all of its parents 
are contained in B.

2.	 w and one of its parents u are contained in B.
3.	 w ∈ V(B) ⧵ {maxB}.

Proof  (3) ⟹ (2). Since maxB is the unique ⪯N-maximal 
vertex in B, we have w ≺N maxB . By Lemma 8, there is a 
directed path from maxB to w that is completely contained 
in B. Clearly, P contains a parent of w, which is there also 
contained in B. (2) ⟹ (1). By Lemma 10, w and all of its 
parents are contained in a non-trivial block B′ . Hence, B 
and B′ share the distinct vertices w and u. By Observation 1, 
B = B� . (1) ⟹ (3). If w and all of its (at least two) parents 
are contained in B, then clearly w ∈ V(B) ⧵ {maxB} . 	� ◻

As a consequence, if a hybrid vertex w is contained in 
a block B but not properly contained, then it must hold 
w = maxB . This motivates the following definition of level-
k networks:

Definition 9  A network N is level-k if each block B of N 
contains at most k hybrid vertices distinct from maxB.

Equivalently, by Lemma 10, N is level-k if each block B 
of N properly contains at most k hybrid vertices. In Choy 
et al. (2004), level-k networks are simply defined by hav-
ing no more than k hybrid vertices within any given block. 
We note that this is equivalent to our definition in a setting 
where hybrid vertices are restricted to having outdegree 1. 
Definition 9 also accommodates the contraction of out-arcs 
of hybrid vertices v with outdeg (v) = 1 , see Fig. 4.

The following two lemmas show that neither arc con-
traction nor expansion increases the level of a network. 
Since their proofs are rather lengthy and technical, they are 
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given in “Expansion, contraction, and blocks” section in 
“Appendix.”

Lemma 12  Let N be a network, (w�,w) ∈ E(N) be an arc that 
is not a shortcut, and N′ be the network obtained from N by 
applying CNTR (w�,w) . If N is level-k, then N′ is also level-k.

Proof  See “Expansion, contraction, and blocks” section in 
“Appendix.” 	�  ◻

The converse of Lemma 12, however, is not true as shown 
by the example in Fig. 5. This example also shows that even 
mitigated versions “if N′ is level-k, then N is level-(k + 1) ” 
do not hold. As an immediate consequence of the definition 
of PHYLO (N) , Lemma 4 and 12, we obtain

Corollary 5  Let N be a level-k network. Then, the network N′ 
obtained by operation PHYLO (N) is a phylogenetic level-k 
network such that CN = CN�.

Lemma 13  Let N be a network and N′ be the network 
obtained from N by applying EXPD (w) for some w ∈ V(N) . 
Then, N is level-k if and only if N′ is level-k.

Proof  See “Expansion, contraction, and blocks” section in 
“Appendix.” 	�  ◻

The definition of PHYLO (N) and CNTR ⋆(v�, v) and 
Lemma 12 yield

Corollary 6  Let N be a level-k network. If N′ is the network 
obtained from N by applying PHYLO (N) or CNTR ⋆(v�, v) for 
some arc (v�, v) ∈ E(N) that is not a shortcut, then N′ is phy-
logenetic and level-k.

Clusters, Hasse diagrams, and regular networks

In this section, we consider general properties of the set 
of clusters CN of a phylogenetic network as specified in 
Definition 4.

Lemma 14  For all networks N on X, the set CN is a cluster-
ing system.

Proof  Every non-leaf vertex v ∈ V ⧵ X has at least one out-
neighbor and N is acyclic and finite. Thus, every directed 
path in N can be extended to a directed path that eventu-
ally ends in a leaf, implying � (v) ≠ � . Since � (v) ≠ � for 
all v ∈ V  and since N contains at least a root �N as a vertex, 
we have � ∉ CN and thus Condition (i) holds. Since v ⪯N �N 
for all v ∈ V  , we have � (�N) = X and (ii) is satisfied. To see 
that Condition (iii) holds, observe that for all x ∈ X , we have 
outdeg (x) = 0 and thus � (x) = {x} . 	�  ◻

This simple observation connects phylogenetic networks 
to a host of the literature on clustering systems, which have 
been studied with motivations often unrelated to evolution 
or phylogenetics (Jardine and Sibson 1971; Barthélemy and 
Brucker 2008; Janowitz 2010).

A particular difficulty in the characterization of certain 
types of networks by means of their clustering systems is 
that even rather simple clustering systems such as hierar-
chies can be explained by very complex networks.

Lemma 15  Let n be a positive integer. Then, for all 
k ∈ {0, 2,… , n} , there is a phylogenetic, shortcut-free 

Fig. 4   The network N contains a hybrid vertex v with outdeg (v) = 1 . 
Network N′ is obtained from N by contraction of the arc (v, w), i.e., 
the operation CNTR (v,w) which preserves vertex w. Vertex w is now a 
hybrid vertex that is contained in two blocks of N′ . However, only the 
upper block properly contains it

Fig. 5   The level-3 network N′ is obtained from the level-6 network 
by application of CNTR (w�,w) . The hybrid vertices are highlighted in 
orange (color figure online)
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level-k network N on n leaves that is not level-(k − 1) such 
that CN is a hierarchy.

Proof  If n = 1 , then k = 0 and the single vertex graphs serves 
as an example (since a network contains at least one vertex 
and thus a level-(−1) cannot exist by definition). Let n ≥ 2 . 
For k = 0 , simply take a tree whose root is adjacent to the 
n leaves only. Again, this tree is level-0 but not level-(−1) . 
We refer to this tree as a star tree. For k ≥ 2 , take a star tree 
T and randomly collect k of its leaves l1,… lk . Now, add new 
leaves x1,… , xk and edges such that the induced subgraph 
N[{l1,… lk, x1,… , xk}] is graph isomorphic to a complete 
bipartite graphs where one part of the bipartition contains 
all l1,… , lk and the other part all x1,… , xk (see Fig. 6 for a 
generic example). It is easy to verify that N is shortcut-free, 
phylogenetic, level-k but not level-(k − 1) . In all cases, CN 
just consist of the clusters {x1,… , xk} , X, and the singletons 
{x} , x ∈ X, are, therefore, a hierarchy. 	�  ◻

As we shall see in Lemma 45 there is no phylogenetic 
shortcut-free level-1 network N (that is not a tree) for which 
CN is a hierarchy.

For a clustering system C  on X and a subset A ⊆ 2X , we 
define the closure operator as the map cl ∶ 2X → 2X defined 
by

It is well defined, isotonic [ A ⊆ B ⟹ cl (A) ⊆ cl (B) ], 
enlarging [ A ⊆ cl (A) ], and idempotent cl ( cl (A)) = cl (A) . 
For |X| > 1 , we have cl (�) = �.

(2)
cl (A)∶=

⋂

C ∈ C

A ⊆ C

C.

Definition 10  A clustering system C  is closed if, for 
all non-empty A ∈ 2X , the following condition holds: 
cl (A) = A ⟺ A ∈ C .

The following result is well known in the clustering 
literature.

Lemma 16  A clustering system C  is closed if and only if 
A,B ∈ C  and A ∩ B ≠ � implies A ∩ B ∈ C .

Proof  For completeness, a proof is provided in “Closed clus-
tering systems” section in “Appendix.” 	�  ◻

We continue with three simple observations concerning 
the clusters of networks.

Lemma 17  Let N be a network. Then, v ⪯N w implies 
� (v) ⊆ � (w).

Proof  By construction, x ∈ � (v) if and only if x ∈ X and v 
lies on a directed path from the root �N to x. Furthermore, 
v ⪯N w implies that w lies on a directed path from �N to v. 
By (N1) and since N is a DAG, there is directed path from 
�N to x that contains w, and thus x ⪯N w , i.e., x ∈ � (w) . 	
� ◻

We note in passing that the converse of Lemma 17 is not 
always satisfied (even in level-1 networks): If v is a hybrid 
vertex with unique child w, we have � (v) = � (w) and thus 
� (v) ⊆ � (w) , but v N w , (cf. the network N in Fig. 4). A 
result similar to Lemma 6 ensures the existence of a path P 
connecting ⪯N-incomparable vertices u, v ∈ V(N) that con-
tains only vertices that are below u or v. However, it requires 
that u and v have at least one descendant leaf in common, 
i.e., that � (u) ∩ � (v) ≠ �:

Lemma 18  Let N be a network and u, v ∈ V(N) be two ⪯N

-incomparable vertices such that � (u) ∩ � (v) ≠ � . Then, for 
every x ∈ � (u) ∩ � (v) , u and v are connected by an undi-
rected path P = (w1∶=u,… ,wh,… ,wk∶=v) , 1 < h < k , such 
that 

	 (i)	 (wi,wi+1) ∈ E(N) for all 1 ≤ i < h , (wi+1,wi) ∈ E(N) 
for all h ≤ i < k , and wh is a hybrid vertex satisfying 
wh ≺N u and wh ≺N v.

	 (ii)	 x ∈ � (wh),

In particular, k ≥ 3 , all inner vertices wi of P satisfy wi ≺N u 
or wi ≺N v , and P is a subgraph of a non-trivial block.
Proof  There are directed paths Pu and Pv from u and v, 
respectively, to the leaf x. Let w∗ be the ⪯N-maximal vertex 
of Pu that is also a vertex of Pv , which exists since at least 

Fig. 6   A generic framework that shows that, for every n ≥ 2 and 
k ∈ {0, 2,… , n} , there is a phylogenetic, shortcut-free level-k network 
N on n leaves that is not level-(k − 1) and where CN is a hierarchy. 
The network shown left is level-0 and its clustering system is trivially 
a hierarchy. The clustering system CN of the level-k network N shown 
right consists of the clusters X�∶={x1,… , xk} (for which the corre-
sponding vertices are highlighted in orange), X = X� ∪ {lk+1,… , ln} , 
and the singletons and, therefore, CN is a hierarchy (color figure 
online)
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x is contained in both paths. It must hold that w∗ ∉ {u, v} 
since otherwise u and v would be ⪯N-comparable. In par-
ticular, w∗ ≺N u and w∗ ≺N v . Let P′

u
 and P′

v
 be the sub-

paths of Pu and Pv from u and v, respectively, to w∗ . By 
construction, w∗ must be a hybrid vertex, x ∈ � (w∗) , and 
P′
u
 and P′

v
 only have vertex w∗ in common, which moreo-

ver is an outer vertex of both paths. Now, consider the path 
P = (w1∶=u,… ,wh∶=w

∗,… ,wk∶=v) , that is the union of 
the underlying undirected version of P′

u
 and P′

v
 . It is now 

easy to verify that P satisfies all of the desired proper-
ties. Two see that P is a subgraph of a non-trivial block B, 
observe that, by Lemma 6, the two ⪯N-incomparable vertices 
u and v are connected by an undirected path P⌢ that contains 
at least 3 vertices and of which all inner vertices w′ satisfy 
w′ N u and w′ N v . Hence, P and P⌢ cannot have any 
inner vertices in common. Therefore, u and v are connected 
by two distinct paths that both have at least 3 vertices and 
that only have the endpoints u and v in common. Hence, u 
and v lie on a cycle K and thus in a common block B of N. 
In particular, P is a subgraph of K and thus of B. 	�  ◻

Lemma 19  Let N be a network and u, v ∈ V(N) . If � N(u) 
and � N(v) overlap, then u and v are ⪯N-incomparable and 
u, v ∈ B0 for a non-trivial block B of N.

Proof  Let u, v ∈ V(N) be distinct vertices such that their two 
clusters � N(u) and � N(v) overlap. In this case, Lemma 17 
implies that u and v are ⪯N-incomparable. Lemma 18 implies 
that u and v are contained in a common non-trivial block B 
of N. Since � (u) ⊆ � (maxB) for all u ∈ B , � (maxB) does 
not overlap any cluster � (w) with w ∈ B . Consequently, 
u, v ≠ maxB . Since � N(u) ∩ � N(v) ≠ � , we can apply 
Lemma 18 and conclude that there is a hybrid vertex wh 
with wh ≺N v and wh ≺N u . In particular, Lemma 18 implies 
that wh is contained in the block B. Thus, neither u nor v is 
a terminal vertex. In summary, u, v ∈ B0 . 	�  ◻

Clusters of outdegree 1 vertices w are redundant in the 
sense that every directed path from w to one of its descend-
ant leaves necessarily passes through the unique child v 
of w. Thus, we have � (w) ⊆ � (v) . Moreover, v ≺N w and 
Lemma  17 imply � (v) ⊆ � (w) , and thus, � (v) = � (w) . 
Hence, we have

Observation 5  Let N be a network. If v is the unique child 
of w in N, then � (v) = � (w).

Lemma 20  Let N be a network, B a block in N and 
u, v ∈ V(B) . Moreover, let H be the set of hybrid vertices h 
that are properly contained in B and satisfy h ⪯N u, v . Then, 
it holds � (u) ∩ � (v) ∈ { � (u), � (v),

⋃
h∈H � (h)}.

Proof  It suffices to show that � (u) ∩ � (v) ∉ { � (u), � (v)} 
implies � (u) ∩ � (v) =

⋃
h∈H � (h)=∶C . Hence, suppose 

� (u) ∩ � (v) ∉ { � (u), � (v)} . Then, Lemma 17 implies that u 
and v are ⪯N-incomparable. If x ∈ C , then x ∈ � (h) for some 
h ∈ H . Since h ⪯N u, v , Lemma 17 implies � (h) ⊆ � (u) and 
� (h) ⊆ � (v) and thus, x ∈ � (h) ⊆ � (u) ∩ � (v) . Now, sup-
pose x ∈ � (u) ∩ � (v) . By Lemma 18, the ⪯N-incompara-
ble vertices u and v are connected by an undirected path P 
which contains a hybrid vertex h ≺N u, v with x ∈ � (h) and 
is a subgraph of a non-trivial block B′ of N. Since B and B′ 
share the two distinct vertices u and v, Observation 1 implies 
B = B� . In particular, u, v, h ∈ V(B) and h ≺N u, v imply 
h ≠ maxB , and thus, h must be properly contained in B by 
Lemma 10. Hence, we have h ∈ H and thus x ∈ � (h) ⊆ C . 
In summary, we have x ∈ � (u) ∩ � (v) if and only if x ∈ C , 
and thus, � (u) ∩ � (v) = C . 	�  ◻

Note that H = � and thus C =
⋃

h∈H � (h) = � in 
Lemma 20 is possible.

The Hasse diagram ℌ∶=ℌ[C] of C  w.r.t. to set inclu-
sion is a DAG whose vertices are the clusters in C  . 
There is a directed arc (C,C�) ∈ ℌ if C′ ⊊ C and there is 
no C�� ∈ C  with C′ ⊊ C′′ ⊊ C . Since X ∈ C  , the Hasse 
diagram is connected and has X as its unique root. The 
singletons {x} , x ∈ X , are exactly the inclusion-minimal 
vertices in C, and thus, they have outdegree 0 but not nec-
essarily indegree 1 in ℌ . Another simple property of ℌ is 
the following:

Lemma 21  Let C  be a clustering system on X. Then, every 
non-singleton set C ∈ C  satisfies outdegℌ(C) ≥ 2 in the 
Hasse diagram ℌ of C .

Proof  Let C ∈ C  be a non-singleton set, i.e., |C| ≥ 2 . Therefore, 
and since {x} ∈ C  for all x ∈ X , there is a directed path in ℌ 
from C to some singleton set {x�} ∈ C  . In particular, this path 
contains at least the two distinct clusters C and {x�} , and thus, C 
has a child C′ in ℌ with {x�} ⊆ C� ⊊ C . Now, pick an element 
x�� ∈ C⧵C� ≠ � . Since {x��} ∈ C  and {x��} ⊆ C , we can argue 
similarly as before to conclude that C has a child C′′ in ℌ with 
{x��} ⊆ C�� ⊊ C . Since x�� ∉ C� , we have C′ ≠ C′′ and thus, C 
satisfies outdegℌ(C) ≥ 2 . 	�  ◻

Lemma 22  Let C  be a clustering system on X with corre-
sponding Hasse diagram ℌ . Then, ℌ is a phylogenetic net-
work with leaf set Xℌ∶={{x} ∣ x ∈ X}.

Proof  Clearly, ℌ is a DAG. Since X ∈ C  and C ⊆ X for 
all C ∈ C  , X is the unique cluster in C  with indegree 0, 
i.e., X is the root in ℌ and ℌ satisfies (N1). By definition 
of clustering systems, we have Xℌ ⊆ C  . Now, consider a 
cluster {x} ∈ Xℌ . Since � ∉ C  , {x} has outdegree zero in 
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ℌ . Lemma 21 implies outdegℌ(C) ≥ 2 for all C ∈ C  with 
|C| > 1 , i.e., for all C ∈ C⧵Xℌ . Taken together, the latter 
arguments imply that the elements in Xℌ are exactly the 
leaves of ℌ and that (N2) is satisfied. 	�  ◻

For a given a clustering system C  and a cluster C ∈ C  , 
we will moreover make use of the subsets

Note that, by definition, we have D(C)∪⋅ D(C)∪⋅ {C} = C  
for all C ∈ C  , D(C) = � if and only if C is a singleton, and 
D(C) = � if and only if C = X.

Lemma 23  Let ℌ be the Hasse diagram of a clustering sys-
tem C  and C ∈ C  such that C does not overlap any other set. 
Then, there is no undirected cycle in ℌ that intersects both 
D(C) and D(C) . In particular, if C ≠ X and |C| > 1 , then C 
is a cut vertex in ℌ.

Proof  Suppose that C does not overlap with any other clus-
ter. If C = X then, D(C) = � and if |C| = 1 then D(C) = � 
and thus, for any cycle K in ℌ we have K ∩D(C) = � or 
K ∩D(C) = � . Hence, K cannot intersect both. Now, assume 
that C ≠ X  and |C| > 1 . Since C is neither a singleton 
nor X, both D(C) and D(C) are non-empty. Furthermore, 
D(C) ∪D(C) = C⧵{C} . Let C1 ∈ D(C) and C2 ∈ D(C) . By 
assumption, we have C1 ⊊ C and either (i) C2 ∩ C = � or 
(ii) C ⊊ C2 . In case (i), we have C1 ∩ C2 = � and in case 
(ii), it holds C1 ⊊ C ⊊ C2 . Therefore, and since C1 ∈ D(C) 
and C2 ∈ D(C) were chosen arbitrarily, ℌ contains no arc 
connecting a cluster in D(C) and a cluster in D(C) . Together 
with D(C) ∪D(C) = C ⧵ {C} , this implies that the subgraph 
of ℌ obtained by removing C is disconnected and thus C is 
a cut vertex. In particular, every undirected path connecting 
a cluster in D(C) and a cluster in D(C) has to pass through 
C and thus the second statement of the lemma follows as an 
immediate consequence. 	�  ◻

(3)
D(C)∶={D ∈ C ∣ D ⊊ C} and D(C)∶={D ∈ C ∣ D ⊈ C}.

Every phylogenetic tree T is isomorphic to the Hasse 
diagram of its clustering systems C  by virtue of the map 
� ∶ V(T) → C, v ↦ � (v) , see, e.g., Semple and Steel 
(2003). Figure 7 shows that this is not the case for phyloge-
netic networks in general. The rooted networks that share 
this property with phylogenetic trees have been introduced 
and studied in Baroni et al. (2004); Baroni and Steel (2006); 
Willson (2010).

Definition 11  (Baroni et al. 2004) A network N = (V ,E) is 
regular if the map � ∶ V → V(ℌ[CN]) ∶ v ↦ � (v) is a graph 
isomorphism between N and ℌ[CN].

The graph isomorphism in Definition 11 is quite con-
strained. In particular, it is not obvious that an arbitrary 
graph isomorphism � between the two networks N and 
ℌ[CN] implies that N is regular, as �(v) ≠ � (v) may be pos-
sible. As we shall see in Corollary 11, however, N ∼ ℌ[CN] 
if and only if N is regular. Even more, as noted without proof 
in Baroni et al. (2004), a rooted network N with leaf set X 
is regular if and only if it is graph isomorphic to the Hasse 
diagram ℌ[C] for some clustering system C ⊆ 2X . This result 
will be an immediate consequence of the results established 
below and will be summarized and proven in Proposition 4.

Proposition 2  For every clustering system C  , there is a 
unique regular network N with CN = C .

Proof  Let C  be a clustering system on X. By Lemma 22, 
ℌ[C] is a network with leaf set Xℌ∶={{x} ∣ x ∈ X} . Replac-
ing all leaves {x} in ℌ[C] with the single element x that they 
contain clearly yields a network N such that CN = C  and 
� ∶ V(N) → V(ℌ[C]) ∶ v ↦ � N(v) is an isomorphism 
between N and ℌ[C] . By definition, N is regular.

Now, let N′ be a regular network with CN� = C  , i.e., there 
is an isomorphism �� ∶ V(N�) → V(ℌ[C]) ∶ v ↦ � N� (v) 
between N′ and ℌ[C] .  In par ticular,  we have 
�(x) = ��(x) = {x} for all x ∈ X and thus ��−1(�(x)) = x . 
Hence, ��−1

◦� is an isomorphism between N and N that is 

Fig. 7   Both the rooted K2,3 (A) and K3,3 (B) are a phylogenetic net-
works that have only two leaves, denoted x and y here. The cluster-
ing system therefore consists only of X = {x, y} and the two single-
tons {x} and {y} . The same clustering system can be represented by a 
rooted tree with a single root that is adjacent to the two leaves x and 

y. In particular, both networks do not satisfy (PCC) since the high-
lighted vertices are ⪯N-incomparable but share the cluster {x, y} . C A 
network showing that � (v) ⊊ � (u) is also possible for two ⪯-incom-
parable vertices u and v 
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the identity on X. Hence, N is the unique regular network 
with CN = C  . 	�  ◻

Remark 1  By a slight abuse of notation, we also write ℌ[C] 
for the unique regular network of a clustering system C  since 
it is obtained from the Hasse diagram by relabeling all leaves 
{x} with x.

The following characterization is a slight rephrasing of 
Proposition 4.1 in Baroni et al. (2004):

Proposition 3  A network N is regular if and only if 

	 (i)	 𝙲 (u) ⊆ 𝙲 (v) ⟺ u ⪯N v for all u, v ∈ V  , and
	 (ii)	 N is shortcut-free.

Proof  Proposition 4.1 in Baroni et al. (2004) states that N 
is regular if and only if the following three conditions hold: 
(a) u ≠ v implies � (u) ≠ � (v) , i.e., 𝙲 (u) = 𝙲 (v) ⟹ u = v ; 
(b) if � (u) ⊊ � (v) , then there is a directed path from v to u, 
i.e., u ≺N v ; and (c) if there are two distinct directed paths 
connecting u and v, then neither path consists of a single 
arc, i.e., (u, v) is not a shortcut. Clearly, conditions (ii) 
and (c) are equivalent. It therefore suffices to show that 
condition  (i) holds if and only if conditions  (a) and (b) 
are satisfied. Together, (a), (b) and Lemma 17 obviously 
imply (i). Now, suppose (i) is satisfied. Then, � (u) = � (v) 
implies � (u) ⊆ � (v) and � (v) ⊆ � (u) and thus we have both 
u ⪯N v and v ⪯N u , and hence u = v , i.e., (a) holds. Assum-
ing � (u) ⊊ � (v) , i.e., � (u) ⊆ � (v) and � (u) ≠ � (v) implies 
u ⪯N v by (i) and u ≠ v by (a), and thus, u ≺N v , i.e., (b) 
holds as well. 	�  ◻

Proposition 2 and 3 imply

Corollary 7  For every clustering system C  there is a network 
N with CN = C  such that 𝙲 (u) ⊆ 𝙲 (v) ⟺ u ⪯N v for all 
u, v ∈ V .

Corollary 8  Every regular network is least-resolved.

Proof  Suppose, for contradiction, that the regular network N 
is not least-resolved, i.e., there is a network N′ with CN = CN� 
that can be obtained from N by a non-empty sequence of 
shortcut removals and application of CNTR (v�, v) . By Propo-
sition 3, N is shortcut-free and, therefore, the operation that 
is applied first must be a contraction. Therefore, and since no 
new vertices are introduced, it must hold |V(N�)| < |V(N)| . 
Since N is regular, it holds |V(N)| = |CN| . Hence, we have 
|V(N�)| < |CN| = |CN� | , a contradiction. 	�  ◻

The converse of Corollary 8, however, is not satisfied, 
see Fig. 8. The network N is shortcut-free and satisfies 
|V(N)| = |CN| . Hence, CN is least-resolved. The unique regu-
lar network N′ for CN on the r.h.s. of Fig. 8 is not isomorphic 
to N. Hence, we obtain

Observation 6  Not every least-resolved network is regular.

Nevertheless, for level-1 networks the terms least-
resolved and regular coincide as shown in Corollary 23.

A clustering system C  , by definition, is a hierarchy if and 
only if, for all C,C� ∈ C  holds C ∩ C� ∈ {�,C,C�}.

Corollary 9  A clustering system C  on X is a hierarchy if and 
only if ℌ[C] is a phylogenetic tree. Moreover, N is a phylo-
genetic tree if and only if ℌ[CN] ∼ N and CN is a hierarchy.

Proof  The 1-to-1 correspondence of hierarchies and phylo-
genetic trees is well known, see, e.g., (Theorem 3.5.2 Sem-
ple and Steel 2003). 	�  ◻

Semi‑regular networks

Path‑cluster comparability

Regularity as characterized in Proposition 3 is a bit too 
restrictive for our purposes. We therefore consider a slightly 
weaker condition, which we will call semi-regularity. More 
precisely, we relax condition (i) in Proposition 3:

Fig. 8   The network N is least-
resolved but not isomorphic to 
N� ∼ ℌ[CN ] . Consequently, N is 
not regular
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Definition 12  A network N has the path-cluster-comparabil-
ity (PCC) property if it satisfies, for all u, v ∈ V(N) , 

(PCC)	� u and v are ⪯N-comparable if and only if 
� (u) ⊆ � (v) or � (v) ⊆ � (u).

Definition 12 together with Corollary 7 implies

Lemma 24  For every clustering system C  there is a network 
N with CN = C  that satisfies (PCC).

We emphasize that (PCC) is a quite restrictive property. 
For instance, the rooted K3,3 in Fig. 7B violates (PCC). The 
example in Fig. 7C shows that even � (v) ⊊ � (u) is possible 
for two ⪯N-incomparable vertices u and v.

Observation 7  Let N be a network satisfying (PCC) and 
u, v ∈ V(N) . Then, � (u) ⊊ � (v) implies u ≺N v.

Proof  Suppose � (u) ⊊ � (v) . Then, (PCC) implies that u 
and v are ⪯N-comparable. If v ⪯N u , then Lemma 17 implies 
� (v) ⊆ � (u) , a contradiction. Hence, only u ≺N v is possi-
ble. 	�  ◻

Lemma 25  Let N be a network. Then, � (u) = � (v) 
and u ≺N v imply that there is w ∈ child N(v) such that 
u ⪯N w ≺N v and � (w) = � (v).

Proof  Since u ≺N v , there is a vw-path which passes through 
some child w ∈ child N(v) . Hence, we have u ⪯N w ≺N v . 
Lemma  17 implies � (u) ⊆ � (w) ⊆ � (v) . Together with 
� (u) = � (v) , this yields � (v) = � (w) = � (u) . 	�  ◻

Property (PCC) still allows that distinct vertices are asso-
ciated with the same clusters. It requires, however, that such 
vertices lie along a common directed path.

Definition 13  A network is semi-regular if it is shortcut-free 
and satisfies (PCC).

We introduce the term “semi-regular” because, as we 
shall see in Theorem 2, it is a moderate generalization of 
regularity that preserves many of useful properties of regular 
networks.

Lemma 26  Let N be a semi-regular network and let 
v ∈ V(N) . Then, there is a vertex u ∈ V(N) with � (u) = � (v) 
and u ≺N v if and only if outdeg (v) = 1 . If, moreover, N is 
phylogenetic, then u is the unique child of v in this case.

Proof  Suppose first that outdeg (v) = 1 and thus let u 
be the unique child of v. Thus, it holds u ≺N v and, by 

Observation 5, we have � (u) = � (v) . Conversely, suppose 
that � (u) = � (v) and u ≺N v . Lemma 25 implies that there 
is w ∈ child (v) with u ⪯N w ≺N v and � (w) = � (v) . Sup-
pose there is another child w� ∈ child (v) with w′ ≠ w . By 
Lemma 17, we have � (w�) ⊆ � (v) = � (w) . Hence, (PCC) 
implies that w and w′ are ⪯N-comparable. But then Observa-
tion 3 and N being shortcut-free imply w = w� , a contradic-
tion. Hence, w is the unique child of v.

Now, suppose, in addition, that N is phylogenetic and 
assume, for contradiction, that u ≠ w and thus u ≺N w . We 
can apply similar arguments as before to conclude that w 
has a unique child. Therefore, and since N is phylogenetic, 
there must be a vertex v� ∈ par N(w) ⧵ {v} since other-
wise indeg (w) = outdeg (w) = 1 . By Lemma 17, we have 
� (v) = � (w) ⊆ � (v�) . This together with (PCC) implies that 
v and v′ are ⪯N-comparable. But then Observation 3 and N 
being shortcut-free imply v = v� , a contradiction. Therefore, 
u = w is the unique child of v. 	�  ◻

As a consequence of Lemmas 17 and 26, we have

Corollary 10  Let N be a semi-regular network and let 
v ∈ V0 . Then, � (u) ⊊ � (v) for all u ∈ child N(v) if and only 
if outdeg (v) ≥ 2.

Lemma 27  Let N be a semi-regular network, u ∈ V(N) , and 
let Q(u)∶={u� ∈ V(N) ∣ � (u�) = � (u)} . Then, the vertices 
of Q(u) are pairwise ⪯N-comparable and lie consecutively 
along an induced directed path in N. Moreover, if |Q(u)| > 1 , 
either Q(u) is contained in a non-trivial block, or adjacent 
pairs of vertices in Q(u) form a trivial block.

Proof  By (PCC), � (v) = � (w) and v ≠ w imply v ≺N w or 
w ≺N v for v,w ∈ Q(u) , i.e., the vertices in Q(u) are pairwise 
⪯N-comparable and thus linearly ordered w.r.t. ⪯N . Using 
Lemma 25, one easily verifies that Q(u) forms a directed 
path in N and there are unique ⪯N-minimal and ⪯N-maxi-
mal vertices minQ(u) and maxQ(u) . In particular, since N 
is acyclic and shortcut-free, this path must be an induced 
subgraph.

Now, suppose u is a hybrid vertex and suppose there is 
v ∈ Q(u) with (v, u) ∈ E(N) , i.e., u has a parent in Q(u). Then, 
there is v� ∈ par (u) ⧵ {v} . By Lemma 17, � (u) ⊆ � (v�) , and 
thus, by (PCC), v and v′ are ⪯N-comparable. However, since 
N is shortcut-free, v and v′ are ⪯N-incomparable by Observa-
tion 3, a contradiction. Thus, only maxQ(u) can be a hybrid 
vertex in Q(u). By similar argument, only minQ(u) can have 
outdegree greater that one. Hence, all inner vertices in the 
directed path P formed by Q(u) have degree 2. Therefore, 
if one arc in P is contained in an undirected cycle, then all 
arcs in P are contained in this cycle, in which case Q(u) is 
contained in a non-trivial block. Otherwise Q(u) consists of 
a sequence of consecutive cut-arcs. 	�  ◻
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The examples in Fig. 7A, B show that (PCC) is necessary 
in Lemma 27. We note, moreover, that the cardinality |Q(u)| 
equals the multiplicity of the cluster � (u) in MN.

Theorem 2  A network is regular if and only if it is semi-
regular and there is no vertex with outdegree 1.

Proof  If N is regular, it is in particular also semi-regular 
and thus satisfies (PCC). Furthermore, then � (u) = � (v) 
implies u = v and thus there are no two vertices u, v satisfy-
ing � (u) = � (v) and u ≺N v . Lemma 26 thus implies that 
there is no vertex with outdegree 1. Conversely, assume that 
N is semi-regular (and thus shortcut-free) and suppose there 
is not vertex with outdegree 1. Then, Lemma 26 implies that 
there is no pair of vertices u, v with � (u) = � (v) and u ≺N v 
or v ≺N u , i.e., � (u) = � (v) implies u = v . Therefore and by 
Lemma 17, we have 𝙲 (u) ⊆ 𝙲 (v) ⟺ u ⪯N v . By Proposi-
tion 3, therefore, N is regular. 	�  ◻

Proposition 4  Let N be a network on X. Then, N ∼ ℌ[C] for 
some clustering system C ⊆ 2X if and only if N is regular.

Proof  Assume first that N ∼ ℌ[C] . In this case, N is short-
cut-free, satisfies (PCC), and has no vertex with outde-
gree 1 (since ℌ[C] has these properties). By Theorem 2, 
N is regular. Assume now that N is regular. By Defini-
tion 11, N ∼ ℌ[CN] . Thus, we can put C = CN and obtain 
N ∼ ℌ[C] . 	�  ◻

It should be noted that N ∼ ℌ[C] does not neces-
sarily imply that CN = C  . By way of example, con-
sider a binary phylogenetic rooted tree T on X with 
CT = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}} and the clustering 
system C = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}} . It can easily 
be verified that T ∼ ℌ[C] although CT ≠ C  . Neverthe-
less, Proposition 4 together with Definition 11 immediately 
implies

Corollary 11  N ∼ ℌ[CN] if and only if N is regular.

A crucial link between a network and its clustering sys-
tems is the ability to identify the non-trivial blocks. The fol-
lowing result shows that, at least in semi-regular networks, 
key information is provided by the overlaps of clusters.

Lemma 28  Let B be a non-trivial block in a semi-regular 
network N. Then for every u ∈ B0 there is a v ∈ B0 such that 
� (u) and � (v) overlap.

Proof  Suppose u ∈ B0 and consider the two disjoint sets 
A∶={w ∈ V(B) ∣ u ≺N w} and D∶={w ∈ V(B) ∣ w ≺N u} , 
i.e., the ancestors and descendants, resp., of u in B. Note 
that both sets are non-empty since u ∈ B0 . There is no arc 

connecting a vertex in A with a vertex in D. To see this, 
consider a ∈ A and d ∈ D . Since d ≺N u ≺N a and N is acy-
clic, there is a directed path from a to d passing through u. 
Thus, an arc (a, d) would be a shortcut, contradicting that 
N is semi-regular, and an arc (d, a) would imply a ≺N d 
contradicting d ≺N u ≺N a . Thus, an arc connecting a ver-
tex in A with a vertex in D cannot exist. Since a, d ∈ V(B) 
and B is a non-trivial block, a and d lie on an undirected 
cycle K in B. In particular, they are connected by two undi-
rected paths that do not share any inner vertices. Thus, 
there is an undirected path P = (d = v1, v2,… , a = vk) that 
does not contain u. Let vi be the unique vertex in P such 
that vi ∈ D and there is no vertex vj ∈ D with i < j ≤ k . 
Such a vertex exists since v1 ∈ D . Moreover, vk = a ∈ A 
implies i < k . Thus, consider the vertex v∶=vi+1 . We 
have v ∉ D by construction and v ∉ A since vi ∈ D is not 
adjacent to any vertex in A. Since P does not contain u 
and v ∈ V(B)⧵(A∪⋅ D) , we see that u and v are ⪯N-incom-
parable. Since vi ∈ D , we have vi ≺N u . Hence, (vi, vi+1) 
cannot be an arc in N since otherwise vi+1 ≺N vi ≺N u 
would imply vi+1 ∈ D , a contradiction. Therefore, it have 
(v, vi) = (vi+1, vi) ∈ E(N) and thus vi ≺N u, v . By Lemma 17, 
this implies � ≠ � N(vi) ⊆ � N(u) ∩ � N(v) . Together with 
(PCC) and the fact that u and v are ⪯N-incomparable, this 
yields that � (u) and � (v) overlap. In particular, v ≠ maxB 
since u and v are ⪯N-incomparable and v is not a terminal 
vertex since vi ≺N v . Therefore, we have v ∈ B0 . 	�  ◻

We note that semi-regularity cannot be omitted in 
Lemma 28, since the statement is not true for the rooted 
K3,3 of Fig. 7. Lemma 19 and Lemma 28 together show that 
in semi-regular networks all vertices in the interior of non-
trivial blocks are identified by the fact that their clusters 
overlap. It remains an open question, however, whether the 
information of cluster overlaps is sufficient to identify the 
non-trivial blocks.

We continue by showing that whenever (PCC) is satisfied, 
least-resolved networks are precisely the regular network, 
To this end, we consider first the implications given by the 
operations EXPD and CNTR , and by the removal of shortcuts, 
respectively.

Lemma 29  Let N be a network, w ∈ V(N) , and N′ the net-
work obtained from N by applying EXPD (w) . Then, N satis-
fies (PCC) if and only if N′ satisfies (PCC).

Proof  By Lemma  5, N and N′ are (N�,N)-ancestor-
preserving, i.e., v ⪯N v� if and only if v ⪯N v� holds 
for all v, v� ∈ V(N) . By Lemma  5, � N(v) = � N� (v) for 
all v ∈ V(N) ⊆ V(N�) . Let w′ be the unique vertex in 
V(N�) ⧵ V(N) . By construction, w is the unique child of w′ in 
N′ and thus, by Observation 5, � N(w) = � N� (w) = � N� (w�).
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Suppose first N′ satisfies (PCC), i.e., for all u, v ∈ V(N�) , 
it holds that u and v are ⪯N�-comparable if and only if 
� N� (u) ⊆ � N� (v) or � N� (v) ⊆ � N� (u) . To see that N also 
satisfies (PCC), consider u, v ∈ V(N) ⊆ V(N�) . Suppose 
u and v are ⪯N-comparable. Hence, u and v are also ⪯N�

-comparable, and thus, � N(u) = � N� (u) ⊆ � N� (v) = � N(v) 
or � N(v) = � (v)N� ⊆ � N� (u) = � N(u) . Conversely, if 
� N(u) ⊆ � N(v) or � N(v) ⊆ � N(u) , then also � N� (u) ⊆ � N� (v) 
or � N� (v) ⊆ � N� (u) . Hence, u and v are ⪯N�-comparable and 
thus also ⪯N-comparable.

Now, suppose N satisfies (PCC). By similar argument 
as above, it holds, for all u, v ∈ V(N) = V(N�) ⧵ {w�} that u 
and v are ⪯N�-comparable if and only if � N� (u) ⊆ � N� (v) or 
� N� (v) ⊆ � N� (u) . To show that N′ satisfies (PCC), it there-
fore only remains to consider w′ and some vertex v ∈ V(N) . 
It holds that v and w′ are ⪯N�-comparable if and only if v 
and w are ⪯N�-comparable. To see this, suppose first v and 
w′ are ⪯N�-comparable. If v ≺N′ w′ , then v ⪯N� w since w is 
the unique child of w′ . If w′ ≺N′ v , then w ≺N′ w′ implies 
w ≺N′ v . Now, suppose v and w are ⪯N�-comparable. If 
v ⪯N� w , then w ≺N′ w′ implies v ≺N′ w′ . If w ≺N′ v , then 
w� ⪯N� v (and thus w′ ≺N′ v ) since w′ is the unique par-
ent of w in N′ . Taken together and since v,w ∈ V(N) , the 
arguments so far imply that v and w′ are ⪯N�-comparable 
if and only if v and w are ⪯N�-comparable if and only if 
� N� (v) ⊆ � N� (w) = � N� (w�) or � N� (w�) = � N� (w) ⊆ � N� (v) 
In summary, therefore, N′ satisfies (PCC). 	�  ◻

Corollary 3 and Lemma 29 imply that semi-regularity 
is preserved by EXPD applied on arbitrary vertices and 
CNTR (u,w) applied to arcs (u, w) where outdeg (u) = 1.

Corollary 12  Let N be a network, w ∈ V(N) , and N′ the 
network obtained from N by applying EXPD (w) . Then, N is 
semi-regular if and only if N′ is semi-regular.

Proposition 5  Let N be a network satisfying (PCC). The 
unique regular network ℌ[CN] is obtained from N by repeat-
edly executing one of the following operations (1) and (2) 
until neither of them is possible: 

(1)	 remove a shortcut (u	 , w), and
(2)	 apply CNTR (u,w) for an arc (u, w) with outdeg (u) = 1.

Proof  Let N′ be the network obtained by applying one of 
the following operations until neither of them is possible. 
By construction, we have V(N�) ⊆ V(N) . We can repeatedly 
apply Lemmas 1 and 4 to conclude that N′ is a network with 
leaf set X and that, for all v, v� ∈ V(N�) , it holds v ⪯N v� if 
and only if v ⪯N� v� . Similarly, Lemmas 1 and 4 imply that 
� N(v) = � N� (v) holds for all v ∈ V(N�) and, in particular, 
CN = CN�.

By assumption, N satisfies (PCC), i.e., for all u, v ∈ V(N) , 
it holds that u and v are ⪯N-comparable if and only if 
� N(u) ⊆ � N(v) or � N(v) ⊆ � N(u) . To see that N′ also 
satisfies (PCC), consider u, v ∈ V(N�) . Suppose u and 
v are ⪯N�-comparable. Hence, u and v are also ⪯N-com-
parable, and thus, � N� (u) = � N(u) ⊆ � N(v) = � N� (v) 
o r  � N� (v) = � N(v) ⊆ � N(u) = � N� (u)  .  C o nve r s e ly, 
i f  � N� (u) ⊆ � N� (v) or  � N� (v) ⊆ � N� (u) ,  then a lso 
� N(u) ⊆ � N(v) or � N(v) ⊆ � N(u) . Hence, u and v are ⪯N

-comparable and thus also ⪯N�-comparable. Therefore, N′ 
satisfies (PCC). Since moreover N′ is shortcut-free by con-
struction, N′ is semi-regular. This together with Theorem 2 
and the fact that, by construction, there is no vertex v with 
outdeg N� (v) = 1 implies that N′ is regular. This, together 
with CN = CN� , implies that N′ is the unique regular network 
ℌ[CN] . 	�  ◻

Proposition 6  Let N be a least-resolved network satisfying 
(PCC). Then, N is uniquely determined by CN and, in par-
ticular, regular so that N ∼ ℌ(CN).

Proof  By Corollary 2, N is shortcut-free (and thus, semi-
regular) and contains no vertex with outdegree 1. By Theo-
rem 2, therefore, N is regular. 	�  ◻

As a consequence of Corollary 8, Theorem 2, and Propo-
sition 6, we obtain

Theorem 3  A network N is regular if and only if N is least-
resolved and satisfies (PCC).

Separated networks and cluster networks

Recall that a network N is separated if all hybrid vertices 
have outdegree 1. We have already seen above that the Hasse 
diagrams of the clustering systems cannot produce sepa-
rated networks with hybrid vertices because outdeg (v) = 1 
implies that � (v) = � (u) whenever u is the only child of v. 
By Theorem 2, furthermore, a regular network does not have 
any vertex with outdegree 1. Therefore, a regular network 
cannot be separated whenever it contains at least one hybrid 
vertex and vice versa.

The Cluster-popping algorithm (Huson and Rupp 2008) 
constructs a separated network for a given clustering sys-
tem C  by first constructing the Hasse diagram, and thus the 
unique regular network ℌ[C] , and then applying EXPD (w) 
to all hybrid vertices w ∈ V(ℌ[C]) . In particular, the result-
ing network is a so-called cluster network (Huson and Rupp 
2008; Huson and Scornavacca 2011):

Definition 14  A network N is a cluster network if (i) it satis-
fies (PCC), and, for all u, v ∈ V(N) , it holds 
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(b)	 � N(u) = � N(v) if and only if u = v or v is a hybrid ver-
tex and parent of u or vice versa,

(c)	 if u is a child of v, then there exists no node w with 
� N(u) ⊊ � N(w) ⊊ � N(v) , and

(d)	 every hybrid vertex v has exactly one child, which is a 
tree node.

We note that the definition of cluster networks usually is 
expressed using the following condition instead of (PCC): 

(i’)	� � N(u) ⊆ � N(v) if and only if u ⪯N v for all u, v ∈ V(N) 
(Huson and Rupp 2008; Zhang 2019).

 However, this contradicts the existence of hybrid vertices 
v, which are required to have exactly one child u by (iv). To 
see this, observe that u ≺N v and, by Observation 5, we have 
� N(u) = � N(v) . The latter means that � N(v) ⊆N � N(u) is 
satisfied and thus (i’) implies v ⪯N u , a contradiction.

We can rephrase conditions (i)-(iv), and thus the defini-
tion of cluster networks, as follows:

Theorem 4  A network N is a cluster network if and only if it 
is semi-regular, separated, and phylogenetic.

Proof  Suppose first that N is a cluster network, i.e., it 
satisfies conditions  (i)-(iv) in Definition 14. By condi-
tion  (i) and  (iv), resp., N satisfies (PCC) and is sepa-
rated. Hence, it remains to show that N is shortcut-free 
and phylogenetic. Suppose, for contradiction, that (v, u) 
is a shortcut in N. Then, there is w ∈ child N(v) ⧵ {u} and 
w� ∈ par N(u) ⧵ {v} such that u ≺N w� ⪯N w . By Lemma 17, 
� N(u) ⊆ � N(w

�) ⊆ � N(w) ⊆ � N(v) . If � N(w) = � N(v) , then 
conditions (ii) and (iv) imply that v is a hybrid vertex with 
exactly one child, a contradiction. Therefore, � N(w) ⊊ � N(v) 
must hold. If � N(u) = � N(w

�) , then conditions (ii) and (iv) 
imply that w′ is a hybrid vertex and its unique child u is 
a tree node, contradicting that w�, v ∈ par N(u) . Hence, we 
have � N(u) ⊊ � N(w

�) ⊆ � N(w) ⊊ � N(v) , which contra-
dicts (iii). Therefore, N must be shortcut-free and thus semi-
regular. Suppose, for contradiction, that N is not phyloge-
netic. Hence, there is a vertex v with exactly one child u and 
indeg N(v) ≤ 1 . By Observation 5, we have � N(u) = � N(v) 
and thus v must be a hybrid vertex by (ii), a contradiction.

Conversely, suppose N is semi-regular, separated, 
and phylogenetic. Hence, N satisfies  (PCC), i.e., condi-
tion (i). Condition (iii) must be satisfied since an arc (v, u) 
with � N(u) ⊊ � N(w) ⊊ � N(v) for some w ∈ V(N) would 
be a shortcut by Observation 7. We continue with show-
ing (ii). Suppose � N(u) = � N(v) and u ≠ v . By (PCC), it 
holds u ≺N v or v ≺N u . Suppose w.l.o.g. that u ≺N v . Then, 
Lemma 26 implies that outdeg N(v) = 1 and u is the unique 
child of v. Since N is phylogenetic, v must be a hybrid ver-
tex. Conversely, a hybrid vertex v in a separated network 

has exactly one child u implying � N(u) = � N(v) by Obser-
vation 5. Since N is separated, it remains to show that the 
unique child u of a hybrid vertex v is a tree node. Suppose 
for contradiction that u is a hybrid node. Then, u again has 
a unique child w. Hence, we have w ≺N u ≺N v and, by 
Observation 5, it holds � N(w) = � N(u) = � N(v) . By (ii), 
this implies that (v, w) is an arc in N and, in particular, a 
shortcut, a contradiction. Therefore, condition (iv) is also 
satisfied. 	�  ◻

We shall see in Theorem 6 in the following section that 
cluster networks are uniquely determined by their cluster 
sets. To obtain this result, it will be convenient to make use 
of the fact that the semi-regular networks are encoded by 
their multisets of clusters.

Cluster multisets of semi‑regular networks

Lemma 30  Let N be a semi-regular phylogenetic network. 
Then, the multiplicity of each cluster C ∈ C  in the cluster 
multiset MN is either one or two. In the latter case, the two 
distinct vertices u, v ∈ V(N) with � N(u) = � N(v) = C are 
adjacent.

Proof  Recall that a semi-regular network N satisfies (PCC) 
and is shortcut-free. Let C ∈ C  . Thus, there is at least one 
vertex v ∈ V(N) with � N(v) = C . Now, suppose there is 
u ∈ V(N)⧵{v} with � N(u) = C . By (PCC), it holds u ≺N v or 
v ≺N u . Suppose that u ≺N v . Then, Lemma 26 implies that 
outdeg N(v) = 1 and u is the unique child of v. Suppose, for 
contradiction, there is a third vertex w ∈ V(N) ⧵ {u, v} . By 
(PCC), it holds w ≺N v or v ≺N w . If w ≺N v , then Lemma 26 
implies that w is the unique child of v, a contradiction. If 
v ≺N w , then we have also u ≺N v ≺N w . By Lemma 26, 
therefore, v and u are both the unique child of w, which is 
not possible since u ≠ v . One argues similarly if v ≺N u . In 
particular, u and v are adjacent in both cases. 	�  ◻

As we shall see in Theorem 5, the property of being phylo-
genetic, however, is not necessary for semi-regular networks 
to be identified by their cluster multisets. In order to prove 
this, the following map will be of useful.

Definition 15  Let N and Ñ be two networks satisfying (PCC) 
and MN = MÑ . Then, the map 𝜑PCC ∶ V(N) → V(Ñ) is 
given by the following steps for all C ∈ CN = CÑ : 

	 (i)	 sort the k ≥ 1 vertices in N with cluster C such that 
v1 ≺N ⋯ ≺N vk,

	 (ii)	 sort the k vertices in Ñ  with cluster C such that 
ṽ1 ≺Ñ ⋯ ≺Ñ ṽk , and

	 (iii)	 set 𝜑(vi) = ṽi for all 1 ≤ i ≤ k.
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In other words, we map the ⪯N-larger vertices with clus-
ter C in N to ⪯Ñ-larger vertices with cluster C in Ñ  , which 
is possible since, by (PCC), these vertices are totally 
ordered w.r.t. ⪯N and ⪯Ñ , respectively.

Lemma 31  Let N and Ñ be two networks satisfying (PCC) 
and MN = MÑ . Then, �PCC is a bijection between V(N) and 
V(Ñ) that is the identity on the common leaf set X. Writing 
ṽ∶=𝜑PCC(v) , it moreover holds 

1.	 � N(v) = � Ñ(ṽ) for all v ∈ V(N),
2.	 v is a leaf if and only if ṽ is a leaf for all v ∈ V(N) , and
3.	 u ≺N v if and only if ũ ≺Ñ ṽ for all u, v ∈ V(N).

Proof  Since MN = MÑ , the multiplicity of every cluster 
C ∈ C∶=CN = CÑ is equal in MN and MÑ , i.e., there are 
k ≥ 1 vertices with cluster C in N and k vertices with clus-
ter C in Ñ . One easily verifies that, by construction, �PCC 
is a bijection between V(N) and V(Ñ) that is the identity 
on the common leaf set X and satisfies � N(v) = � Ñ(ṽ) for 
all v ∈ V(N) . To see that u ≺N v if and only if ũ ≺Ñ ṽ , sup-
pose u ≺N v . By Lemma 17, this implies � N(u) ⊆ � N(v) . 
If � N(u) ⊊ � N(v) (and thus � Ñ(ũ) ⊊ � Ñ(ṽ) ), then Observa-
tion 7 implies ũ ≺Ñ ṽ . If, on the other hand, � N(u) = � N(v) , 
then ũ ≺Ñ ṽ holds by construction of � . Analogously, ũ ≺Ñ ṽ 
implies u ≺N v . In particular, this implies that, for every 
v ∈ V(N) , v is a leaf if and only if ṽ is a leaf. 	�  ◻

Theorem 5  Let N be a semi-regular network. Then, N is the 
unique semi-regular network whose cluster multiset is MN.

Proof  Suppose N and Ñ  are semi-regular networks with 
MN = MÑ  . By assumption, both N and Ñ  are short-
cut-free and satisfy (PCC). We continue with showing 
that 𝜑PCC ∶ V(N) → V(Ñ) is a graph isomorphism. By 
Lemma 31, �PCC is a bijection that is the identity on the 
common leaf set X. In the following, we write ṽ∶=𝜑PCC(v) 
for all v ∈ V(N) . Suppose that (v, u) ∈ E(N) . Thus, we have 

u ≺N v which implies ũ ≺Ñ ṽ by Lemma 31(3). Assume, 
for contradiction, that (ṽ, ũ) ∉ E(Ñ) . Then, there must be 
z̃ ∈ V(Ñ) such that ũ ≺Ñ z̃ ≺Ñ ṽ . By Lemma 31(3), we have 
u ≺N z ≺N v . Hence, the arc (v, u) must be a shortcut in N, a 
contradiction. Therefore, (ṽ, ũ) ∈ E(Ñ) . By analogous argu-
ments, (ṽ, ũ) ∈ E(Ñ) implies (v, u) ∈ E(N) . Hence, �PCC is a 
graph isomorphism that is the identity on X and thus N ≃ Ñ . 
Therefore, N is the unique semi-regular network whose clus-
ter multiset is MN . 	�  ◻

We emphasize that none of the two conditions (PCC) 
and shortcut-free that define semi-regular networks can be 
omitted in Theorem 5 as shown by the examples in Fig. 9.

It is an easy task to verify that semi-regular networks 
N (as any other network for which the property of being 
phylogenetic has been left out) are not determined by 
their clustering systems CN . The network N in Fig. 10A, 
for example, is not phylogenetic (but semi-regular). Sup-
pression of any vertex with in- and outdegree 1 yields a 
network N′ with N ≄ N� but CN = CN� . We will see in the 
following that there is a 1-to-1 correspondence between 
clustering systems and cluster networks. To show this, we 
will need the following technical result that relates the 
occurrence of vertices with equal clusters in such networks 
to the structure of the Hasse diagram.

Lemma 32  Let N be a cluster network with clustering system 
C  . Then, for every cluster C ∈ C  , there is either exactly 
one vertex v ∈ V(N) with � N(v) = C or there are exactly 
two vertices u, v ∈ V(N) with � N(u) = � N(v) = C . The latter 
case occurs if and only if C has indegree at least 2 in ℌ[C] . 
Moreover, in this case, u and v are adjacent in N.

Proof  By Theorem 4, N is phylogenetic, separated, and 
semi-regular, i.e., it satisfies (PCC) and is shortcut-free. By 
Lemma 30, it only remains to show that there are two dis-
tinct vertices u, v ∈ V(N) with � N(u) = � N(v) = C if and 
only if C has indegree at least 2 in ℌ[C].

Fig. 9   Two pairs of non-isomorphic (phylogenetic) networks N and N′ for which MN = MN� . A N and N′ satisfy (PCC) but are not shortcut-free. 
B N and N′ are shortcut-free but do not satisfy (PCC)
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Suppose C = � N(v) = � N(u) for two distinct vertices 
v, u ∈ V(N) and assume w.l.o.g. that u ≺N v . By Lemma 26, 
u must be the unique child of v. Since N is phylogenetic, 
this implies that indeg N(v) ≥ 2 . Thus, let v1 and v2 be two 
distinct parents of v. Since N is shortcut-free and by Obser-
vation 3, v1 and v2 are ≺N-incomparable. Using (PCC), we 
conclude that C1∶= � N(v1) and C2∶= � N(v2) are distinct and 
none of them is contained in the other. Moreover, we have 
C ⊆ C1 ∩ C2 by Lemma 17, and thus, and C ⊊ C1,C2 . Sup-
pose there is C� ∈ C  such that C ⊊ C′ ⊊ C1 . Let v� ∈ V(N) 
be a vertex with � N(v

�) = C� . By Observation 7, we have 
v ≺N v′ ≺N v1 . Therefore, (v1, v) ∈ V(N) must be a shortcut, 
a contradiction. Hence, there is no C� ∈ C  with C ⊊ C′ ⊊ C1 
and C1 must be a parent of C in ℌ[C] . By similar arguments, 
C2 is a parent of C in ℌ[C] , which together with C1 ≠ C2 
implies that C has indegree at least 2 in ℌ[C].

Conversely, suppose C has at least two distinct parents C1 
and C2 in ℌ[C] . Hence, it holds C ⊊ C1 and C ⊊ C2 and none 
of C1 and C2 is contained in the other. Let v, v1, v2 ∈ V(N) 
be vertices with C = � N(v) , C1 = � N(v1) , and C2 = � N(v2) . 
Clearly, v, v1 , and v2 are pairwise distinct. By Observation 7, 
we have v ≺N v1 and v ≺N v2 , i.e., there are a v1v-path P1 
and a v2v-path P2 in N. Let v′ be the ⪯N-maximal vertex in 
P1 that is also a vertex in P2 . We distinguish the two cases 
v� = v and v′ ≠ v . If v� = v , then v has a parent in each of 
P1 and P2 which are distinct by construction. Thus, v is a 
hybrid vertex. Since moreover N is separated, v has a unique 
child u. By Observation 5, this implies � N(u) = � N(v) = C . 
Now, suppose v′ ≠ v . Lemma 17 and v ≺N v� ⪯N v1, v2 imply 
C ⊆ C�∶= � N(v

�) , C′ ⊆ C1 and C′ ⊆ C2 . Since none of C1 and 
C2 is contained in the other, we must have C ⊆ C′ ⊊ C1 and 
C ⊆ C′ ⊊ C2 . Since C1 and C2 are parents of C in ℌ[C] , the 
latter is only possible if C = C� . Hence, in both cases, there 
are two distinct vertices in N with cluster C. 	� ◻

Theorem 6  For every clustering system C  , there is a unique 
cluster network N with C = CN . It is obtained from the unique 
regular network ℌ[C] of C  by applying EXPD (v) to all hybrid 

vertices. In particular, N is the unique semi-regular separated 
phylogenetic network with clustering system C .

Proof  By Theorem 2, the unique regular network ℌ[C] is 
shortcut-free, satisfies (PCC), and has no vertex with out-
degree 1. In particular, ℌ[C] is phylogenetic. Now, let N 
be the network obtained from ℌ[C] by repeatedly applying 
EXPD (w) to some hybrid vertex whose outdegree is not 1 
until no such vertex exists. Clearly this is achieved by apply-
ing EXPD (w) to all hybrid vertices w ∈ V(ℌ[C]) since they 
all satisfy outdegℌ[C](w) ≠ 1 and, moreover, no expansion 
step introduces new such vertices but reduces their number 
by 1. We can repeatedly (i.e., in each expansion step) apply 
Lemma 5 to conclude that the resulting digraph N is a phy-
logenetic network that satisfies CN = Cℌ[C] = C  , and Corol-
lary 12 to conclude that N is semi-regular. In particular, by 
construction, all hybrid vertices in N have outdegree 1, i.e., 
N is separated. By Theorem 4, N is a cluster network.

It remains to show that N is the unique cluster network 
with clustering system C  . To this end, let Ñ  be a cluster 
network with C = CÑ . By Theorem 4, both N and Ñ  are 
semi-regular, shortcut-free, and phylogenetic. Moreover, by 
Lemma 32, for every cluster C ∈ C  , C has multiplicity 2 in 
MN if and only if C has indegree at least 2 in ℌ[C] if and 
only if C has multiplicity 2 in MÑ ; and multiplicity 1 in 
both MN and MÑ otherwise. Hence, we have MN = MÑ . 
By Theorem 5, we conclude that N ≃ Ñ , and thus, N is the 
unique cluster network. In particular, by Theorem 4, N is the 
unique semi-regular separated phylogenetic network with 
clustering system C  . 	�  ◻

The uniqueness of cluster networks for a given cluster-
ing system C  has been proved in the framework of reticu-
late networks in (Theorem 3.9 Alcalà et al. 2014), using 
alternative arguments. A network N is reticulate in the 
sense of (Definition 2.3 Alcalà et al. 2014) if (a) every 
hybrid vertex has exactly one child which, moreover, must 
be a tree vertex, and (b) if a vertex v has outdeg N(v) = 1 

Fig. 10   A Example of a network that is semi-regular and tree-child 
but not phylogenetic. B Example of a cluster network, thus satisfying 
(PCC), that is not tree-child. The central node marked in red does not 

have a tree-child. One easily checks that it satisfies (PCC) since ver-
tices associated with overlapping pairs of clusters are incomparable 
(color figure online)
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and indeg N(v) ≤ 1 then v has a unique child and parent, 
both of which are hybrid vertices. The following result 
shows that the additional condition that N is reticulate 
does not affect cluster networks, and thus, Theorem 6 and 
(Theorem 3.9 Alcalà et al. 2014) are equivalent.

Proposition 7  If N is a cluster network, then N is reticulate.

Proof  By Theorem 4, N is semi-regular, phylogenetic, and 
separated. Since N is phylogenetic, it does not contain a ver-
tex satisfying condition (b), and hence (b) is satisfied trivi-
ally. Since N is separated, every hybrid vertex v has exactly 
one child u. By Obs 5, we have � (v) = � (u) . Suppose that 
u is also a hybrid vertex, i.e., there is v� ∈ par N(u) ⧵ {v} . 
Since N is shortcut-free, v and v′ are ⪯N-incomparable. How-
ever, by Lemma 17, we have � (v) = � (u) ⊆ � (v�) and thus 
(PCC) implies that v and v′ must be ⪯N-comparable, a con-
tradiction. Hence, N also satisfies condition (a). In summary, 
every cluster network is reticulate. 	� ◻

Tree‑child, normal, and tree‑based networks

Definition 16  (Cardona et al. 2009) A network N has the 
tree-child property if, for every v ∈ V0 , there is a “tree-
child,” i.e., u ∈ child (v) with indeg (u) = 1.

Tree-child networks are not necessarily phylogenetic, see 
Fig. 10A for an example. As shown in (Lemma 2 Cardona 
et al. 2009), N is a tree-child network if and only if every 
vertex v ∈ V  has a strict descendant, i.e., a leaf x ∈ X such 
that every directed path from the root �N to x contains v.

Lemma 33  Suppose N is tree-child and u and v are ⪯N

-incomparable. Then, there is a vertex x ∈ � (v) such that 
x ∉ � (u) and y ∈ � (u) such that y ∉ � (v).

Proof  Since N is tree-child, there is a strict descendant x of 
v. It satisfies x ∈ � (v) and every path from the root �N to 
x runs through v. Now, suppose x ∈ � (u) . Then, there is a 
directed path from �N to x that contains u. Since any such 
path also contains v, the vertices u and v must be ⪯N-compa-
rable, a contradiction. Thus, x ∉ � (u) . The same argument 
shows that there is y ∈ � (v) with y ∉ � (u) . 	� ◻

Corollary 13  Every tree-child network satisfies (PCC).

Proof  Let N be a tree-child network and u, v ∈ V(N) . By 
Lemma 17, u ⪯N v implies � (u) ⊆ � (v) . On the other hand, 
if u and v are ⪯N-incomparable, then Lemma 33 implies that 
either � (u) ∩ � (v) = � or � (u) and � (v) overlap and thus 
neither � (u) ⊆ � (v) nor � (v) ⊆ � (u) is satisfied. 	�  ◻

The converse is not true. Figure 10B shows an example 
of a network that satisfies (PCC) but does not have the tree-
child property.

Definition 17  A network is normal if it is tree-child and 
shortcut-free.

Willson (2010) studies normal networks in a somewhat 
different setting, in which X comprises not only the leaves in 
our sense but also the root and all vertices with outdegree 1. 
Under this assumption, (Theorem 3.4 Willson 2010) states 
that “N is regular whenever it is normal.” The absence of 
vertices with outdegree 1 can be included as an extra condi-
tion. The analog of Willson’s result in our setting follows 
immediately from Corollary 13, Theorem 2, and the absence 
of shortcuts:

Corollary 14  Let N be a network. If N is normal, then N is 
semi-regular. If, in addition, there are no vertices with out-
degree 1, then N is regular.

The converse is not true, there are (semi-)regular net-
works that are not normal, see Fig. 1 of Willson (2010) and 
also Fig. 10B for a semi-regular example. Hence, we have

Remark 2  Not every semi-regular network, and in particular 
not every cluster network, is normal.

Proposition 8  Let C  be a clustering system. If there is a 
phylogenetic, separated, normal network N with C = CN , 
then N is unique w.r.t. these properties. In particular, N is 
the unique cluster network with C = CN.

Proof  Suppose N is phylogenetic, separated, and normal and 
satisfies C = CN . By Cor 14, N is semi-regular and thus, by 
Theorem 4, a cluster network. By Theorem 6, N is unique. 	
� ◻

From Proposition 8 and the definition of binary networks, 
we immediately obtain

Corollary 15  Let N be a binary normal network. Then, N is 
the unique binary normal network whose cluster set is CN . 
In particular, N is a cluster network.

The following result appears to be well known, see, e.g., 
Murakami et al. (2019). An argument for binary tree-child 
and level-1 networks can be found Huber et al. (2019b). A 
direct proof for our more general setting is included here for 
completeness.

Proposition 9  Every phylogenetic level-1 network is 
tree-child.
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Proof  Let N be a phylogenetic level-1 network. If v is a 
hybrid vertex, then, by Lemma 10, there is a non-trivial 
block Bv that contains v and all its parents. Suppose, for 
contradiction, there is a non-leaf vertex v whose children 
are all hybrid vertices. Suppose first that outdeg (v) = 1 . 
Since N is phylogenetic, this implies that v is hybrid vertex. 
Let u be the unique child of v, which is a hybrid vertex by 
assumption. The hybrid vertices u and v are contained in a 
common non-trivial block Bu . In particular, u ≺N v implies 
u ≠ maxBu . Additionally, v ≠ maxBu since outdeg (v) = 1 
but outdeg (maxBu) > 1 by Lemma 4; contradicting that 
N is level-1. Now, suppose that outdeg (v) ≥ 2 . Since all 
ui ∈ child (v) are hybrid vertices, v and ui are contained 
in blocks Bi∶=Bui

 . Note that ui ≠ maxBi . If there are two 
distinct ui, uj ∈ child (v) such that v ∉ {maxBi, maxBj} , 
then Lemma 9 implies Bi = Bj and thus Bi contains the 
hybrid vertices ui, uj ≠ maxBi ; this contradicts that N 
is level-1. Otherwise, there is at least one ui ∈ child (v) 
such that v = maxBi . Since ui is a hybrid vertex, there is 
wi ∈ par N(ui)⧵{v} , which is also contained in Bi . Hence, 
we have ui ≺N wi ≺N maxBi = v . Therefore, and because N 
is acyclic, there is uj ∈ child N(v) such that wi ⪯N uj ≺N v . 
By assumption, uj is a hybrid vertex and moreover 
uj ∉ {ui, v = maxBi} . By Lemma  7, wi ⪯N uj ≺N v and 
wi, v ∈ V(Bi) imply uj ∈ V(Bi) . Hence, Bi contains two dis-
tinct hybrid vertices ui, uj ≠ maxBi , contradicting that N is 
level-1. 	�  ◻

Note that “phylogenetic” cannot be omitted in Propo-
sition  9: Consider a tree vertex v with a hybrid child 
u ∈ child (v) . Subdivision of the arc (v, u) creates a new 
tree vertex u� ∈ child (v) with the hybrid u as its only child. 
The modified network is still level-1 but no longer tree-child.

Next we consider the overlapping clusters in tree-child 
networks in some more detail:

Lemma 34  Let N be a tree-child network and suppose u and 
v are ⪯N-incomparable. Then, either � (u) ∩ � (v) = � (h) for 
some hybrid vertex h ∈ V(N) or � (u) ∩ � (v) ∉ CN.

Proof  By Corollary 13, N satisfies (PCC) and thus either 
� (u) ∩ � (v) = � , in which case the assertion is obviously 
true, or � (u) and � (v) overlap. In the latter case, Lemma 18 
implies that u, v are contained in a common non-trivial block 
B. Set A∶= � (u) ∩ � (v) and assume A ≠ � (h) for any hybrid 
vertex h ∈ V(N) . Lemma 20 implies that A =

⋃
h∈H � (h) for 

some set H of hybrid vertices. Since A is non-empty and, 
by assumption, A ≠ � (h) for all hybrid vertices h, we must 
have |H| ≥ 2 . In particular, therefore, it holds that � (h) ⊊ A 
for all h ∈ H . Now, suppose, for contradiction, that there is 
a non-hybrid vertex w ∈ V(N) such that � (w) =

⋃
h∈H � (h) . 

Then, for all h ∈ H , we have � (h) ⊊ � (w) , which together 
with Corollary 7 implies h ≺N w . Moreover, all elements 

in � (w) are descendants of one of the hybrid vertices in H. 
Since N is tree-child, there is a leaf x that is reachable from 
w along a path consisting entirely of tree vertices and thus 
cannot be a descendant of any hybrid vertex h ≺N w . That is, 
there is x ∈ � (w) and x ∉ � (h) for all h ∈ H , a contradic-
tion. Therefore, A ∉ CN . 	�  ◻

In particular, the case � (u) ∩ � (v) ∉ CN in Lemma 34 
can indeed occur even if � (u) ∩ � (v) ≠ � as the example in 
Fig. 11 shows. Hence, the clustering system CN of a tree-
child network N is not necessarily closed.

Corollary 16  Let N be a tree-child network with clustering 
system C  and let C1,C2 ∈ C  be a pair of overlapping clus-
ters. Then, C1 ∩ C2 ∈ C  if and only if there is a hybrid vertex 
h ∈ V(N) such that C1 ∩ C2 = � (h).

Another class of networks that has received considerable 
attention in the last decade are tree-based networks (Francis 
and Steel 2015; Zhang 2016; Jetten and van Iersel 2018; 
Pons et al. 2019). They capture the idea that networks can 
be obtained from (the subdivision of) a tree by inserting 
additional arcs:

Definition 18  A network N is called tree-based with base 
tree T if N can be obtained from T by (a) subdividing the arcs 
of T by introducing vertices with in- and outdegree 1 (called 
attachment points), and (b) adding arcs (called linking arcs) 
between pairs of vertices, so that N remains acyclic.

This definition further generalizes the original one for 
non-binary tree-based networks in Jetten and van Iersel 
(2018) in the sense that we do not require the two properties 
phylogenetic and separated and that we allow to have addi-
tional arcs between non-attachment points and attachment 
points may have in- and outdegree greater than one. This 
generalization ensures that all trees, i.e., in particular non-
phylogenetic trees, remain tree-based.

Equivalently, a network N on X is tree-based if and only 
if there is a rooted (not necessarily phylogenetic) spanning 
tree T with leaf set X, i.e., there are no dummy leaves in T 

Fig. 11   A tree-child network whose clustering system C  is not closed 
since {w, x, y} ∩ {x, y, z} = {x, y} ∉ C
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that correspond to inner vertices in N. Clearly, the unique 
incoming arc (u, v) of a tree vertex v must be contained in 
every rooted spanning tree T of a network N and thus u can-
not be a dummy leaf in T. As an immediate consequence, 
the well-known fact that tree-child network are always tree-
based (Pons et al. 2019) remains also true in our generalized 
setting: and does in particular, not require the properties 
phylogenetic and separated:

Observation 8  Every tree-child network is tree-based.

Figure 12A shows a network N that is tree-based since 
removal of the dashed arcs results in a rooted spanning tree 
whose leaves are exactly the leaves of N. However, N does 
not satisfy (PCC) since the two vertices highlighted in orange 
correspond to the same cluster but are ⪯N-incomparable. 
Conversely, the example in Fig. 12B shows that (PCC), or 
even semi-regularity, does not imply that a network is tree-
based. In particular, the network N′ is the cluster network 
for C = {{x}, {y}, {z}, {v}, {x, y}, {x, z}, {x, v}, {y, z}, {y, v}, {x, y, z, v}} . 
To see that N′ is not tree-based, consider the set U of all 
inner vertices whose children are all hybrid vertices, called 
omnians in Jetten and van Iersel (2018). These vertices are 
highlighted in orange. In any rooted spanning tree, each of 
the four hybrid vertices (highlighted in cyan) has exactly 
one parent. Since, in addition, none of the five omnians has 
a child that is not one of the four hybrid vertices, one easily 
verifies that at least one omnian must be a dummy leaf in 
every spanning tree. Therefore, N′ is not tree-based. The 
latter observation is in line with Corollary 3.6 in Jetten and 
van Iersel (2018), which holds for a more restricted defini-
tion of tree-based and states that a (phylogenetic, separated) 
network is tree-based if and only if, for all S ⊆ U , the num-
ber of different children of the vertices in S is greater than 
or equal to |S| . Clearly, the latter is not satisfied for S = U in 
the example. We summarize the latter findings in

Observation 9  Not every tree-based network satisfies (PCC). 
Moreover, there are cluster networks and thus phylogenetic 
separated networks that do not satisfy (PCC).

Least common ancestors and LCA‑networks

Basics

Definition 19  Bender et al. (2001) A least common ancestor 
(LCA) of a subset Y ⊆ V  in a DAG N is an ancestor of all 
vertices in Y that is ⪯N-minimal w.r.t. this property.

In general DAGs N, an LCA does not necessarily exist for 
a given vertex set. Moreover, an LCA is not unique in gen-
eral. We write LCA (Y) for the (possibly) empty set of ⪯N

-minimal ancestors of the elements in Y. In a (phylogenetic) 
network N, the root �N is an ancestor of all vertices in V(N), 
and thus, a least common ancestor exists for all Y ⊆ V(N) . 
The LCA sets retain key information on the partial order ⪯N:

Observation 10  Let N be a network and Z ⊆ Y ⊆ V(N) . 
Then, for every y ∈ LCA (Y) there is z ∈ LCA (Z) such 
that z ⪯N y.

Proof  Consider y ∈ LCA (Y) . Then, y is also an ancestor 
of all vertices in Z and thus there is a ⪯N-minimal descend-
ant z ⪯N y that is an ancestor of all vertices in Z, i.e., 
z ∈ LCA (Z) . 	�  ◻

If LCA (Y) = {u} consists of a single element u only, we 
write lca (Y) = u . In other words, lca (Y) = u always implies 
that the ⪯N-minimal ancestor of the elements in Y exists and 
is uniquely determined. We leave lca (Y) undefined for all Y 
with |LCA (Y)| ≠ 1.

In Huber and Scholz (2018), least common ancestors u 
are defined in terms of the fact that no child of u is an ances-
tor of all vertices in Y. These definitions are equivalent:

Lemma 35  Let N be a network and � ≠ Y ⊆ V(N) . Then, 
u ∈ V(N) is a least common ancestor of Y if and only if u is 
an ancestor of all vertices in Y but there is no v ∈ child N(u) 
that is an ancestor of all vertices in Y.

Fig. 12   A A network that is 
tree-based (with a possible base 
tree indicated by the solid-line 
arcs) but that does not satisfy 
(PCC). B A cluster network 
(thus satisfying (PCC)) that is 
not tree-based, see details in the 
text (color figure online)
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Proof  By definition, u ∈ V(N) is a least common ancestor 
of Y if it is ancestor of all vertices in Y and ⪯N-minimal 
w.r.t. this property. Thus, the only if-part of the statement 
follows immediately. Conversely, suppose u is an ancestor 
of all vertices in Y but there is no v ∈ child N(u) with this 
property. Writing Dx for the set of descendants of a vertex 
x ∈ V(N) , suppose conversely that u is an ancestor of all ver-
tices in Y but Y ⊈ Dv for each v ∈ child N(u) . For every ver-
tex w ∈ V(N) with w ≺N u , there is a directed path passing 
through some child v ∈ child N(u) , i.e., w ⪯N v . Hence, we 
have Dw ⊆ Dv . Together with Y ⊈ Dv , this implies Y ⊈ Dw . 
Hence, u is a least common ancestor of Y. 	�  ◻

We will in particular be concerned here with LCAs of 
leaves, i.e., the sets LCA (A) for non-empty subsets A ⊆ X . 
We can then express LCAs in terms of clusters:

Observation 11  v ∈ LCA (A) if and only if A ⊆ � (v) and 
there is no vertex u ≺N v such that A ⊆ � (u).

Suppose lca (A)=∶q is defined for some non-empty 
A ⊆ X . Then, by assumption, every vertex v with A ⊆ � (v) 
satisfies q ⪯N v and thus � (q) ⊆ � (v) by Lemma 17. Since 
every vertex v′ for which � (q) ⊆ � (v�) in particular also sat-
isfies A ⊆ � (v�) , we conclude that lca ( � (q)) = q . Thus, we 
have

Observation 12  Let N be a network, ∅ ≠ A ⊆ X , and suppose 
lca (A) is defined. Then, the following is satisfied: 

	 (i)	 lca (A) ⪯N v for all v with A ⊆ � (v).
	 (ii)	 � ( lca (A)) is the unique inclusion-minimal cluster in 

CN containing A.
	 (iii)	 lca ( � ( lca (A))) = lca (A).

In much of the literature on least common ancestors in 
DAGs, only pairwise LCAs are considered. Networks with 
unique pairwise LCAs are of interest because of a close 
connection with so-called binary clustering systems (Bar-
thélemy and Brucker 2008) and monotone transit functions 
(Changat et al. 2019, 2022).

Definition 20  (Barthélemy and Brucker 2008) A clustering 
system C  on X is pre-binary if, for every pair x, y ∈ X , there 
is a unique inclusion-minimal cluster C such that {x, y} ⊆ C.

From Observation 12(ii), we immediately obtain

Observation 13  If N is a network on X such that lca ({x, y}) 
is defined for all x, y ∈ X , then CN is pre-binary.

The first example in Fig. 13 shows, however, that unique 
pairwise LCAs are not sufficient to ensure that lca (A) is 

also defined for larger sets. The second example shows that 
unique pairwise LCAs also do not ensure that all clusters 
� (v) have a unique LCA.

(Theorem 3.3 Willson 2010) showed that lca ( � (v)) (there 
called “mrca”) is well defined for all vertices of a normal 
network. However, Willson (2010) uses a different definition 
of X as the “base set” comprising the root, leaves, and all 
vertices with outdegree 1. We therefore adapt Theorem 3.3 
of Willson (2010) to our setting and include a proof for 
completeness.

Definition 21  A network N has the cluster-lca property (CL) 
if 

(CL)	� For every v ∈ V(N) , lca ( � (v)) is defined.
Lemma 36  Suppose N has property (CL). Then, 
for all v ∈ V(N) , it holds that lca ( � (v)) ⪯N v and 
� ( lca ( � (v))) = � (v).

Proof  If v ∉ LCA ( � (v)), then there is a descendant v� ⪯ v 
such that � (v) = � (v�) , and every ⪯N-minimal descendant 
v′ with this property satisfies v� ∈ LCA ( � (v)) . By property 
(CL), LCA ( � (v)) contains only a single vertex lca ( � (v)) , 
which therefore must coincide either with v or one of its 
descendants. The second statement now follows directly 
from the definition. 	�  ◻

I n  L e m m a   2 7 ,  w e  s a w  t h a t 
Q(u)∶={u� ∈ V(N) ∣ � (u�) = � (u)} forms an induced path 
in semi-regular networks. Property (CL) imposes a weaker 
structure.

Lemma 37  Let N be a network satisfying (CL). Then, 
(i) Q(u) has a unique ⪯N-minimal element, namely 
lca ( � (u)) = minQ(u) , and (ii) if u, v ∈ Q(u) and w is con-
tained in a directed path from u to v, then w ∈ Q(u).

Fig. 13   A A regular network that is not an lca-network even though 
all lca ({x, y}) is defined for all pairs. For A = {x, y, z} both children 
of the root are contained in LCA (A) . Here, A is not a cluster. B The 
existence of pairwise LCAs is also insufficient to ensure that property 
(CL) is satisfied, i.e., that lca ( � (v)) is defined for all v ∈ V(N) since 
A is a cluster in this example
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Proof  The second statement in Lemma  36 implies that 
q∶= lca ( � (u)) ∈ Q(u) . By definition q is the unique ⪯N

-minimal vertex that has all leaves in � (q) as its descendants 
and thus q ⪯ u� for all u� ∈ Q(u) , establishing statement (i). 
Statement (ii) is a direct consequence of Lemma 17. 	�  ◻

Lemma 38  If a network N satisfies (PCC), then it satisfies 
(CL).

Proof  Suppose that  N  sat isf ies (PCC).  Given 
a cluster � (u) ,  we consider the non-empty set 
W∶={w ∈ V ∣ � (u) = � (w)} ⊆ V  . (PCC) implies that 
the elements of W are pairwise ⪯N-comparable, and thus, 
there is a unique ⪯N-minimal element w ∈ W . Furthermore, 
� (u) = � (w) ⊊ � (v) implies w ≺N v by Observation  7. 
Therefore, lca ( � (u)) = w . Since u ∈ W  by construction, 
we have w ⪯N u , and thus, lca ( � (u)) ⪯N u . 	� ◻

Figure 14 shows that the converse is not true, i.e., (CL) 
does not imply (PCC). Lemma 24 and Lemma 38 imply

Proposition 10  For every clustering system C, there is a net-
work N with CN = C  that satisfies (CL).

Since a normal network is tree-child, it satisfies (PCC) by 
Corollary 13. This together with Lemma 38 implies

Corollary 17  Every normal network N satisfies (CL).

Property (CL), however, does not imply that lca is well 
defined for all subsets A ⊆ X.

LCA‑networks

Definition 22  A network N is an lca-network if lca (A) is 
well defined, i.e., if |LCA (A)| = 1 for all non-empty subsets 
A ⊆ X.

From Observation 10 and uniqueness of the least common 
ancestors, we immediately obtain

Observation 14  Every lca-network satisfies (CL). Moreover, 
if N is an lca-network and A ⊆ B ⊆ X , then lca (A) ⪯N lca (B)

.

Corollary 18  Let N be an lca-network on X and 
� ≠ A ⊆ � N(v) for some v ∈ V(N) . Then,  it holds 
lca (A) ⪯N v.

Proof  Since A ⊆ � N(v) ⊆ X , Observation 14 implies that 
lca (A) ⪯N lca ( � N(v)) . Moreover, N satisfies (CL). Hence, 
we can apply Lemma 36 and conclude that lca ( � N(v)) ⪯N v 
and, therefore, lca (A) ⪯N v . 	�  ◻

Lemma 39  Every lca-network has a closed clustering 
system.

Proof  Let N be an lca-network. We show that CN 
is closed, i.e., for all non-empty A ∈ 2X  , it holds 
cl (A) = A ⟺ A ∈ CN . From the definitions of clusters, 
and the closure operator, we obtain

If A ∈ CN , then clearly cl (A) = A . Now, suppose A ∉ CN 
and assume, for contradiction, that cl (A) = A . Thus, we have 
cl (A) ∉ CN . Then, there are at least two distinct inclusion-
minimal clusters C′ and C′′ such that A ⊊ C′,C′′ . Clearly, for 
every cluster C ∈ CN , there is a ⪯N-minimal vertex u with 
C = � (u) . In particular, there are ⪯N-minimal vertices u′ 
and u′′ with C� = � (u�) and C�� = � (u��) . Therefore and by 
Lemma 17, we obtain, for all v ≺N u′ , that � (v) ⊊ � (u�) = C� 
and thus A ⊈ � (v) by inclusion-minimality of C′ . Hence, 
u′ is a least common ancestor of A. By analogous argu-
ments, u′′ is a last common ancestor of A. Since C′ ≠ C′′ , 
u′ and u′′ are distinct. Together with {u�, u��} ⊆ LCA (A) , 

A ⊆

⋂

v ∈ V

A ⊆ � (v)

� (v) =
⋂

C ∈ CN

A ⊆ C

C = cl (A).

Fig. 14   The network N satisfies (CL) but not (PCC). In addition to 
the singletons, only {x, y} and A = {x, y, z} appear as clusters. Both 
have unique last common ancestors, and hence, (CL) is satisfied. In 

particular, lca (A) = w . However, we have A = � N (u) = � N (v) for 
the two ⪯N-incomparable vertices u and v. Hence, N does not satisfy 
(PCC)
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this contradicts that N is an lca-network. Therefore, A ∉ CN 
implies A ⊊ cl (A) . Isotony of the closure function together 
with the contraposition of the latter statement shows that 
A = cl (A) ⟹ A ∈ CN  . In summary, therefore, CN  is 
closed. 	�  ◻

Lemma 40  If N is a network with a closed clustering system 
CN and N satisfies (PCC), then it is an lca-network.

Proof  Assume, for contradiction, that there is some set 
A with two distinct vertices u, v ∈ LCA (A) . Then, u,  v 
are ⪯N-incomparable and A ⊆ � (u) and A ⊆ � (v) . If 
� (u) ⊆ � (v) , then (PCC) implies u ⪯N v or v ⪯N u , a 
contradiction. Similarly, � (v) ⊆ � (u) is not possible. 
Thus, � (u) and � (v) overlap. Since CN is closed, there is 
a cluster � (w) = � (u) ∩ � (v) for some w ∈ V  . Since 
A ⊆ � (w) ⊊ � (u) and A ⊆ � (w) ⊊ � (v) , Observation  7 
implies w ≺N u and w ≺N v , contradicting u, v ∈ LCA (A) . 	
� ◻

Theorem 7  Let N be a network satisfying (PCC). Then, N 
is an lca-network if and only if its clustering system CN is 
closed.

Proof  Let N be an lca-network satisfying (PCC). By 
Lemma 39, CN is closed. Conversely, by Lemma 40, a net-
work satisfying (PCC) with a closed clustering system is an 
lca-network. 	�  ◻

The example in Fig. 14 shows that (PCC) cannot be omit-
ted in Theorem 7. A trivial consequence of Theorem 7 is

Corollary 19  A semi-regular network N is an lca-network if 
and only if its clustering system CN is closed.

Since every tree-child network satisfies (PCC) we also 
obtain

Corollary 20  A tree-child network N is an lca-network if and 
only if its clustering system CN is closed.

Moreover, we have

Proposition 11  A clustering system C  is closed if and only 
if there is an lca-network N with C = CN . In this case, the 
unique regular network and the unique cluster network of 
C  are lca-networks.

Proof  Let C  be the clustering system. By Proposition 2 and 
Theorem 6, there is a unique regular network N and a unique 
cluster network N′ with C = CN = CN� . By Theorem 2 and 4, 
resp., both networks are semi-regular and thus satisfy (PCC). 
Suppose C  is closed. Then, Theorem 7 implies that both 

N and N′ are lca-networks. In particular, there is an lca-
network N with C = CN . Conversely, suppose there is an 
lca-network N with C = CN . By Lemma 39, this implies that 
C  is closed. 	�  ◻

As in the case of trees, there is a simple connection of 
the LCA with the closure operator:

Lemma 41  Let N be an lca-network with clustering system 
C  . Then, the following identity holds:

Furthermore, we have

Proof  Let ∅ ≠ Y ⊆ X . By Proposition 11, C  is closed and 
thus cl (Y) ∈ C  . In particular, cl (Y) is the unique inclu-
sion-minimal cluster in C  containing Y. Let u be a vertex 
in N such that � (u) = cl (Y) . Since Y ⊆ cl (Y) = � (u) , 
Corollary 18 yields lca (Y) ⪯N u . By Lemma 17, we have 
Y ⊆ � ( lca (Y)) ⊆ � (u) = cl (Y) . Since cl (Y) is the unique 
inclusion-minimal cluster in C  containing Y, this implies 
� ( lca (Y)) = cl (Y) . For every cluster C ∈ C  , we have 
C = cl (C) by Eq.  (2) and thus Eq.  (5) follows immedi-
ately. 	�  ◻

Next we show that two sets have the same LCA when-
ever their LCAs are associated with the same cluster.

Lemma 42  Let N be an lca-network on X and let 
Y , Y ′ ⊆ X  . Then, (i) lca ( � ( lca (Y))) = lca (Y) and (ii) 
� ( lca (Y)) = � ( lca (Y �)) imply lca (Y) = lca (Y �)

Proof  Since cl is enlarging, i.e., Y ⊆ cl (Y) , we have 
Y ⊆ � ( lca (Y)) by Lemma  41. Thus, Observation  14 
implies lca (Y) ⪯N lca ( � ( lca (Y))) . On the other hand, all 
leaves in � ( lca (Y)) are descendants of lca (Y) , and thus, 
lca ( � ( lca (Y))) ⪯N lca (Y) . Thus, statement (i) holds. Now, 
suppose � ( lca (Y)) = � ( lca (Y �)) . Uniqueness of the LCA 
implies lca ( � ( lca (Y))) = lca ( � ( lca (Y �))) and thus state-
ment (i) implies lca (Y) = lca (Y �) . 	� ◻

Strong LCA‑networks and weak hierarchies

In this section, we consider an interesting subclass of 
lca-networks.

Definition 23  A network N on X is a strong lca-network if 
it is an lca-network and, for every non-empty subset A ⊆ X , 
there are x, y ∈ A such that lca ({x, y}) = lca (A).

(4)� ( lca (Y)) = cl (Y) for all � ≠ Y ⊆ X.

(5)� ( lca (C)) = cl (C) = C for all C ∈ C.
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Figure 15 shows an lca-network that is not a strong 
lca-network.

We shall see below that strong lca-networks are inti-
mately connected with well-studied types of clustering 
systems.

Definition 24  A clustering system C  on X is

a weak hierarchy if C1 ∩ C2 ∩ C3 ∈ {C1 ∩ C2,C1 ∩ C3,C2 ∩ C3} 
for all C1,C2,C3 ∈ C  ; and
binary if it is pre-binary and, for every C ∈ C  , there is a 
pair of vertices x, y ∈ X such that C is the unique inclu-
sion-minimal cluster containing x and y.

Weak hierarchies were introduced in Bandelt and Dress 
(1989) and subsequently have been studied in detail in the 
context of clustering systems, e.g., in Brucker and Gély 
(2009); Bertrand and Diatta (2014). Binary clustering 
system are considered systematically in Barthélemy and 
Brucker (2008). We first consider the lca-networks with 
binary clustering systems:

Lemma 43  Let N be an lca-network. Then, the following 
conditions are equivalent: 

	 (i)	 For all v ∈ N  , there is x, y ∈ � (v) such that 
lca ({x, y}) = lca ( � (v)).

	 (ii)	 CN is binary.

Proof  Since N is an lca-network, it is in particular pre-binary 
(cf. Observation 13) and satisfies (CL). Property (i) and 
Lemma  36 imply � (v) = � ( lca ( � (v))) = � ( lca ({x, y})) 
for two vertices x, y ∈ � (v) . By Observation 12(ii), � (v) 
is the unique inclusion-minimal cluster containing x and y, 
i.e., CN is binary. Conversely, suppose N is an lca-network 
with a binary clustering system. Then for every v ∈ N  , 
there is x, y ∈ X such that � (v) is the unique inclusion-min-
imal cluster that contains x and y. By Observation 12(ii), 
this implies � (v) = � ( lca ({x, y})) . Hence, we have 
lca ( � (v)) = lca ( � ( lca ({x, y}))) , and thus, by Observa-
tion 12(iii), lca ( � (v)) = lca ( � ( lca ({x, y}))) = lca ({x, y}) , 
i.e., property (i) holds. 	�  ◻

In particular, therefore, strong lca-networks give rise to 
binary clustering systems:

Corollary 21  The clustering system of a strong lca-network 
is binary.

The converse is not true in general, since condition (i) in 
Lemma 43 requires only that the LCAs of clusters but not 
necessarily the LCAs of all sets are determined by the LCA 
of a leaf pair. The latter, stronger condition, is related to 
weak hierarchies. To investigate this connection, we recall

Proposition 12  (Lemma 1 Bandelt and Dress 1989) A clus-
tering system C  on X is a weak hierarchy if and only if for 
every non-empty subset A ⊆ X there exist x, y ∈ A such that 
cl (A) = cl ({x, y}).

Proposition 13  Let N be an lca-network on N. Then, N is a 
strong lca-network if and only of CN is a weak hierarchy.

Proof  Definition  23 and Eq.  (4) imply that for 
eve r y  ∅ ≠ A ⊆ X  t he re  i s  x, y ∈ A such  t ha t 
cl (A) = � ( lca (A)) = � ( lca ({x, y})) = cl ({x, y})  ,  a n d 
thus, CN is a weak hierarchy by Proposition  12. Con-
versely, if N is an lca-network such that CN is a weak hier-
archy, then for all ∅ ≠ A ⊆ X there is x, y ∈ A such that 
� ( lca (A)) = � ( lca ({x, y})) . By Observation 12 we have 
lca (A) = lca ( � ( lca (A))) = lca ( � ( lca ({x, y}))) = lca ({x, y})   , 
and thus, N is a strong lca-network. 	�  ◻

Corollary 22  Let N be a network satisfying (PCC). Then, N 
is a strong lca-network if and only if CN is a closed weak 
hierarchy.

Proof  Let N be a network satisfying (PCC). By Theorem 7, 
N is an lca-network if and only if CN is a closed. By Proposi-
tion 13, N is a strong lca-network precisely if and only if CN 
is a weak hierarchy. 	�  ◻

Furthermore, we can use the same arguments in the proof 
of Proposition 11 together with Corollary 22 to derive the 
final result of this section:

Proposition 14  A clustering system C  is a closed weak hier-
archy if and only if it is the clustering system of a strong 
lca-network. In this case, the unique regular network and 
the unique cluster network of C  are strong lca-networks.

Level‑1 networks

Basic properties

We start by showing that all phylogenetic level-1 networks 
have the path-cluster-comparability property (PCC).

Fig. 15   An lca-network 
with a subset of leaves 
A∶={x, y, z} ⊆ X in which 
there are no x�, y� ∈ A such that 
lca ({x�, y�}) = lca (A)
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Lemma 44  Every phylogenetic level-1 network satisfies 
(PCC).

Proof  If N is a phylogenetic level-1 network, then it is tree-
child by Proposition 9, and in turn every phylogenetic tree-
child network satisfies (PCC) by Corollary 13. 	�  ◻

We note that “phylogenetic” cannot be dropped in 
Lemma 44. To see this, consider the level-1 network N in 
Fig. 17B in “Level-1 networks encoded by their cluster 
multisets” section. There, both parents of the hybrid vertex 
correspond to cluster {a} but they are ⪯N-incomparable; a 
violation of (PCC).

Corollary 23  Let N be a level-1 network. Then, N is least-
resolved if and only if N is regular.

Proof  By Corollary 2 and Theorem 2, resp., least-resolved 
and regular networks do not contain vertices with outdegree 
1, and thus, they are phylogenetic. The statement now fol-
lows immediately from Lemma 44 and Theorem 3. 	�  ◻

We emphasize, however, that there can exist least-
resolved networks N for a given clustering system C  that are 
not regular, as the example in Fig. 8 shows. In this example, 
the regular network N′ is level-1. Next we show that Lemma 
15 does not hold for level-1 networks:

Lemma 45  Let n be a positive integer. Then, there is no 
phylogenetic, shortcut-free level-1 network N on n leaves 
that is not a tree and where CN is a hierarchy.

Proof  Let N be a phylogenetic, shortcut-free level-1 that is 
not a tree. By Lemma 44, N satisfies (PCC). Since, in addi-
tion, N is shortcut-free, N is semi-regular. Since N is not a 
tree, it must contain a non-trivial block B. By Lemma 28, 
there are at least two vertices u and v such that � (u) and � (v) 
overlap. Hence, CN is not a hierarchy. 	�  ◻

As an immediate consequence of Theorem  2 and 
Lemma 44, we also obtain the following

Proposition 15  A phylogenetic level-1 network is semi-reg-
ular if and only if it is shortcut-free. Furthermore, a level-1 
network is regular if and only if it is shortcut-free and has 
no vertex with outdegree 1.

Lemma 46  Let N be a phylogenetic level-1 network and v be 
a hybrid vertex of N. Then, � (v) ⊊ � (u) for every u ∈ V(N) 
with v ≺N u.

Proof  Let N be a phylogenetic level-1 network and v be a 
hybrid vertex of N. By Lemma 10, v and all of its (at least 

two) parents are contained in a common non-trivial block 
B. Hence, consider first one of the parents w1 of v such that 
w1 ≠ maxB . By Lemma 17, � (v) ⊆ � (w1) . Assume, for con-
tradiction, that � (v) = � (w1) . Since v and w1 are contained 
in the same non-trivial block B and N is level-1, w1 cannot 
be a hybrid vertex and thus, since N is phylogenetic, we have 
outdeg N(w1) ≥ 2 . Let w′ ≠ v be another child of w1 . Again, 
by  Lemma  17, � (w�) ⊆ � (w1) and thus, � (w�) ⊆ � (v) . 
Lemma 44 implies that N satisfies (PCC), and thus, v and w′ 
are ⪯N-comparable. Hence, we distinguish the two cases (a) 
w′ ≺N v and (b) v ≺N w′.

In Case  (a), the arc (w1,w
�) must be a shortcut since 

w′ ≺N v and v ∈ child N(w1)⧵{w
�} . In particular, w′ must be 

a hybrid vertex and there is a directed path from w1 to w′ 
passing through v, which together with the arc (w1,w

�) forms 
an undirected cycle. Hence, w1 , v, and w′ are contained in 
a common block that shares the arc (w1, v) with B and thus 
equals B. But then B contains two hybrid vertices v and w′ 
that are distinct from maxB , a contradiction.

Now, consider Case  (b), i.e., v ≺N w′ ≺N w1 . In this 
case, v has a parent w2 such that v ≺N w2 ≺N w1 ≺N maxB . 
In particular, w2 lies in B and Lemma  17 implies 
� (v) ⊆ � (w2) ⊆ � (w1) and thus � (v) = � (w2) . Now, we 
can repeat the latter arguments for parent w2 and eventu-
ally encounter a contradiction as in Case (a) or, if we never 
obtain such a contradiction, we end in an infinite chain of 
vertices w1 ≻N w2 ≻N … , a contradiction to V(N) being 
finite. The latter together with the fact that w1 ≠ maxB was 
chosen arbitrarily implies that � (v) ⊊ � (w) for every par-
ent w of v that is distinct from maxB . Now, suppose that 
w = maxB is a parent of v. Since v is a hybrid vertex, it has 
another parent w′ , which is also contained in B and satis-
fies v ≺N w′ ≺N w . Lemma 17 and the arguments above thus 
yield � (v) ⊊ � (w�) ⊆ � (w).

Finally note that v ≺N u if and only if v ≺N w ⪯N u where 
w is a parent of v. This together with Lemma 17 implies that 
� (v) ⊊ � (w) ⊆ � (u) for all u ∈ V(N) with v ≺N w ⪯N u and 
where w is a parent of v. 	�  ◻

Lemma 47  Let N be a level-1 network. Then, every block 
B has a unique ⪯N-minimal vertex minB and a unique ⪯N

-maximal vertex maxB . In case B is not a single vertex or 
arc, minB is the unique properly contained hybrid vertex in 
B and maxB is the unique root of B.

Proof  The statement is trivial for a block that consists only 
of a single vertex or arc. Uniqueness of the ⪯N-maximal ver-
tex in B follows from Lemma 8. Otherwise, every v ∈ V(B) 
lies on an undirected cycle. Since B is acyclic, a ⪯N-minimal 
vertex u in B does not have an out-neighbor along the cycle, 
and therefore, u has at least two in-neighbors that are con-
tained in B. Thus, u is a hybrid vertex and, by Lemma 10, u 
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is properly contained in B. By definition of level-1, there is 
at most one such vertex in B. 	�  ◻

As an immediate consequence, we have

Corollary 24  Let N be a level-1 network and B a block of 
N. For every v ∈ B , it holds minB ⪯N v ⪯N maxB and 
� (minB) ⊆ � (v) ⊆ � (maxB).

The fact that every block in a level-1 contains at most 
one hybrid vertex, implies that B0 = B ⧵ {minB, maxB} for 
every block B (cf. Definition 8). Recall that a block is non-
trivial if it is not a single vertex or a single arc. Hence, a 
block B is non-trivial precisely if B0 ≠ ∅ . In the absence 
of shortcuts and in case B is non-trivial, the subnetwork 
induced by B0 is a forest consisting of at least two non-empty 
trees.

Lemma 48  Let N = (V ,E) be a level-1 network and suppose 
u, v ∈ V  are ⪯N-incomparable. Then, u and v are located 
in a common block B of N if and only if � (u) ∩ � (v) ≠ � . 
In particular, they share exactly the descendants of the 
⪯N-minimal element minB of B, i.e., in this case we have 
� (u) ∩ � (v) = � (minB).

Proof  If u and v are both located in block B, then Cor-
ollary  24 implies � ≠ � (minB) ⊆ � (u) ∩ � (v) . Con-
versely, if � (u) ∩ � (v) ≠ � , then Lemma 18 implies that, 
for every x ∈ � (u) ∩ � (v) , u and v are contained in a 
common block B, and B contains, in addition, a hybrid 
vertex w such that w ≺N u, v and x ∈ � (w) . Since N is 
level-1 and w ≠ maxB , we have w = minB . Moreo-
ver, for all x ∈ � (u) ∩ � (v) , the corresponding blocks 
B share u and v and are therefore identical by Observa-
tion 1. Hence, we obtain � (u) ∩ � (v) ⊆ � (minB) and thus 
� (u) ∩ � (v) = � (minB) . 	�  ◻

Clusters and least common ancestors

An important property of level-1 networks that is not true in 
general phylogenetic networks is the following.

Lemma 49  Every level-1 network is an lca-network.

Proof  Let N be a level-1 network on X and ∅ ≠ Y ⊆ X . 
Suppose for contradiction that there are two distinct such 
vertices u and u′ for which Y ⊆ � (u), � (u�) and such that 
Y ⊈ � (v) whenever v ≺N u, u′ . Clearly, u and u′ must be ⪯N

-incomparable. From Lemma 48 and � ≠ Y ⊆ � (u) ∩ � (u�) , 
we obtain that u and u′ are located in the same block B 
and � (u) ∩ � (u�) = � (minB) . In particular, therefore, 
Y ⊆ � (minB) . Since minB ⪯T u, u� by Corollary 24 and 
u and u′ are ⪯N-incomparable, we have u ≠ minB and 

u′ ≠ minB , and thus, minB ≺N u, u′ , a contradiction to 
Y ⊈ � (v) for all v ≺N u, u′ . Therefore, the least com-
mon ancestor is unique and lca (u) is well defined for all 
∅ ≠ Y ⊆ X . 	�  ◻

By Lemma 49, every leaf set in a level-1 network N has 
a unique LCA. As a further consequence of Lemmas 35 
and 49, the following result, which was stated without 
proof in Huber and Scholz (2018) for binary level-1 net-
works, also holds in our more general setting:

Corollary 25  Let N be a level-1 network on X and ∅ ≠ Y ⊆ X . 
Then, there is a unique vertex u such that Y ⊆ � (u) but 
Y ⊈ � (v) for all v ∈ child (u) . In this case, u = lca (Y).

Proposition 1 of Huber and Scholz (2018) also states the 
following result (without proof) for binary level-1 networks:

Lemma 50  Every level-1 network is a strong lca-network.

Proof  Let N be a level-1 network. By Lemma 49, N is an lca-
network. Thus, it remains to show that, for every ∅ ≠ Y ⊆ X , 
there are leaves x, y ∈ X such that lca (Y) = lca ({x, y}) . 
The statement holds trivially if Y = {x} , since then 
lca ({x, x}) = lca (Y) . Hence, suppose now that |Y| ≥ 2 
and thus that v∶= lca (Y) is not a leaf. By Corol-
lary 25, every child v� ∈ child (v) satisfies Y ⊈ � (v�) and 
Y ⊆ � (v) =

⋃
v�∈ child (v) � (v

�) , there are two distinct children 
v�, v�� ∈ child (v) such that there is x ∈ Y ∩ � (v�)⧵ � (v��) ≠ � 
and y ∈ Y ∩ � (v��)⧵ � (v�) ≠ � . Since {x, y} ⊆ Y  , we have 
lca ({x, y}) ⪯N v by Lemma 49 and Observation 14. Sup-
pose for contradiction that lca ({x, y}) ≺N v . Contraposition 
of Corollary 25 and {x, y} ⊆ � (v) implies that there is a child 
v��� ∈ child (v) with {x, y} ⊆ � (v���) . By the choice of v′ and 
v′′, we have v��� ∉ {v�, v��}.

We continue by showing that v, v′ , and v′′′ are located in 
a common block B of N. Consider first the case that v′ and 
v′′′ are ⪯N-comparable. Then, Lemma 17, y ∈ � (v���) , and 
y ∉ � (v�) imply v′ ≺N v′′′ . Hence, the three vertices v, v′ and 
v′′′ lie on an undirected circle formed by the arcs (v, v�) and 
(v, v���) and a directed path from v′′′ to v′ . By Observation 
1, the vertices v, v′ , and v′′′ are part of a common block 
B. Assume now that v′ and v′′′ are ⪯N-incomparable, then 
x ∈ � (v�) ∩ � (v���) and Lemma 48 implies that v′ and v′′′ 
are contained in common non-trivial block B. If v is not con-
tained in B, then v and arcs (v, v�) and (v, v���) can be added 
to B without losing biconnectivity; contradicting that B is a 
maximal biconnected subgraph. Hence, v is also contained 
in B. Similarly, one shows that v, v′′ , and v′′′ are located in a 
common block B′ of N. Since B and B′ share the arc (v, v���) , 
Observation 2 implies B = B� . In summary, v, v′ , v′′ and v′′′ 
are all located in a common block B of N.
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Now, suppose again that v′ and v′′′ are ⪯N-comparable. As 
argued above, we have v′ ≺N v′′′ and thus there is a directed 
path P from v′′′ to v′ . Since N is acyclic and (v, v���) ∈ E(N) , 
all vertices w in P satisfy w ≺N v . Together with 
(v, v�) ∈ E(N) , this implies that v′ has at least indegree 2 and 
thus, v′ is a hybrid vertex of B. Since the hybrid vertex in each 
block of a level-1 network is unique, we have v� = minB . 
But then we have x ∈ � (v�) = � (minB) ⊆ � (v��) by Cor-
ollary 24, a contradiction. Hence, v′ and v′′′ must be ⪯N

-incomparable and we can apply Lemma 48 to conclude that 
� (v�) ∩ � (v���) = � (minB) and thus x ∈ � (minB) . Corol-
lary 24 therefore implies x ∈ � (minB) ⊆ � (v��) , a contra-
diction. In summary, the case lca ({x, y}) ≺N v is not possible 
and hence we must have lca ({x, y}) = v . 	�  ◻

As an immediate consequence of Lemma 50 (or alter-
natively Lemmas 17 and 48) and Proposition 14, we have:

Corollary 26  The clustering system of a level-1 network is a 
closed weak hierarchy.

This result also generalizes (Proposition 1 Gambette and 
Huber 2012), who showed that CN is a weak hierarchy for 
binary level-1 networks. The next two results provide some 
more detailed insights into the structure of last common 
ancestors in level-1 networks.

Lemma 51  Let N be a shortcut-free phylogenetic level-1 net-
work on X and v ∈ V(N) be a vertex with outdegree at least 
2. Then, v = lca ( � N(v)) and there are two leaves x, y ∈ X 
such that lca (x, y) = v . Moreover, if � N(u) ∩ � N(w) = � 
for two children u,w ∈ child N(v) , then lca (x, y) = v for all 
x ∈ � N(u) and y ∈ � N(w).

Proof  Suppose that N is a shortcut-free phylogenetic level-1 
network on X and that v ∈ V(N) is a vertex with outdegree 
at least 2. Put Y∶= � N(v) . By Lemma 44, N satisfies (PCC). 
Thus, it is semi-regular, which allows us to use Corol-
lary 10 and to conclude that � N(u) ⊊ Y  for all children u of 
v. Hence, u ≠ lca (Y) for all children u of v. Moreover, by 
Corollary 25, there is a unique vertex w ∈ V(N) such that 
Y ⊆ � N(w) but Y ⊈ � N(w

�) for all children w′ of w in which 
case, w = lca (Y) . Taking the latter two arguments together 
yields v = lca (Y) . Moreover, N is strong lca-network by 
Lemma 50. Hence, there are two leaves x, y ∈ Y ⊆ X such 
that lca (x, y) = lca (Y) = v.

Now, suppose � N(u) ∩ � N(w) = � for two children 
u,w ∈ child N(v) and let x ∈ � N(u) and y ∈ � N(w) . Thus, 
we have {x, y} ⊈ � N(u), � N(w) and {x, y} ⊆ � N(v) . Now, 
suppose v has a child u� ∉ {u,w} such that {x, y} ⊆ � N(u

�) . 
Since N is shortcut-free, u, w, and u′ are pairwise ⪯N-incom-
parable by Observation 3. Now, x ∈ � N(u) ∩ � N(u

�) and 
Lemma 48 imply that u and u′ are located in a common 

block B and x ∈ � N(minB) = � N(u) ∩ � N(u
�) . In par-

ticular, u′ ≠ maxB since u and u′ are ⪯N-incomparable. 
By similar arguments, w and u′ are located in a common 
block B′ with y ∈ � N(minB�) = � N(w) ∩ � N(u

�) and 
u′ ≠ maxB′ . Using Lemma 9, we conclude that B = B� and 
thus x, y ∈ � N(minB) ⊆ � N(u) , a contradiction. Hence, v 
does have a child u′ such that {x, y} ⊆ � N(u

�) . Therefore, v 
is the unique least common ancestor of {x, y} . 	�  ◻

Lemma 52  Let N be a shortcut-free level-1 network on X and 
v ∈ V(N) . Then, � N(u) ∩ � N(w) ≠ � for two distinct children 
u, w of v if and only if v is the ⪯N-maximal vertex of a cycle in N.

Proof  Suppose � N(u) ∩ � N(w) ≠ � for two distinct chil-
dren u, w of v. Since N is shortcut-free, u and w must 
be ⪯N-incomparable by Observation  3. Together with 
� N(u) ∩ � N(w) ≠ � and Lemma 18, this implies that u and w 
are connected by an undirected path P whose inner vertices x 
satisfy x ≺N u or x ≺N w . Thus, P and the two arcs (v, u) and 
(v, w) form an undirected cycle whose ⪯N-maximal vertex is 
v. Conversely, suppose v is the ⪯N-maximal vertex of a cycle 
K in N. Hence, the two vertices u′ and w′ that are incident 
with v in K are children of v. In particular, v, u′ , and w′ are 
contained in a common block. Again, u′ and w′ must be ⪯N

-incomparable since N is shortcut-free. Therefore, we can 
apply Lemma 48 to conclude that � N(u) ∩ � N(w) ≠ � . 	
� ◻

In many applications, vertex- or arc-labeled networks are 
considered as a scaffold to explain genomic sequence data 
(Huber and Moulton 2006; Huber et al. 2019a; Huber and 
Scholz 2018; Hellmuth et al. 2015; Hellmuth and Wieseke 
2016; Hellmuth and Scholz 2021; Hellmuth et al. 2019; 
Bruckmann et al. 2022). In this context, it is of consider-
able interest to understand the structure of least-resolved 
networks that still explain the same data and are obtained 
from the original network by shortcut removal and contrac-
tion of arcs (cf. Definition 6). Hence, it is important to keep 
track of lca ’s after arcs have been

contracted. To this end, we provide the following

Proposition 16  Let N be a level-1 network with leaf set X 
and (v�, v) be an arc such that v is neither a hybrid vertex nor 
a leaf of N. Moreover, let N′ be the network obtained from 
N by application of CNTR (v�, v) . Then, for all x, y ∈ X , we 
have lca N� (x, y) = lca N(x, y) whenever lca N(x, y) ≠ v� and, 
otherwise, lca N� (x, y) = v.

Proof  Since v is not a hybrid vertex, e = (v�, v) is not a short-
cut. Thus, CNTR (v�, v) is well defined. Let x, y ∈ X . If x = y , 
then lca N(x, y) = x = lca N� (x, y) . Hence, assume that x ≠ y . 
Note, by Lemma 12, N′ remains a level-1 network. By Corol-
lary 25, therefore, lca N(x, y) and lca N� (x, y) are well defined 
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and, in particular, correspond to unique vertices in N and 
N′ , respectively.

Assume first that lca N(x, y) = v� . Hence, x, y ≺N v′ and 
there must be children c, c′ of v′ such that x ⪯N c and y ⪯N c� . 
By construction, each of c and c′ either equals v or becomes 
a child of v in N′ . This and Lemma  3(1) implies that 
x ⪯N� c ⪯N� v and y ⪯N� c� ⪯N� v . Corollary 18 and x, y ⪯N� v 
imply z ⪯N� v . Assume, for contradiction, that z ≺N′ v Since 
x, y ⪯N� z , for x and z (resp. y and z) one of the Cases (i) 
or (ii) as specified in Lemma 3(2) must hold.

Assume that Case (i) holds for both x and z as well as y 
and z, i.e., we have x, y ⪯N z . Note that Lemma 3(2) must 
hold for z and v as well. Hence, we have (i) z ⪯N v or (ii) 
z ⪯ w� for some child w′ ≠ v of v′ in N. For both cases, we 
have x, y ⪯N z ≺N v� , a contradiction to v� = lca N(x, y).

Assume now that Case (ii) is satisfied for x and z. In 
this case, x ⪯N� z implies, in particular, that v ⪯N z . This 
and Lemma 3(1) implies that v ⪯N� z . This together with 
z ⪯N� v implies z = v , a contradiction. By similar argu-
ments, Case (ii) cannot hold for y and z. Hence, neither of 
the Cases (i) or (ii) as specified in Lemma 3(2) hold for x and 
z (resp. y and z), a contradiction. Therefore, lca N(x, y) = v� 
implies that lca N� (x, y) = v.

Assume now that lca N(x, y) ≠ v� . Let z∶= lca N(x, y) and 
z�∶= lca N� (x, y) . Since z ≠ v′ and z� ∈ V(N�) , we can con-
clude that z, z� ∈ V(N) ∩ V(N�) . Lemma 3(1) together with 
x, y ≺N z implies x, y ≺N′ z . Assume, for contradiction, that 
z ≠ z′ . We distinguish Cases (a) z ≺N z′ , (b) z′ ≺N z , and (c) 
z and z′ are ⪯N-incomparable.

In Case  (a), x, y ≺N z ≺N z′ and Lemma  3(1) imply 
x, y ≺N′ z ≺N′ z′ , a contradiction to z� = lca N� (x, y).

In Case  (b), suppose first, for contradiction, that 
x N z′ . Together with x ≺N′ z′ , this implies that Case (ii) 
in Lemma  3(2) must hold, i.e., v ⪯N z� and x ⪯N w� 
for some w� ∈ child N(v

�)⧵{v} . In particular, we have 
x ⪯N w� ≺N v� . Since v′ is the only parent of v in N, the case 
v ≺N z′ is not possible as it would imply v� ⪯N z� and thus 
x ⪯N w� ≺N v� ⪯N z� , a contradiction. Hence, we have v = z� . 
Since z′ ≺N z , v′ ≠ z , and v′ is the only parent of v = z� in N, 
we must have v′ ≺N z . Now, consider y ≺N� z�(≺N v�) which, 
by Lemma 3(2), implies (i) y ⪯N z� or (ii) y ⪯N w� for some 
w�� ∈ child N(v

�) ⧵ {v} . In any of the two cases, it holds 
y ≺N v′ . Hence, we have x, y ≺N v′ ≺N z , a contradiction to 
z = lca N(x, y) . Therefore, it must hold x ⪯N z� . By analogous 
arguments, it holds y ⪯N z� . Hence, we have x, y ⪯N z� ≺N z , 
a contradiction to z = lca N(x, y).

In Case (c), z and z′ are ⪯N-incomparable. If x, y ⪯N z� , 
then Corollary 18 implies z = lca N(x, y) ⪯N z� , a contra-
diction. Hence, suppose w.l.o.g. that x N z′ . Re-using 
the arguments from Case  (b), this implies v = z� and 
x, y ≺N v′ . The latter together with Corollary 18 and z ≠ v′ 
implies z = lca N(x, y) ≺N v� . Hence, there is some child 
c ∈ child N(v

�) with z ⪯N c . Since z and z� = v are ⪯N

-incomparable, it holds c ∈ child N(v
�)⧵{v} . By construction, 

therefore, c becomes a child of v in N′ , and thus, c ≺N′ v . 
Together with Lemma  3(1), the latter arguments imply 
x, y ≺N� z ⪯N� c ≺N� v = z� , a contradiction to z� = lca N� (x, y).

In summary, neither of Cases (a), (b), and (c) is possible. 
Therefore, z = z� must hold. 	�  ◻

Property (L)

Lemma 53  Let N be a level-1 network with clustering system 
C  , suppose C1,C2 ∈ C  overlap, i.e., C1 ∩ C2 ∉ {C1,C2, �} . 
Then, C1 ∩ C3 ∈ {C1,C3, �,C1 ∩ C2} for all C3 ∈ C .

Proof  Let u1, u2 ∈ V(N) be vertices such that C1 = � (u2) 
and C2 = � (u2) . Since C1 and C2 overlap, Lemma  17 
implies that u1 and u2 are ⪯N-incomparable, and thus, by 
Lemma 48, u1 and u2 are located in the same block B, and 
C1 ∩ C2 = � (minB) . In particular, we have u1 ≠ maxB 
since otherwise u2 ⪯N u1 (cf. Corollary  24). Now, con-
sider a vertex w with C3 = � (w) . If w and u1 are ⪯N-com-
parable, then C3 ⊆ C1 or C1 ⊆ C3 by Lemma 17, and thus, 
C1 ∩ C3 ∈ {C1,C3} . Now, consider the case where w and 
u are ⪯N-incomparable. If C1 ∩ C3 = � , there is nothing 
to show. Otherwise, by Lemma 48, u1 and w are located 
in a common block B′ and C1 ∩ C3 = � (minB�) . We have 
u1 ≠ maxB′ since otherwise w ⪯N u1 . Hence, we have 
u1 ∉ {maxB, maxB�} and thus B = B� by Lemma 9. There-
fore, C1 ∩ C3 = � (minB) = C1 ∩ C2 . 	�  ◻

Inspection of the proof of Lemma 53 shows that there are 
overlapping clusters only if N contains a non-trivial block 
and thus a hybrid vertex. In particular, therefore, if N is a 
rooted tree, then CN is a hierarchy.

Lemma 53 can be rephrased in a more concise form with 
help of the following

Definition 25  (Property (L)) A clustering system C  satis-
fies property (L) if C1 ∩ C2 = C1 ∩ C3 for all C1,C2,C3 ∈ C  
where C1 overlaps both C2 and C3.

For later reference, we record an equivalent way of 
expressing property (L):

Corollary 27  A clustering system C  satisfies property (L) if 
and only if C1 ∩ C2 ∈ {�,C1,C2,C1 ∩ C} for all C ∈ C  that 
overlap with C1.

Proof  Let C1,C2 be chosen arbitrarily from C  . If C1 ⊆ C2 , 
C2 ⊆ C1 or C1 ∩ C2 = � , then C1 ∩ C2 ∈ {�,C1,C2} and 
there is nothing to show. If neither of the latter cases is sat-
isfied, then C1 and C2 overlap. Let C′

⊆ C  be the subset of 
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cluster C ∈ C  that overlap with C1 . By construction, C1 over-
laps with all elements in C′ and C2 ∈ C

� . Hence, Property (L) 
holds if and only if C1 ∩ C2 = C1 ∩ C for all C ∈ C

� . 	�  ◻

Corollary 28  The clustering system CN of every level-1 net-
work N satisfies property (L).

Proof  Let C1,C2,C3 ∈ C  such that C1 overlaps both C2 
and C3 . Hence, C1 ∩ C3 ∉ {C1,C3, �} . This together with 
Lemma 53 implies that C1 ∩ C3 ∈ {C1 ∩ C2} . 	�  ◻

Corollary 29  A clustering system C  satisfying Property (L) 
is a weak hierarchy.

Proof  If one of the three sets C1 , C2, and C3 is con-
tained in another one, or if one of three pairwise inter-
sections is empty, then the assertion follows immedi-
ately. If C1 overlaps both C2 and C3, then (L) implies 
C1 ∩ C2 = C1 ∩ C3 = C1 ∩ C2 ∩ C3 . 	�  ◻

In order to show that closed clustering systems with 
property (L) define level-1 networks, we first demonstrate 
that one can identify the non-trivial blocks directly in a 
clustering system provided it satisfies (L). We start by 
introducing subsets of clusters with a given overlap: For a 
given clustering system C  and a set C ∈ C  , define

Note that the clusters C′ and C′′ appearing Eq.(6) are differ-
ent from C� ∩ C�� and thus, must overlap. Furthermore, we 
observe that C�� ∈ B

0(C) and B0(C) = � if and only if C is 
not the intersection of two overlapping clusters. In particular, 
we have

Lemma 54  Let C  be a clustering system. Then, C  is closed 
and B0(C) = � for all C ∈ C  if and only if there is a phylo-
genetic tree T with C = CT.

Proof  First, let T be phylogenetic tree with C = CT . By Cor-
ollary 26, C  must be closed. Moreover, since T is a tree, we 
have C� ∩ C�� ∈ {C�,C��, �} and thus, B0(C) = � since C′,C′′ 
must satisfy C′,C′′ ≠ C.

Assume now that C  is closed and B0(C) = � for all C ∈ C  . 
Since C  is closed, Lemma 16 implies that C� ∩ C�� ∈ C  for 
all C�,C�� ∈ C  whenever C� ∩ C�� ≠ � . Therefore, we have 
C� ∩ C�� ∈ {C�,C��, �} for all C�,C�� ∈ C  since otherwise 
C′ and C′′ overlap and we obtain C�,C� ∈ B

0(D) ≠ � for 
D = C� ∩ C�� ∈ C  , a contradiction. Thus, C  is a hierarchy 
and, by (Theorem 3.5.2 Semple and Steel 2003), there is a 
1-to-1 correspondence between hierarchies and phylogenetic 
trees T such that C = CT . 	�  ◻

(6)
B
0(C)∶={C� ∈ C ⧵ {C} ∣ there is a C�� ∈ C ⧵ {C} s.t. C� ∩ C�� = C}.

Lemma 55  Let C  be a clustering system satisfying (L), and 
C ∈ C  with B0(C) ≠ � . Then, every cluster D ∈ C ⧵ B0(C) 
satisfies ones the following alternatives: (i) D ⊆ C , (ii) 
D ∩ C = � , or (iii) C′ ⊊ D for all C� ∈ B

0(C).

Proof  Consider a cluster D ∈ C  with D ∉ B
0(C) . By con-

traposition, assume that none of the alternatives (i), (ii) and 
(iii) are satisfied. Hence, suppose D ⊈ C , i.e., D⧵C ≠ ∅ , 
and D ∩ C ≠ � , and that there is some set C� ∈ B

0(C) 
such that C′⧵D ≠ ∅ . The case C� = D cannot occur since 
D ∉ B

0(C) . By definition, there is C�� ∈ B
0(C) such that C′ 

and C′′ overlap with C� ∩ C�� = C . In particular, we have 
C ⊆ C′ and C ⊆ C′′ , and thus, D ∩ C� ≠ � and D ∩ C�� ≠ � . 
From D ∩ C� ≠ � and C′⧵D ≠ ∅ we infer that either D ⊆ C′ 
or C′ and D overlap. If C′ and D overlap, then (L) implies 
C� ∩ D = C� ∩ C�� = C , and thus, D ∈ B

0(C) , a contradic-
tion. Thus, we have D ⊆ C′ and hence C′′ ⧵ D ≠ ∅ . Moreover, 
D ⊆ C′ , C� ∩ C�� = C , and D⧵C ≠ ∅ imply that D⧵C′′ ≠ ∅ . 
Together with D ∩ C�� ≠ � , we obtain that C′′ overlaps with 
both C′ and D. Now, (L) implies C�� ∩ D = C�� ∩ C� = C , and 
thus, D ∈ B

0(C) . 	� ◻

Corollary 30  Let C  be a clustering system satisfying (L), 
and C ∈ C  with B0(C) ≠ � . Then, C does not overlap with 
any cluster in C .

Proof  If D ∈ C ⧵ B0(C) , then Lemma  55 implies that 
(i) D ⊆ C , (ii) D ∩ C = � , or (iii) C ⊊ C′ ⊊ D for all 
C� ∈ B

0(C) ≠ � . Hence, D does not overlap with C in any 
of the three cases. If, on the other hand, D ∈ B

0(C) , then 
C ⊊ D , and thus, D and C also do not overlap. 	�  ◻

Alternative (iii) in Lemma 55 can be expressed equiva-
lently with the help of the set

Lemma 56  Let C  be a clustering system satisfying (L) and 
let C ∈ C  such that B0(C) ≠ � . Then, D ∈ C  satisfies C′ ⊊ D 
for all C� ∈ B

0(C) if and only if U(C) ⊆ D.

Proof  The “only if statement” follows directly from the 
definition of U(C). To see the “if” direction, note first that 
U(C) ⊆ D implies D ∉ B

0(C) since otherwise there would be 
a C�� ∈ B

0(C) overlapping D, which is impossible because 
C�� ⊆ U(C) ⊆ D . Furthermore, we have C′ ⊊ D for all 
C� ∈ B

0(C) since U(C), and thus also D, contains at least 
one set overlapping C′ . 	�  ◻

As a consequence we can use the condition U(C) ⊆ D 
instead of alternative (iii) in Lemma 55. If the clustering 

(7)U(C)∶=
⋃

C�∈B0(C)

C�.
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system C  is closed, U(C) ⊆ D is equivalent to requiring 
cl (U(C)) ⊆ cl (D) = D . Therefore, we define

Alternative (iii) in Lemma 55 can now be expressed as 
Top (C) ⊆ D.

In general, U(C) ∉ C  , see Fig.  16. Nevertheless, 
Top (C) ∈ C  for all C of a closed clustering system C  that 
satisfy B0(C).

Lemma 57  Let C  be a closed clustering system. Then, 
Top (C) ∈ C  and C ⊆ Top (C) for all C ∈ C  with B0(C) ≠ �.

Proof  Let C  be a closed clustering system on X. Since 
C  is closed we have, by definition, cl (A) = A if and only 
if A ∈ C  for all non-empty sets A ⊆ 2X . Let C ∈ C  with 
B
0(C) ≠ � . Hence, U(C) ≠ � . Since cl is enlarging, we have 

U(C) ⊆ cl (U(C)) = Top (C) and, therefore, Top (C) ≠ � . In 
particular, Top (C) ⊆ 2X . Since cl is idempotent, we have 
cl (Top (C)) = cl ( cl (U(C))) = cl (U(C)) = Top (C) . Tak-
ing the latter arguments together, we obtain Top (C) ∈ C  . 
Moreover, if B0(C) ≠ � , then it is straightforward to verify 
that C ⊆ U(C) ⊆ Top (C) . 	� ◻

Although U(C) ∉ C  , it has an interesting property:

Lemma 58  Let C  be a clustering system satisfying (L), and 
C ∈ C  with B0(C) ≠ � . Then, U(C) does not overlap any 
cluster D ∈ C .

Proof  Let D ∈ C  . If D ∈ B
0(C) , then D ⊆ U∶=U(C) by con-

struction. If D ∉ B
0(C) , we consider the three alternatives of 

Lemma 55. In case (i) we have D ⊆ C ⊆ U and in case (iii) 
we have U ⊆ Top (C) ⊆ D . In case (ii) we have D ∩ C = � . 
If D ∩ C� = � for all C� ∈ B

0(C) , then D ∩ U = � . Other-
wise C� ∩ D ≠ � for some C� ∈ B

0(C) . Since C ⊆ C′ and 
D ∩ C = � , we have C′ ⊈ D . However, C′ and D cannot 
overlap since in this case (L) implies C� ∩ D = C and thus, 
D ∈ B0(C) , a contradiction. Therefore, D ⊆ C′ ⧵ C , which 
implies D ⊊ U . Thus, D does not overlap U. 	�  ◻

(8)Top (C)∶= cl (U(C))

So far, Top (C) is defined in terms of non-empty sets 
B
0(C) . We extend this notion to all clusters of a closed 

clustering system as follows. Let C  be a closed clustering 
system. We set Top (X)∶=X . For the remaining clusters 
C ∈ C  , i.e., those that satisfy B0(C) = � and C ≠ X  , we 
define Top (C) as the unique inclusion-minimal cluster 
C′ ≠ C that contains C. To see that Top (C) is well defined 
in this case, recall first that X ∈ C  and hence there is a 
cluster properly containing C ≠ X . For uniqueness, sup-
pose there are two distinct inclusion-minimal clusters 
C′,C′′ ≠ C that contain C. Clearly, these two supersets 
overlap with C ⊆ C∗∶=C� ∩ C�� . If C = C∗ , then B0(C) ≠ � , 
a contradiction. If C ⊊ C∗ , we have C∗ ∈ C  since C  is 
closed and thus C ⊊ C∗ ⊊ C,C� contradicts inclusion-
minimality of C and C′ . Now, set

Corollary 31  If C  is a closed clustering system, then 
B(C) ⊆ C  for all C ∈ C .

Proof  I f  B
0(C) = �  ,  we have by construct ion, 

B(C)∶=� ∪ {C,C�} = {C,C�} , where C′ is the unique 
inclusion-minimal element in C  that contains C. Hence, 
B(C) ⊆ C  . The latter covers in particular also the case 
C = X . Otherwise, if B0(C) ≠ � , then Lemma 57 implies that 
Top (C) ∈ C  . Moreover, by definition, B0(C) ⊆ C  . Taken 
the latter together with C ∈ C  implies B(C) ⊆ C  . 	�  ◻

Lemma 55 then implies the following characterization 
of B(C):

Corollary 32  Let C  be a closed clustering system satisfying 
(L). Then, for all C,D ∈ C  it holds that D ∈ B(C) if and only 
if C ⊆ D ⊆ Top (C).

P r o o f   L e t  C,D ∈ C  s u c h  t h a t 
D ∈ B(C) = B

0(C) ∪ {C, Top (C)} .  I f  D ∈ B
0(C)  o r 

D = C , then C ⊆ D and, by construction, D ⊆ Top (C) . If 
D = Top (C) , we can apply Lemma 57 to conclude that 
C ⊆ Top (C) = D . Now, let C ⊆ D ⊆ Top (C) and assume, 
for contradiction, that D ∉ B(C) . Thus, C ⊊ D ⊊ Top (C) 
and D ∉ B

0(C) . From D ⊊ Top (C) , we obtain B0(C) ≠ � . 
Hence, we can apply Lemma 55 to conclude that the cluster 
D satisfies one of the alternatives: (i) D ⊆ C , (ii) D ∩ C = � , 
or (iii) C′ ⊊ D for all C� ∈ B

0(C) . Based on the latter argu-
ments, only case (iii) can occur, and hence, Lemma 56 and 
Eq. (8) yield Top (C) ⊆ D , a contradiction. 	�  ◻

As an immediate consequence of Corollary 32 we have

(9)B(C)∶=B0(C) ∪ {C, Top (C)} for all C ∈ C.

Fig. 16   U(C) is not necessarily a cluster. In both networks B(C) for 
C = � {x} = {x} is the only non-trivial block. The vertices with over-
lapping clusters, i.e., the set B0(C) is highlighted in cyan. In both net-
works U(C) = {w, x, y} . L.h.s.: U(C) ⊊ Top (C) . The additional red 
vertex r.h.s., ensures that U(C) = Top (C) is a cluster (color figure 
online)
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Corollary 33  Let C  be a closed clustering system satisfy-
ing (L). Then, for all clusters C ∈ C  , the Hasse diagram 
ℌ[B(C)] is an induced subgraph of the Hasse diagram ℌ[C].

Furthermore, the sets B0(C) are pairwise disjoint:

Lemma 59  Let C  be a closed clustering system satisfying 
(L) and let C,C� ∈ C  . Then, C� ∈ B

0(C) implies B0(C�) = � . 
Furthermore, if B0(C) ∩ B

0(C�) ≠ � , then C = C� . Conse-
quently, B0(C) ∩ B

0(C�) = � for all distinct C,C� ∈ C .

Proof  Suppose that C� ∈ B
0(C) . Then, there is a set 

C�� ∈ C  such that C′ and C′′ overlap and C = C� ∩ C�� . 
Assume for contradiction that B0(C�) ≠ � , i.e., there are 
two overlapping clusters D,D� ∈ C  such that C� = D ∩ D� . 
Since C′′ overlaps C′ it cannot be contained in both D 
and D′ since otherwise C�� ⊆ D ∩ D� = C� and hence, 
C′ and C′′ would not overlap. Thus, at least one of C′′⧵D 
and C′′⧵D′ is non-empty, say C′′ ⧵ D ≠ ∅ . Moreover, 
C′ ⊊ D and C′ and C′′ overlapping each other imply 
that D⧵C′′ ≠ ∅ and D ∩ C�� ≠ � . Hence, C′′ and D over-
lap. By (L), C = C� ∩ C�� = C�� ∩ D = D� ∩ D = C� and 
thus C� = C ⊆ C�� , a contradiction to the assumption 
that C′ and C′′ overlap. Hence, B0(C�) = � as claimed. 
Now, assume that B0(C) ∩ B

0(C�) ≠ � , i.e., there is a 
cluster C�� ∈ B

0(C) ∩ B
0(C�) and clusters D ∈ B

0(C) 
and D� ∈ B

0(C�) , both of which overlap with C′′ , such 
that C = C�� ∩ D and C� = C�� ∩ D� . By (L), this implies 
C = C� . 	� ◻

Lemma 60  Let C  be a closed clustering system satisfying 
(L). Then, C ∈ C  has indegree greater than one in ℌ[C] if 
and only if B0(C) ≠ � . In this case, all in-neighbors of C in 
ℌ[C] are contained in B0(C).

Proof  Suppose C ∈ C  has indegree greater than one in 
ℌ[C] . Thus, let D,D� ∈ C  be two distinct in-neighbors of 
C. Hence, C ⊆ D ∩ D� and thus, by closedness of C  and defi-
nition of ℌ[C] , C = D ∩ D� . In particular, D and D′ overlap. 
Therefore, D,D� ∈ B

0(C) ≠ � . In particular, since the in-
neighbors D and D′ were chosen arbitrarily, all in-neighbors 
of C in ℌ[C] are contained in B0(C) . Now, suppose C ∈ C  
has indegree zero or one in ℌ[C] . Clearly, C has indegree 
zero if and only if C = X , in which case B0(C) = � . Sup-
pose C has exactly one in-neighbor C′ and, for contradic-
tion, that B0(C) ≠ � . Then, there are two overlapping sets 
D,D� ∈ B

0(C) such that C = D ∩ D� , and thus directed 
paths both from D and D′ to C. Both of these paths must 
pass through C′ and thus, C ⊊ C� ⊆ D ∩ D� , a contradiction. 
Hence, the if-direction must also hold. 	�  ◻

Lemmas 59 and 60 imply

Corollary 34  Let C  be a closed clustering system satisfying 
(L) and with Hasse diagram ℌ . For every C ∈ C  , the ele-
ments C� ∈ B

0(C) have a unique in-neighbor in ℌ . In par-
ticular, this unique in-neighbor of C′ is always contained 
in B(C).

Proof  The statement is trivially true for all C ∈ C  
with B0(C) = � . Thus, consider a set C ∈ C  with 
B
0(C) ≠ � . Note that C ≠ X must hold. Consider a cluster 

C� ∈ B
0(C) . It overlaps with some C�� ∈ B

0(C) and thus 
C�,C�� ⊊ Top (C) . Therefore, there is a directed path from 
Top (C) to C′ and thus, C′ has an in-neighbor C∗ that sat-
isfies C ⊊ C� ⊊ C∗ ⊆ Top (C) . By Corollary 32, we have 
C∗ ∈ B(C) . Lemma 59 and C� ∈ B

0(C) imply B0(C�) = � . 
Hence, C′ has indegree 1 by Lemma 60, i.e., C∗ ∈ B(C) is 
the unique in-neighbor of C. 	�  ◻

Lemma 61  Let C  be a closed clustering system satisfying 
(L). Let C ∈ C  with B0(C) ≠ � . Then, the induced subgraph 
ℌ[B(C)] of ℌ[C] is biconnected. In particular, ℌ[B(C)] is a 
DAG with unique source Top (C) and unique sink C.

Proof  By Corollary 33, ℌ[B(C)] is an induced subgraph of 
ℌ[C] . By Lemma 34, all clusters in B0(C) have a unique 
in-neighbor in B(C) . By Corollary 32, C� ⊆ Top (C) holds 
for all C� ∈ B

0(C) . Therefore, Top (C) has indegree 0 in 
ℌ[B(C)] and, moreover, there exists a directed path from 
Top (C) to every cluster C� ∈ B

0(C) . In particular, by Corol-
lary 32, of the clusters in such paths are again contained in 
B(C) . Taken together, these arguments imply that the Hasse 
diagram ℌ[B(C) ⧵ {C}] is a tree with root Top (C) . Note 
that this tree is not necessarily phylogenetic, i.e., there may 
exist clusters with outdegree 1. However, the outdegree of 
the root Top (C) in ℌ[B(C) ⧵ {C}] is at least two. To see this, 
let C′ be a cluster in B0(C) ≠ � . As argued above, there is 
a directed path from Top (C) to C′ and this path only con-
tains clusters in B(C) . Therefore, and since C� ≠ Top (C) , 
Top (C) has a child D′ in ℌ with C ⊊ C� ⊆ D� ⊊ Top (C) . 
By Corollary 32, we have D� ∈ B(C) , and thus, D� ∈ B

0(C) . 
Hence, there is C�� ∈ B

0(C) such that D′ and C′′ overlap. By 
similar argument as before, there is a child D�� ∈ B

0(C) of 
Top (C) such that C�� ⊆ D�� ⊊ Top (C) . Now, C′′ ⊆ D′′ and 
the fact that D′ and C′′ overlap imply that D′ ≠ D′′ . Hence, 
Top (C) has at least two children in ℌ[B(C) ⧵ {C}] . Using 
Corollary32, we see that each leaf of the tree induced by 
B(C) ⧵ {C} is an in-neighbor of C. It is now easy to verify 
the graph obtained from (i) a rooted tree whose root has at 
least two children and (ii) connecting its leaves to an addi-
tional vertex is biconnected. Hence, ℌ[B(C)] is biconnected. 
In particular, ℌ[B(C)] features at least two internally vertex 
disjoint directed path connecting Top (C) and C, and any 
two vertices lie along a common “undirected” cycle (which 
necessarily passes through C). 	�  ◻
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Lemma 62  Let C  be a closed clustering system satisfying 
(L). Let D ∈ B

0(C) for some C ∈ C  and let D� ∉ B(C) be 
adjacent to D in the Hasse diagram ℌ of C  . Then, 

	 (i)	 D is the unique in-neighbor of D′ in ℌ and thus 
D′ ⊊ D,

	 (ii)	 D� ∩ C = � , and
	 (iii)	 if D′ overlaps with some D�� ∈ C  , then there is 

C� ∈ C  such that D� ∈ B
0(C�) and Top (C�) = D.

Proof  We start with showing Property (i). By Corollary 34, 
the unique in-neighbor of D is contained in B(C) . Thus, D′ 
must be an out-neighbor of D, i.e., D′ ⊊ D . If B0(D�) ≠ � , 
then Lemma  60 implies D ∈ B

0(D�) . Lemma  59 and 
D ∈ B

0(C) ∩ B
0(D�) imply D� = C ∈ B(C) , a contradiction. 

Hence, B0(D�) = � and in particular, by Lemma 60, D′ has 
indegree 1, and thus, D is its unique in-neighbor.

We continue with showing Property (ii). Since B0(C) ≠ � 
and D� ∉ B

0(C) , Lemma 55 implies that (a) D′ ⊆ C , (b) 
D� ∩ C = � , or (c) C′ ⊊ D′ for all C� ∈ B

0(C) . In Case (a), 
D� ∉ B(C) implies D′ ⊊ C . Since moreover D ∈ B

0(C) and 
thus C ⊊ D , we have D′ ⊊ C ⊊ D , contradicting that D′ and 
D are adjacent in ℌ . In Case (c), we obtain D ⊊ D′ since 
D ∈ B

0(C) ; contradicting D′ ⊊ D . Hence, only Case  (b) 
D� ∩ C = � can hold.

Finally, we show Property (iii). Suppose that D′ over-
laps D′′ and set C� = D� ∩ D�� and thus, D� ∈ B

0(C�) . Since 
D� ∉ B

0(C) ⊆ B(C) it must hold that C′ ≠ C and thus 
B
0(C�) ∩ B

0(C) = � by Lemma 59. Since D is the unique 
in-neighbor of D′ in ℌ , Corollary 34 implies D ∈ B(C�) 
and thus D� ⊊ D ⊆ Top (C�) . On the other hand, D ∈ B

0(C) 
implies D ∉ B

0(C�) and hence D  ⊊ Top (C�) ; therefore, 
D = Top (C�) . 	�  ◻

Lemma 63  Let C  be a closed clustering system satisfying 
(L). Then, each subgraph ℌ[B(C)] with B0(C) ≠ � is a non-
trivial block of the Hasse diagram ℌ of C .

Proof  By Lemma 61, ℌ[B(C)] is biconnected. Therefore, 
and since B0(C) ≠ � , the set B(C) contains at least four clus-
ters, i.e., C, Top (C) , and at least two overlapping clusters 
in B0(C) . Thus, it only remains to show that ℌ[B(C)] is a 
maximal biconnected subgraph of ℌ . Since moreover, by 
Corollary 33, ℌ[B(C)] is an induced subgraph of ℌ , ℌ[B(C)] 
is a maximal if and only if there is no undirected cycle in ℌ 
that contains an arc of ℌ[B(C)] and a vertex not contained 
in B(C) (cf. Observation 1). Assume, for contradiction, that 
such a cycle K exists. Since K contains at least one arc of 
ℌ[B(C)] , we can find a maximal subpath P of K on at least 
two vertices and where all vertices of P are contained in 
B(C) . In particular, the two distinct endpoints of P are both 
incident with one cluster in B(C) and one cluster that is not 

in B(C) . Clearly, at least one of the endpoints of P must 
be distinct from Top (C) . Hence, we can pick an endpoint 
D ∈ B(C)⧵{Top (C)} of P that is adjacent to C� ∈ B(C) and 
D� ∉ B(C) , where both C′ and D′ are vertices in K. There-
fore, it suffices to consider the two mutually exclusive cases 
(a) D = C and (b) D ∈ B

0(C) : 

(a)	 D = C . Hence, C′ ≠ C and thus, by Corollary  32, 
C� ∈ B(C) ⧵ {C} implies D = C ⊊ C� and thus, 
C� ∈ D(C) (cf. Eq. (3)). Suppose, for contradiction, that 
C overlaps with some cluster D�� ∈ C  . Then, since C  is 
closed, we have C ∈ B

0(E) for E = C ∩ C�� ∈ C  . How-
ever, this together with Lemma 59 implies B0(C) ≠ � , 
a contradiction. Hence, C does not overlap any clus-
ter. Furthermore, by Lemma 60, all in-neighbors of C 
are contained in B0(C) ⊊ B(C) . Therefore, D′ must be 
an out-neighbor of C and thus D′ ⊊ C , which implies 
D� ∈ D(C) . Hence, we can apply Lemma 23 to con-
clude that there is no cycle K containing D� ∈ D(C) 
and C� ∈ D(C) , a contradiction.

(b)	 D ∈ B
0(C) . By Lemma 62, D is the unique in-neigh-

bor of D′ . However, since D′ is located on the cycle 
K, it must be adjacent to another vertex D′′ ≠ D 
in K. Since D is the unique in-neighbor of D′ it fol-
lows that D′′ must be an out-neighbor of D′ and thus, 
D′′ ⊊ D′ . By construction, D�� ∈ D(D�) and D ∈ D(D�) . 
If D′ does not overlap any cluster in C  , then we can 
apply Lemma 23 to conclude that there is no cycle K 
in ℌ containing D�� ∈ D(D�) and D ∈ D(D�) , a con-
tradiction. Hence, D′ must overlap with some clus-
ter in C  . Then, Lemma  62(iii) implies that there 
is E ∈ C  such that D� ∈ B

0(E) and D = Top (E) . 
In particular, since D ≠ Top (C) , we have D ≠ E . 
Moreover, by Lemma  62(ii), we have D1 ∩ C = � 
for all children D1 of Top (E) = D ∈ B

0(C) with 
D1 ∉ B

0(C) . In particular, C ⊊ D , and thus, we have 
U∶=U(E) =

⋃
D1∈B

0(E) D1 ⊊ Top (E) = D  .  On the 
other hand, we have D1 ⊊ U for each of the children 
of Top (E) . Since C ⊊ D , D has at least one child F 
such that C ⊆ F . We continue with showing that 
C ∩ D1 = � for all D1 ∈ B

0(E) . Hence, let D1 ∈ B
0(E) . 

By Corollary 30, C does not overlap with any cluster 
in C  . In particular, this yield C ≠ D1 ∈ B

0(E) and C 
and D1 do not overlap. The case C ⊊ D1 is not possi-
ble since otherwise C ⊊ D1 ⊊ Top (E) = D ⊊ Top (C) 
and Corollary  32 would imply that D1 ∈ B

0(C) . 
Together with Lemma 59, this would imply C = E , 
a contradiction. Now, suppose D1 ⊊ C . Thus, we 
have E ⊊ D1 ⊊ C ⊊ D = Top (E) . By Corollary  32, 
this implies C ∈ B

0(E) . However, this is not possi-
ble because C does not overlap with any other clus-
ter. Hence, C ∩ D1 = � must hold for all D1 ∈ B

0(E) . 
Therefore, we obtain U ∩ C = � . Together with U ⊆ D 
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and C ⊊ D , this implies U ⊊ D = Top (E) . To sum-
marize, since C  is closed, it holds by definition that 
cl (U) = U ⟺ U ∈ C  . The latter arguments taken 
together with Top (E) = cl (U) imply U ∉ C  . consider 
C
∗∶=C ∪ {U} . Clearly, the Hasse diagram ℌ∗ of C∗ 

is obtained from ℌ by inserting a extra vertex U as 
child of D = Top (E) and re-attaching the children D1 
of Top (E) with D1 ∈ B

0(E) in ℌ as children of U in 
ℌ∗ , while the children D2 of Top (C) with D2 ∉ B

0(E) 
remain attached to D. In C∗ we therefore have 
Top (E) = U . Since U does not overlap any set in C  by 
Lemma 58, C∗ is again a closed clustering system and 
satisfies (L). Moreover, since U ⊊ D we have U ≠ X and 
since B0(E) ≠ � we have |U| > 1 . Hence, we can apply 
Lemma 23 to conclude that U is a cut vertex in ℌ∗ and 
that there is no cycle in ℌ∗ containing both a vertex in 
D(U) and in D(U) . Since C� ∈ B(C) , we have C ⊆ C′ , 
which together with U ∩ C = � implies that C� ∈ D(U) . 
Furthermore, D� ∈ B

0(E) implies that D ⊊ U and thus, 
D� ∈ D(U) . Taking the latter arguments together, there 
is no cycle in ℌ∗ that contains both C′ and D′ . Since 
ℌ is recovered from ℌ∗ by “contracting” the arc UD, 
there is no cycle in ℌ that contains both C′ and D′ , a 
contradiction.

	�  ◻

Lemma 64  Let C  be a closed clustering system on X satisfy-
ing (L). If C ∈ C ⧵ {X} , B0(C) = � , and C ∉ B

0(C�) for all 
C� ∈ C  , then the arc (Top (C),C) is a block in ℌ[C].

Proof  We show that the arc (Top (C),C) is not contained 
in any cycle in ℌ . Since C  is closed and C ∉ B

0(C�) for 
all C� ∈ C  , we know that C does not overlap any cluster. 
By Lemma 23, there is no cycle that intersects both D(C) 
and D(C) . Since C ⊊ Top (C) , we have Top (C) ∈ D(C) . 
Furthermore, Lemma 60 and B0(C) = � imply that Top (C) 
is the only in-neighbor of C in ℌ[C] . Therefore, any cycle 
that contains (Top (C),C) must contain some child C′ of C. 
Clearly, C� ∈ D(C) and thus such a cycle cannot exist as it 
would intersect both D(C) and D(C) . Hence, (Top (C),C) is 
a cut arc, and thus a block. 	�  ◻

We summarize Lemmas 63 and 64 in

Proposition 17  Let C  be a closed clustering system on X 
satisfying (L) and with Hasse diagram ℌ . Then, B is a block 
of ℌ if and only if |X| = 1 or |X| > 1 and B = ℌ[B(C)] for 
some C ∈ C  that satisfies either (i) B0(C) ≠ � or (ii) C ≠ X 
does not overlap any cluster and B0(C) = � . If |X| = 1 or in 
Case (ii) B is a trivial block and, otherwise, in Case (i) a 
non-trivial one.

Proof  If |X| = 1 , then B = ℌ[B(C)] = ℌ consists a single 
vertex only and is, therefore, a block of ℌ . Assume that 
|X| > 1 . By Lemma  63 and Lemma  64, each subgraph 
ℌ[B(C)] with B0(C) ≠ � is a non-trivial block and ℌ[B(C)] 
for which C ∈ C⧵{X} does not overlap any cluster and 
B
0(C) = � is a trivial block of the Hasse diagram ℌ.

For the converse, suppose first that B is a trivial block 
of ℌ , i.e., it only consists of the single vertex C or the sin-
gle arc (C�,C) . In the first case, we have |X| = 1 . Other-
wise, ℌ consists of (C�,C) and hence |X| > 1 . Moreover, we 
have C ⊊ C′ ⊆ X and thus C ∈ C⧵{X} . If B0(C) ≠ � , then, 
by Lemma 60, C� ∈ B

0(C) ⊊ B(C) . Moreover, ℌ[B(C)] is 
a non-trivial block of ℌ by Lemma 63. In particular, the 
arc (C�,C) is contained in this block, contradicting that 
(C�,C) forms a trivial block. Hence, we have B0(C) = � . 
Assume, for contradiction, that C overlaps with some clus-
ter C�� ∈ C  . Then, by closedness of C  , C ∈ B

0(D) for some 
D ∈ C  . Then, by Corollary 34, C′ is the unique in-neighbor 
of C ∈ B

0(D) in ℌ and C� ∈ B(D) . Hence, C and C′ are con-
tained in ℌ[B(D)] , which is non-trivial as a consequence of 
C ∈ B

0(D) and Lemma 63. This again contradicts that (C�,C) 
forms a trivial block. In summary, we have C ∈ C⧵{X} , 
B
0(C) = � , and C does not overlap any cluster. Suppose 

now that B is a non-trivial block of ℌ . Hence, |X| > 1 and B 
contains an undirected cycle K on at least 3 clusters. Since 
ℌ is a DAG, K contains at least one cluster C with two in-
neighbors C′ and C′′ in K (and thus in ℌ ). By Lemma 60, 
we have C�,C�� ∈ B

0(C) . Therefore, Lemma 63 implies that 
ℌ[B(C)] is a non-trivial block of ℌ . In particular, ℌ[B(C)] 
contains the arcs C′C and C′′C , which are also arcs in B. By 
Observation 2, we therefore obtain B = ℌ[B(C)] . 	�  ◻

Characterization of clustering systems of level‑1 
networks

We start with showing that a regular network is level-1 pro-
vided that its clustering is closed and satisfied (L).

Proposition 18  Let C  be a closed clustering system on X 
satisfying (L). Then, the Hasse diagram ℌ of C  is a phy-
logenetic level-1 network with leaf set Xℌ∶={{x} ∣ x ∈ X}.

Proof  By Lemma 22, ℌ is a phylogenetic network with leaf 
set Xℌ∶={{x} ∣ x ∈ X} . To show that ℌ is level-1, we have 
to demonstrate that each block B of ℌ contains at most one 
hybrid vertex that is distinct from the unique maximum 
maxB . This holds trivially if B is a trivial block consisting 
of a single arc or, if |X| = 1 , an isolated vertex. Now, suppose 
that B is a non-trivial block, and thus, by Proposition 17, it 
contains exactly the clusters in B(C) for some C ∈ C  with 
B
0(C) ≠ � . By Lemma 60, C is a hybrid vertex. From Cor-

ollary 32 and the construction of the Hasse diagram, we 
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conclude that Top (C) = maxB . By Corollary 34, none of 
the clusters in B0(C) is a hybrid vertex. Hence, C is the only 
hybrid vertex in B(C) = B

0(C) ∪ {C, Top (C)} that is distinct 
from Top (C) = maxB . 	�  ◻

Corollary 35  For every closed clustering system C  on X that 
satisfies (L), there is a level-1 phylogenetic network N such 
that CN = C  . In particular, the unique regular network with 
clustering system C  is level-1 and phylogenetic in this case.

Proof  By Proposition 18, the Hasse diagram ℌ[C] is a phy-
logenetic level-1 network. Since ℌ[C] is graph isomorphic to 
the regular network N for C  , N is also a level-1 phylogenetic 
network. 	�  ◻

We summarize Corollary 26, Corollaries 28 and 35 in the 
following characterization of clustering systems that can be 
derived from level-1 phylogenetic networks.

Theorem 8  Let C  be a clustering system. Then, there is a 
level-1 network N such that CN = C  if and only if C  is closed 
and satisfies (L).

We emphasize, however, that there is no 1-to-1 cor-
respondence between level-1 networks and cluster-
ing systems. Recall that a network N is regular if 
� ∶ V → V(ℌ[CN]) ∶ v ↦ � (v) is a graph isomorphism. In 
contrast to the unique regular network ℌ[C] , a level-1 net-
work might have shortcuts and thus could even be not semi-
regular and, therefore, not regular (cf. Proposition 15 and 
Theorem 2). Nevertheless, a level-1 network N can easily be 
edited into a level-1 network N′ that is isomorphic to ℌ[CN] 
using two simple operations as specified in Proposition 5.

Proposition 19  For every level-1 network N, the regular net-
work N′ with clustering system CN� = CN is level-1 and can 
be obtained from N by repeatedly removing shortcuts and 
contracting arcs (u, w) with outdeg (u) = 1 . In particular, 
N′ is the unique least-resolved network w.r.t. CN that can be 
obtained from N in this way.

Proof  Let N be a level-1 network. By Theorem 8, CN is 
closed and satisfies (L). By Corollary 35, therefore, the regu-
lar network with clustering system CN is level-1. Now, let N′ 
be the network obtained from N by repeatedly (1) removing 
a shortcut and (2) applying CNTR (u,w) for an arc (u, w) with 
outdeg (u) = 1 until neither operation is possible. By con-
struction, N′ is phylogenetic, shortcut-free, and contains no 
vertex with outdegree 1. It is easy to verify that the removal 
of shortcuts cannot increase the level of the network. This 
together with Lemma 12 implies that N′ is still level-1. By 
Lemma 44, N′ satisfies (PCC), and thus, it is semi-regular. 
Theorem 2 now implies that N′ is regular. Moreover, by 

Lemma 1 and Lemma 4, we have CN = CN� . By Proposi-
tion 2, N′ is the unique regular network with CN = CN� . The 
latter, in particular, implies that the order of the operations 
“shortcut removal” and “contractions” to obtain N′ from N 
does not matter. By Corollary 23, N′ is least-resolved. More-
over, a network that still contains a shortcut or an arc (u, w) 
with outdeg (u) = 1 cannot be least resolved by Lemma 1 and 
Lemma 4, respectively. Taken together, the latter arguments 
imply that N′ is the unique least-resolved network w.r.t. CN 
that can be obtained from N by repeatedly removing short-
cuts and contracting arcs (u, w) with outdeg (u) = 1 . 	�  ◻

As a direct consequence of Theorem 8 and Proposition 19 
together with the fact that regular networks are phylogenetic, 
we obtain

Corollary 36  Let C  be a clustering system. Then, there is a 
phylogenetic level-1 network N such that CN = C  if and only 
if C  is closed and satisfies (L).

Corollary 37  Let C  be a closed clustering system that satis-
fies (L). Then, there is a unique shortcut-free phylogenetic 
level-1 network N with CN = C  that moreover contains no 
vertex v with outdeg N(v) = 1 . This network N is regular and 
least-resolved.

Proof  By Corollary 35, the regular network N with CN = C  
is level-1. By Theorem 2, N is shortcut-free and contains 
no vertex v with outdeg N(v) = 1 . Thus, N is phylogenetic. 
Now, let N be a shortcut-free phylogenetic level-1 net-
work with CN = C  that moreover contains no vertex v with 
outdeg N(v) = 1 . By Lemma 44 and Theorem 2, N is a regu-
lar network, which is unique by Proposition 2. By Corol-
lary 23, N is least-resolved. 	�  ◻

Most publications on phylogenetic networks assume that 
leaves always have indegree 1, see, e.g., Huson et al. (2010).

Corollary 38  Let C  be a closed clustering system that satis-
fies (L). Then, there is a unique shortcut-free phylogenetic 
level-1 network N with CN = C  such that every leaf has inde-
gree 1 and all vertices v with outdeg N(v) = 1 are adjacent 
to leaves.

Proof  By Corollary 37, there is a unique shortcut-free phy-
logenetic level-1 network N′ with CN� = C  and for which 
no vertex has outdegree 1. In N′ , all vertices with outde-
gree 0 are leaves. Hence, we can simply apply EXPD (x) for 
all leaves x with indeg N� (x) > 1 . We can repeatedly (i.e., in 
each expansion step) apply Lemma 5 to conclude that the 
resulting digraph N is a phylogenetic network, Corollary 3 
to conclude that N is shortcut-free, Lemma 13 to conclude 
that N is level-1 and Lemma 5 to conclude that N satisfies 
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CN = CN� = C  . In particular, every leaf in N has indegree 
1 by construction and all vertices with outdegree 1 must be 
adjacent to leaves.

It remains to show that N is unique w.r.t. these proper-
ties. Let Ñ be a phylogenetic shortcut-free level-1 network 
with CÑ = C  and such that every leaf has indegree 1 and all 
vertices v with outdeg Ñ(v) = 1 are adjacent to leaves. Hence, 
after application of CNTR (v, x) to all vertices v with outde-
gree 1, we obtain a phylogenetic level-1 network Ñ′ that has 
no vertex with outdegree 1 at all. Proposition 15 implies 
that Ñ′ is regular and Lemma 4 implies that CÑ� = CÑ = C  . 
By Corollary 37, Ñ� ≃ N� . To obtain N′ from Ñ , we applied 
precisely the “reversed” operation of the operation to obtain 
N from N′ , which together with Ñ� ≃ N� implies that Ñ ≃ N . 
Hence, N is the unique network with the desired proper-
ties. 	�  ◻

As an immediate consequence, we obtain a characteriza-
tion of the level-1 networks that are completely determined 
by the least common ancestor function, and equivalently by 
their clusters.

Proposition 20  Let N be a level-1 network without shortcuts. 
Then, the following statements are equivalent: 

	 (i)	 outdeg (v) ≠ 1 for all v ∈ V .
	 (ii)	 For every v ∈ V there is a pair of leaves x, y ∈ X such 

that v = lca ({x, y}).

Proof  If outdeg (v) ≠ 1 for all v ∈ V  , then Proposition 15 
implies that N is regular, i.e., � ∶ V → V(ℌ[CN]) ∶ v ↦ � (v) 
is a graph isomorphism and thus a bijection. Therefore, 
� (u) = � (u�) implies u = u� for all u, u� ∈ V  . Together 
with Eq.  (5), i.e., the identity � (v) = � ( lca ( � (v))) , 
we obtain, for all v ∈ V  , that v = lca ( � (v)) and thus, 
by Lemma  50, there is a pair of leaves x, y ∈ X  such 
that v = lca ( � (v)) = lca ({x, y}) . Conversely, suppose 
there is a vertex v ∈ V  with a unique child w. Moreo-
ver, assume for contradiction that there leaves x, y ∈ X 
such that v = lca ({x, y}) . Using Observation 5, we have 
{x, y} ⊆ � (v) = � (w) . Together with w ≺N v , this contra-
dicts v = lca ({x, y}) . 	�  ◻

Finally, we show that every closed clustering system sat-
isfying (L) is represented by a unique “minimal” separated 
level-1 network. More precisely, we have

Proposition 21  Let C  be a closed clustering system satis-
fying (L). Then, there is a unique separated phylogenetic 
shortcut-free level-1 network N with C = CN . The network N 
is obtained from the unique regular network ℌ[C] by apply-
ing EXPD (v) to all hybrid vertices.

Proof  By Corollary 37, the unique regular network ℌ[C] is 
a level-1 network. By Theorem 6, there is a unique semi-
regular separated phylogenetic network N with C = CN , and 
this network is obtained from ℌ[C] by applying EXPD (v) to 
all hybrid vertices. The latter and Lemma 13 imply that N 
is also level-1. Since N is semi-regular, it is shortcut-free. 
Hence, a network with the desired properties exists. To see 
that N is unique, let Ñ be a separated phylogenetic shortcut-
free level-1 network Ñ  with C = CÑ . By Lemma 44, the 
shortcut-free network Ñ satisfies (PCC), and thus, it is semi-
regular. In summary, Ñ is a semi-regular separated phyloge-
netic network with clustering system C  which is unique by 
Theorem 6. 	�  ◻

Compatibility of clustering systems and intersection 
closure

A frequent task in phylogenetics is the construction of net-
works based on partial information of putative networks, 
e.g., subtrees (Aho et al. 1981; Jansson et al. 2006; Van 
Iersel et al. 2009; Jansson and Sung 2006; van Iersel and 
Kelk 2011), subnetworks (Huber et al. 2017; Van Iersel et al. 
2017a; Semple and Toft 2021), metrics or full information 
about clusters (Gambette and Huber 2012). A property or 
properties of networks can be thought of as a subset ℙ of the 
set of all rooted DAGs such that N has property ℙ whenever 
N ∈ ℙ . In this case we simply call N a ℙ-network. A cluster-
ing system C ⊆ 2X is compatible w.r.t. ℙ-networks if there is 
ℙ-network N on X such that C ⊆ CN.

Problem 1  Is a given clustering system C ⊆ 2X compatible 
w.r.t. to (separated, phylogenetic) level-k networks?

We show that this question can easily be answered for 
level-1 networks by computing the so-called intersection clo-
sure (Bandelt and Dress 1989). To be more precise, to every 
clustering system C  one can associate the set I(C) consist-
ing of all non-empty intersections of an arbitrary subset of 
clusters in C  . Note that A ∈ C  implies A ∩ A = A ∈ I(C) 
and so C ⊆ I(C) . Recall that a clustering system satisfying 
(L) is in particular a weak hierarchy (cf. Corollary 29). In 
this case, only pairwise intersections need to be considered 
since the intersection of arbitrary subset of clusters coincides 
with a pairwise intersection. As an immediate consequence, 
we have

Observation 15  Let C  be a clustering system satisfying (L). 
Then, I(C) = C ∪ {C ∩ C� ∣ C,C� ∈ C overlap}.

Lemma 1 of Bandelt and Dress (1989) asserts that C  is a 
weak hierarchy if and only if I(C) is a weak hierarchy. We 
use this fact to prove an analogous result for property (L).
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Lemma 65  A clustering system C  satisfies (L) if and only if 
I(C) satisfies (L).

Proof  Since (L) is a hereditary property, it suffices to show 
that if C  satisfies (L), then I(C) also satisfies (L). We show 
first that the intersection of two overlapping clusters in C  
cannot overlap any other cluster of C  . To this end, con-
sider C1,C2,C3 ∈ C  , and suppose that C1 and C2 overlap 
and (C1 ∩ C2) ∩ C3 ≠ � . Then, one easily verifies that either 
C3 ⊆ C1 ∩ C2 , C1 ∪ C2 ⊆ C3 , or C3 overlaps at least one of 
C1 and C2 . In the latter case, (L) implies C1 ∩ C3 = C1 ∩ C2 
or C2 ∩ C3 = C1 ∩ C2 , and thus, (C1 ∩ C2) ∩ C3 = C1 ∩ C2 . 
That is, the intersection of two overlapping clusters in C  

cannot overlap any other cluster of C  . It remains to show 
that the intersection C1 ∩ C2 of an overlapping pair of clus-
ters C1,C2 ∈ C  also cannot overlap with the intersection 
C3 ∩ C4 of another overlapping pair C3,C4 ∈ C  . Assume, 
for contradiction, that C1 ∩ C2 and C3 ∩ C4 overlap. Hence, 
we have (C1 ∩ C2) ∩ C3 ≠ � and (C1 ∩ C2) ∩ C4 ≠ � and 
also C3⧵(C1 ∩ C2) ≠ � and C4⧵(C1 ∩ C2) ≠ � . Moreover, 
C1 ∩ C2 ⊆ C3 and C1 ∩ C2 ⊆ C4 are not possible at the same 
time since otherwise C1 ∩ C2 ⊆ C3 ∩ C4 . Hence, C1 ∩ C2 
overlaps at least one of C3 and C4 , a contradiction. In sum-
mary, all overlapping pairs C�,C�� ∈ I(C) are formed by 
clusters C�,C�� ∈ C  , and thus, I(C) also satisfies (L). 	� ◻

Theorem  9  Let C ⊆ 2X be a clustering system. Then, 
Check-L1-Compatibility  correctly verifies if 
there is a (separated, phylogenetic) level-1 network on 
X such that C ⊆ CN and can be implemented to run in 
O(|C|2|X|) ⊆ O(|X|5) time. Moreover, such a network N can 
be constructed in O(|X|5) time.

Proof  The proof (in particular, the part concerning the time 
complexity) is rather lengthy and technical and is, therefore, 
placed to Sect. 10.3 in “Appendix.” We emphasize, that the 
proof, however, contains interesting insights for those read-
ers who want to implement algorithm. 	�  ◻

Theorem 10  For every clustering system C  the following 
statements are equivalent: 

1.	 C  is compatible w.r.t. to a (separated, phylogenetic) 
level-1 network;

2.	 There is a (separated, phylogenetic) level-1 network with 
CN = I(C);

3.	 C  satisfies Property (L).
4.	 ℌ[I(C)] is a level-1 network.

Proof  If Statement (1) is satisfied, then the network com-
puted with Check-L1-Compatibility is a network 
with CN = I(C), and thus, Statement (2) holds. If there is a 
(separated, phylogenetic) level-1 network with CN = I(C) , 
then Theorem 8 implies that I(C) satisfies (L). Since (L) is 
a hereditary property, C  must satisfy (L) as well. Hence, 
(2) implies (3). Assume that C  satisfies Property (L). By 
Lemma 65, I(C) satisfies (L) and, by definition, I(C) is 
closed. By Theorem 8 and Proposition 21, there is a (sepa-
rated, phylogenetic) level-1 network such that I(C) = CN . 
Since C ⊆ I(C) = CN , Item (1) is satisfied. Hence, State-
ments (1), (2) and (3) are equivalent. Assume that Statement 
(2) holds. By Theorem 8, I(C) is closed and satisfies (L). 
Corollary 37 implies that ℌ[I(C)] is a level-1 network and 
thus Statement (4) holds. Conversely, assume that Statement 
(4) is satisfied. Again, by Theorem 8, I(C) is closed and 
satisfies (L). Proposition 21 implies now Statement (2). In 
summary, the four statements are equivalent. 	�  ◻
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Special subclasses of level‑1 networks

Galled trees

In level-1 networks, the structure a block B is highly con-
strained if the unique terminal vertex v of B has only two 
parents v1 and v2 . The absence of additional hybrid vertices 
implies, in particular, that the two paths from maxB to v1 and 
v2 are uniquely defined.

Observation 16  Let N be a level-1 network. Then, every 
non-trivial block is an (undirected) cycle if and only if every 
hybrid vertex v in N satisfies indeg (v) = 2.

We note that a similar result does not hold for level-k net-
works with k > 1 . As an example, Fig. 17A shows two net-
works whose hybrid vertices have all indegree 2 but whose 
blocks are not (undirected) cycles.

Lemma 66  If N is a level-1 network and every hybrid vertex 
v in N satisfies indeg (v) = 2 , then N is outerplanar.

Proof  By Observation 16, every non-trivial block on N is a 
cycle. Therefore, the underlying undirected graph of N does 
not contain a subdivision of the graph K4 , i.e., the complete 
graph on 4 vertices, nor of the complete bipartite graph K2,3 . 

By Theorem 1 in Chartrand and Harary (1967), N is outer-
planar. 	�  ◻

In Gusfield et al. (2003), galled trees were introduced as 
phylogenetic networks in which all cycles are vertex disjoint. 
Here, we consider a more general version, where cycles are 
allowed to share a cut vertex and the network is not required 
to be phylogenetic. More constrained types of networks will 
be discussed in the subsequent sections.

Definition 26  A galled tree is a network in which every non-
trivial block is an (undirected) cycle.

Lemma 67  Every galled tree is level-1.

Proof  Let N be a galled tree. Every trivial block B contains 
at most one hybrid vertex distinct from maxB . Thus, con-
sider a non-trivial block B and assume, for contradiction, 
that B properly contains two hybrid vertices h and h′ . Since 
B is a cycle, the two vertices in B that are adjacent with h 
must exactly be the two in-neighbors of h. The same holds 
for h. It is now easy to see that the two path in B that connect 
h and h′ must each contain a vertex whose two neighbors in 
the cycle B are out-neighbors. Hence, these two distinct ver-
tices are ⪯N-maximal in B, which contradicts the uniqueness 
of maxB . 	�  ◻

Fig. 17   Three pairs of non-isomorphic networks N and N′ for which MN = MN� . A N and N′ are binary level-2 tree-child networks. B N and N′ 
are separated galled trees but not phylogenetic. C N and N′ are separated phylogenetic level-1 networks



343Theory in Biosciences (2023) 142:301–358	

1 3

Lemma 67 and Observation 16 imply

Corollary 39  A network is a galled tree if and only if it is 
level-1 and satisfies indeg (v) = 2 for all hybrid vertices v.

Observation 17  In a galled tree, every non-trivial block 
consists of two internally vertex disjoint paths connecting 
maxB and minB . Moreover, every vertex contained in B 
that is distinct from maxB and minB has precisely one out-
neighbor in B.

As we shall see below, this implies that its clustering 
system satisfies the following property:

Definition 27  (N3O)	� C  contains no three distinct pairwise 
overlapping clusters.

Lemma 68  If C  is the clustering system of a galled tree, then 
C  satisfies (N3O).

Proof  Suppose there is a galled tree N with CN = C  . In par-
ticular, N is level-1 by Lemma 67. Now, suppose, for con-
tradiction, that (N3O) is not satisfied. Thus, there are three 
distinct vertices u1, u2, u3 ∈ V(N) such that C1∶= � N(u1) , 
C2∶= � N(u2) , and C3∶= � N(u3) overlap pairwise. By 
Lemma 17, it must hold that u1 , u2 , and u3 are pairwise ⪯N

-incomparable. By Lemma 48, C1 ∩ C2 ≠ � implies that 
u1 and u2 are located in a common block B. Clearly, ⪯N

-incomparability of u1 and u2 implies u1 ≠ maxB . By sim-
ilar arguments, u1 and u3 are located in a common block 
B′ and u1 ≠ maxB′ . Since u1 ∉ {maxB, maxB�} , we can 
apply Lemma 9 to conclude that B = B� . Hence, for every 
i ∈ {1, 2, 3} , there is a directed path Pi in B from ui to minB . 
Now, consider, for distinct i, j ∈ {1, 2, 3} , the ⪯N-maxi-
mal vertex v in Pi that is also a vertex in Pj (which exists 
since minB is a vertex of both paths). We have v ∉ {ui, uj} 
because ui and uj are ⪯N-incomparable. Therefore, the unique 
parents vi and vj of v in Pi and Pj , resp., must be distinct. 
Therefore, v is a hybrid vertex in B and clearly distinct from 
maxB . Hence, it must hold that v = minB . Since i and j 
were chosen arbitrarily, the paths P1 , P2 , and P3 only have 
vertex minB in common. This together with the fact that 
minB ∉ {u1, u2, u3} implies that minB has at least indegree 
3. By Observation 16, therefore, N has a non-trivial block 
that is not an undirected cycle. Hence, N is not a galled tree, 
a contradiction. 	�  ◻

The converse of Lemma 68 is not true since, in addition 
to (N3O), closedness and (L) are required:

Theorem 11  C  is the clustering system of a galled tree if and 
only if C  is closed and satisfies (L) and (N3O). Moreover, in 
this case, ℌ[C] is a phylogenetic galled tree.

Proof  Suppose first that N is the clustering system of a short-
cut-free galled tree. By Lemma 67, N is level-1, and thus, it 
is closed and C  satisfies (L) by Theorem 8. By Lemma 68, C  
also satisfies (N3O). Now, suppose, that C  is closed, satisfies 
(L), and does not contain three pairwise overlapping clus-
ters. By Corollary 37, the unique regular network N∶=ℌ[C] 
with clustering system C  is a shortcut-free phylogenetic 
level-1 network. Hence, it satisfies (PCC) by Lemma 44. 
Suppose, for contradiction that N is not a galled tree, i.e., it 
contains a non-trivial block, that is not an undirected cycle. 
By Observation 16, there is a hybrid vertex w ∈ V(N) with 
(at least) three distinct in-neighbors u1 , u2 , and u3 . By Obser-
vation 3 and since N is shortcut-free, u1 , u2 , and u3 must 
be pairwise ⪯N-incomparable. By (PCC), it therefore holds 
� N(ui) ⊈ � N(uj) for all distinct i, j ∈ {1, 2, 3} . Moreover, it 
holds � ≠ � N(w) ⊆ � N(ui) for i ∈ {1, 2, 3} . Taken together, 
the latter two arguments imply that � N(u1) , � N(u2) , and 
� N(u3) overlap pairwise, a contradiction. Hence, N must be 
a galled tree. 	�  ◻

Definition 28  Diday (1986); Bertrand and Diatta (2013) 
A clustering system (X,C) is pre-pyramidal if there exists 
a total order ⋖ on X such that, for every C ∈ C  and all 
x, y ∈ C , it holds that x ⋖ u ⋖ y implies u ∈ C . That is, all 
clusters C ∈ C  are intervals w.r.t. ⋖.

A necessary condition (Nebeský 1983; Changat et al. 
2022) for C  to be pre-pyramidal is 

(WP)	� If C1,C2,C3 ∈ C  have pairwise non-empty intersec-
tions, then one of the three sets is contained in the 
union of the other two.

 Taken together, (L) and (WP) imply (N3O). More precisely, 
we have

Lemma 69  Let C  be a pre-pyramidal clustering system sat-
isfying (L). Then, C  satisfies (N3O), i.e., there are no three 
pairwise overlapping sets.

Proof  Assume, for contradiction,  that  C1 ,  C2 , 
and C3 overlap pairwise. Then, (L) implies that 
C1 ∩ C2 = C2 ∩ C3 = C1 ∩ C3 = C1 ∩ C2 ∩ C3=∶C ≠ �   . 
Since C  is pre-pyramidal and the three pairwise inter-
sections are non-empty, (WP) implies that one of 
the three sets is contained in the union of the other 
two. W.l.o.g., suppose C1 ⊆ C2 ∪ C3 . Equivalently, 
C1 = C1 ∩ (C2 ∪ C3) = (C1 ∩ C2) ∪ (C1 ∩ C3) = C ⊊ C1 , a 
contradiction. 	�  ◻

Pre-pyramidal set systems are also known as “interval 
hypergraphs.” A characterization in terms of an infinite 
series of forbidden subhypergraphs has been developed in 
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Tucker (1972); Trotter and Moore (1976); Duchet (1984). It 
can be used to obtain a simple necessary and condition in 
the presence of (L).

Proposition 22  Let C  be a clustering system satisfying 
(L). Then, C  is pre-pyramidal if and only if it satisfies 
(N3O).

Proof  Starting from Duchet (1984,  Theorem  7.2) one 
observed that condition (L) excludes all induced forbidden 
subhypergraphs with a single exception. The remaining con-
figuration, called M1 in (Fig. 11 Duchet 1984), comprises 
three pairwise overlapping sets that share at least one com-
mon point. Thus, if (N3O) holds, no M1-subhypergraph 
is present in C  . Since (L) and (N3O) together exclude all 
forbidden subhypergraphs and thus C  is pre-pyramidal. 
Lemma 69 now completes the proof. 	�  ◻

Theorem 12  Let N be a phylogenetic shortcut-free level-1 
network with clustering system C  . Then, C  is pre-pyramidal 
if and only if indeg (v) ≤ 2 for all v ∈ V  , i.e., if and only if 
N is a galled tree.

Proof  (⟹ ) Suppose that C  is pre-pyramidal with cor-
responding total order ⋖ of X and, moreover, assume, for 
contradiction, that w is hybrid vertex with indeg N(w) ≥ 3 . 
Hence, let u1, u2, u3 ∈ par N(w) be pairwise distinct. Since N 
is shortcut-free, Observation 3 implies that u1 , u2 , and u3 are 
pairwise ⪯N-incomparable. Together with Lemma 44, this 
implies � (ui) ⊈ � (uj) for distinct i, j ∈ {1, 2, 3} . Moreover, 
u1, u2, u3 ∈ par N(w) and Lemma 17 yield � ≠ � (w) ⊆ � (ui) 
for all i ∈ {1, 2, 3} , i.e., C  contains three pairwise overlap-
ping clusters. On the other hand, C  satisfies (L) by Corol-
lary 28, thus Lemma 69 implies that C  cannot contain three 
pairwise overlapping clusters, a contradiction.

(⇐) Suppose indeg (v) ≤ 2 for all v ∈ V  . By Obser-
vation 16, this holds if and only if N is a galled tree. By 
Lemma 67, Corollary 28, and Lemma 68, C  satisfies (L) and 
(N3O). Hence, C  is pre-pyramidal by Proposition 22. 	� ◻

Definition 29  Bertrand (2008) A clustering system C  is a 
paired hierarchy if a cluster C ∈ C  overlaps with at most 
one other cluster in C .

Observation 18  Every hierarchy is a paired hierarchy and 
every paired hierarchy satisfies (L) and (N30).

Proposition 23  Let C  be a closed clustering system. Then, 
C  is a paired hierarchy if and only if there is a shortcut-free 
phylogenetic galled tree N with CN = C  where all non-trivial 
blocks consist of four vertices.

Proof  Suppose first that C  is a paired hierarchy. Since C  
satisfies (L) and (N3O) by Observation 18 and is closed, 
we can apply Theorem 11 to conclude that N∶=ℌ[C] is a 
shortcut-free phylogenetic galled tree with CN = C  . Since 
N is, in particular, a phylogenetic level-1 network (cf. 
Lemma 67), Lemma 44 implies that N satisfies (PCC). By 
definition, every non-trivial block contains at least 3 verti-
ces. If a block B would contain exactly three vertices, then 
one easily sees that N contains the shortcut (maxB, minB) , 
a contradiction. Hence, every non-trivial block in N con-
tains at least 4 vertices. Assume, for contradiction, that N 
contains a non-trivial block B with at least k ≥ 5 vertices. 
Note, B refers to an (undirected) cycle in N. Hence, there are 
two internal vertex disjoint paths in B connecting maxB and 
minB . Since N is shortcut-free and k ≥ 5 , we can conclude 
that one path contains a vertex v and the other path contains 
vertices u1, u2 that are all distinct from maxB and minB . 
Since B is an undirected cycle, one easily verifies that v and 
u1 as well as v and u2 are ⪯N-incomparable. By Lemma 17, 
we have � ≠ � (minB) ⊆ � (v), � (u1), � (u2) . This together 
with (PCC) and the fact that v and u1 as well as v and u2 are 
⪯N-incomparable implies that � (v) must overlap with both 
� (u1) and � (u2) , a contradiction.

Assume now that there is a shortcut-free phylogenetic 
galled tree N with CN = C  where all non-trivial blocks con-
sists of four vertices. Suppose, for contradiction, � (v) ∈ C  
overlaps with two distinct clusters � (u2) and � (u2) in C  . 
Note, v, u1 , and u2 must be pairwise distinct. By Lemma 19, 
we have v, u1 ∈ B0

1
 and v, u2 ∈ B0

2
 for non-trivial blocks B1 

and B2 in N. In particular, we have v, u1 ∉ {minB1, maxB1} 
and v, u2 ∉ {minB2, maxB2} . We can therefore apply 
Lemma 9 to conclude that B1 = B2=∶B . In particular, B con-
tains at least five pairwise distinct vertices minB , maxB , v, 
u1 , and u2 , a contradiction. 	�  ◻

It is worth noting that for paired hierarchies, and in par-
ticular also for hierarchies, C  there are not only galled trees 
but also shortcut-free and phylogenetic level-k networks N 
that are not level-(k − 1) with CN = C  . Figure 12A serves 
as an example.

Conventional and separated level‑1 networks

The literature on phylogenetic networks often stipulates 
that the leaves v ∈ X have indegree 1, see, e.g., Huson et al. 
(2010). Furthermore, level-1 networks are often defined such 
that every non-trivial block has exactly one hybrid vertex.

Definition 30  A network N is conventional if (i) all leaves 
have indegree at most 1 and (ii) every hybrid vertex is con-
tained in a unique non-trivial block.
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We remark that if |X| > 1 all leaves have indegree 1 in a 
conventional network. In Fig. 4, network N is conventional, 
while N′ is not.

Proposition 24  Let C  be a closed clustering system on X 
satisfying (L). Then, ℌ[C] is conventional if and only if 
B
0({x}) = � for all x ∈ X and B0(Top (C)) = � for all C ∈ C  

with B0(C) ≠ �.

Proof  By Lemma 22, ℌ∶=ℌ[C] is a phylogenetic network 
with leaf set Xℌ∶={{x} ∣ x ∈ X} . Moreover, Lemma  60 
implies that indeg ({x})ℌ ≥ 2 if and only if B0({x}) ≠ � . By 
Observation 1 and Lemma 9, two distinct non-trivial blocks 
B and B′ share at most one vertex v ∈ {maxB, maxB�} . Thus, 
every hybrid vertex is contained in a unique non-trivial 
block if and only if maxB ≠ minB′ for any pair of non-triv-
ial blocks. Since the non-trivial blocks in ℌ[C] are exactly 
the blocks B(C) ≠ � , this is equivalent to requiring that for 
every C ∈ C  with B(C) ≠ � we have Top (C) is not the mini-
mum of another non-trivial block, i.e., B(Top (C)) = � . 	
� ◻

Proposition 25  If N is separated, then N is conventional.

Proof  Suppose N separated. Then, all leaves in N must have 
indegree at most 1 since they have outdegree 0 and, by defi-
nition, hybrid vertices have outdegree 1. By Lemma 9, a 
vertex v that is contained in two non-trivial blocks B and 
B′ must be the unique maximal vertex of one of them. In 
this case, Corollary 4 implies outdeg N(v) ≥ 2 . However, 
since v is hybrid vertex in a separated network, we have 
outdeg (v) = 1 . Therefore, such a hybrid vertex v that is con-
tained in two non-trivial blocks cannot exist. Hence, N is 
conventional. 	�  ◻

Binary level‑1 networks

Recall that a network is binary if it is phylogenetic, sep-
arated, and all vertices have in- and outdegree at most 
2. Equivalently, in a binary network, every tree vertex is 
either a leaf or has exactly two children, and every hybrid 
vertex has exactly two parents and one child. As an imme-
diate consequence of the definition, Proposition 9, Propo-
sition 25, and Corollary 39, we have:

Observation 19  Binary level-1 networks are always phyloge-
netic, separated, conventional, tree-child, galled trees.

Lemma 70  Let N be a binary level-1 network. Then, 
ℌ[CN] ≃ N if and only if N is a tree.

Proof  Let N be a binary level-1 network. By definition, N 
is phylogenetic. If N is a tree, then ℌ[CN] ∼ N (cf. Corol-
lary 9). Assume now that N is not a tree and thus, N contains 
hybrid vertices all with outdegree 1 in N. However, Proposi-
tion 15 implies that ℌ[C] does not contain any vertex with 
outdegree 1. Consequently, ℌ[CN] ≁ N . 	�  ◻

Hence, ℌ[CN] can never be binary in case CN contains 
overlapping clusters.

Definition 31  (2-Inc) A clustering system C  has Property 
(2-Inc) if, for all clusters C ∈ C  , there are at most two inclu-
sion-maximal clusters A,B ∈ C  with A,B ⊊ C and at most 
two inclusion-minimal clusters A,B ∈ C  with C ⊊ A,B.

Lemma 71  Let N be a binary network that satisfies (PCC). 
Then, CN satisfies (2-Inc).

Proof  Let N be a binary network on X with clustering sys-
tem C  . Assume, for contradiction, that CN does not satisfy 
Property (2-Inc) for some cluster C ∈ CN.

Assume first that there are (at least) three inclusion-
minimal clusters A1,A2,A3 ∈ C  that satisfy C ⊊ A1,A2,A3 . 
Hence, C ≠ X . Since C ∈ CN , there is a ⪯N-maximal ver-
tex v ∈ V(N) with � (v) = C . Note, v has at least one but 
at most two parents in N since N is binary and v ≠ �N . 
Let vi be a vertex in N with � (vi) = Ai , i ∈ {1, 2, 3} . By 
Observation  7, we have v ≺N v1, v2, v3 . Therefore, and 
because v has at most two parents, at least two of v1, v2, v3 
must be ancestors of the same parent w of v in N. W.l.o.g. 
assume that w ⪯N v1, v2 . Since v is ⪯N-maximal w.r.t. 
� (v) = C , it must hold that � (v) ⊊ � (w) . Lemma  17 
implies that � (w) ⊆ � (v1), � (v2) . Note, however, that 
� (w) = � (v1) is not possible, since then A1 ≠ A2 and 
� (v) ⊊ � (w) imply that � (v) ⊊ � (w) = � (v1) ⊊ � (v2) , a 
contradiction to the inclusion-minimality of � (v2) = A2 . 
By similar arguments, � (w) = � (v2) is not possible. Hence, 
� (v) ⊊ � (w) ⊊ � (v1), � (v2) must hold, again a contra-
diction to the inclusion-minimality of � (v1) = A1 and 
� (v2) = A2.

Assume now that there are (at least) three inclusion-
maximal clusters A1,A2,A3 ∈ C  that satisfy A1,A2,A3 ⊊ C . 
Hence, C cannot be a singleton. Since C ∈ CN , there is a ⪯N

-minimal vertex v ∈ V(N) with � (v) = C . Since C is not a 
singleton and N is binary, we can conclude that v has at least 
one but at most two children in N. Let vi be a vertex in N with 
� (vi) = Ai , i ∈ {1, 2, 3} . Since v has at most two children, 
at least two of v1, v2, v3 must be descendants of the same 
child w of v in N. Since v is ⪯N-minimal w.r.t. � (v) = C, 
it must hold that � (w) ⊊ � (v) . Now, we can apply similar 
arguments as in the first case to obtain a contradiction. 	
� ◻
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Theorem 13  Let C  be a clustering system on X. Then, there 
is a binary level-1 network N with CN = C  if and only if C  is 
closed and satisfies Properties (L) and (2-Inc). In this case, 
the (unique) cluster network with clustering system C  is a 
binary level-1 network.

Proof  Assume first that C  is closed and satisfies Proper-
ties (L) and (2-Inc). Taken Theorem 8 and Proposition 19 
together, the regular network ℌ[C] is a level-1 network. 
Since C  satisfies (2-Inc), every vertex in ℌ[C] must have 
in- and outdegree at most 2. By Theorem 6, we can uniquely 
construct a cluster network N by applying EXPD (v) to all 
hybrid vertices of ℌ[C] . Hence, N is binary. Moreover, since 
ℌ[C] is a level-1 network, Lemma 13 implies that N is a 
level-1 network. Hence, a binary level-1 network N with 
CN = C  exists. The latter, in particular, shows that the clus-
ter network N is a binary level-1 network. Conversely, sup-
pose that N is a binary level-1 network on X with CN = C  . 
By Theorem 8, C  is closed and satisfies Property (L). By 
Lemma 44, N satisfies (PCC) and thus, by Lemma 71, is also 
satisfies (2-Inc). 	�  ◻

Since a phylogenetic level-1 network satisfies (PCC) by 
Lemma 44, it is semi-regular if and only if it is shortcut-free. 
Theorem 4 therefore yields the following characterization of 
level-1 cluster networks:

Corollary 40  Let N be a phylogenetic level-1 network. Then, 
N is a cluster network if and only if it is shortcut-free and 
separated.

Observation 19 then implies

Corollary 41  Let N be a binary level-1 network. Then, N is a 
cluster network if and only if it is shortcut-free.

We finally consider the problem as whether a clustering 
system C ⊆ 2X compatible w.r.t. to a binary level-1 network.

Theorem  14  A given clustering system C ⊆ 2X is com-
patible w.r.t. to a binary level-1 network if and only if 
C  satisfies (L) and all hybrid vertices w in ℌ[I(C)] have 
indegℌ[I(C)](w) = 2.

Proof  Assume first that C  is compatible w.r.t. to a binary 
level-1 network and let N be such a network with C ⊆ CN . 
By Theorem 13, C  satisfies (L). Moreover, by Theorem 8, 
CN is closed and thus I(C) ⊆ I(CN) = CN . To see that all 
hybrid vertices w in ℌ[I(C)] have indegℌ[I(C)](w) = 2 , 
suppose for contradiction that there is a vertex w in 
ℌ[I(C)] with indegree larger than 2, i.e., there is C ∈ I(C) 
with at least three distinct inclusion-minimal supersets 
C1,C2,C3 ∈ I(C) ⊆ CN  . Since C ⊊ C1,C2,C3 and these 

cluster are inclusion-minimal (and thus not contained in one 
another), they overlap pairwise. By Observation 19, N is a 
galled tree. Hence, by Theorem 11, CN contains no three 
pairwise overlapping clusters, a contradiction.

Assume now that C  satisfies (L) and that all hybrid ver-
tices w in ℌ∶=ℌ[I(C)] have indegℌ(w) = 2 . In the follow-
ing, we use caterpillars CATn , i.e., binary trees on n leaves 
such that each inner vertex has exactly two children and the 
subgraph induced by the inner vertices is a directed path 
with the root �CATn

 at one end of this path. By Theorem 10, 
ℌ is a level-1 network. This together with Observation 16 
implies that every non-trivial block in ℌ is a cycle and thus 
ℌ must be a galled tree. In particular, for every non-trivial 
block B, maxB has exactly two children in B. Let v be vertex 
in ℌ with outdegℌ(v) > 2 . We now “resolve” v as follows: 
If indegℌ(v) = 2 , then expand v. Otherwise, v is a tree ver-
tex. In this case, let B be the set of all non-trivial blocks B 
in ℌ with v = maxB and C be the children of v that are not 
contained in some B ∈ B . We now replace v by a caterpillar 
CATn with n = |C| + |B| and thus, we can find a 1-to-1 cor-
respondence between the n leaves of the caterpillar and the 
elements in C∪⋅ B . The elements in C are now identified with 
their corresponding leaves. Observe that |B| > 1 is possible, 
i.e., v = maxB for more than one non-trivial block B. We 
therefore re-attach, for each block B ∈ B , the two children 
of v = maxB that are contained in B as children of the leaf of 
the caterpillar that corresponds to B. Note that this construc-
tion is well defined since, by Lemma 9, no two such children 
can be children of two distinct blocks B,B� ∈ B . Since we do 
not change the structure of non-trivial blocks, the network 
N′ obtained in this way remains a level-1 network whose 
hybrid vertices still have indegree 2. Moreover, it is an easy 
task to verify that C ⊆ Cℌ ⊆ CN′ . Repeated application of 
the latter steps to all vertices eventually results in a binary 
level-1 network N with C ⊆ Cℌ ⊆ CN . 	�  ◻

Using Check-L1-Compatibility and the results 
in Theorem 9, we obtain

Corollary 42  Determining if a clustering system C ⊆ 2X is 
compatible w.r.t. to a binary level-1 network and, in the 
affirmative case, the construction of such a network can be 
done in O(|X|5) time.

Corollary 43  For all phylogenetic level-1 networks N whose 
hybrid vertices w have indeg N(w) = 2 , there is a binary 
level-1 network N′ with CN ⊆ CN′.

Proof  If all hybrid vertices w in N have indeg N(w) = 2 , then 
N is a galled tree by Observation 16. By Theorem 11, CN 
is closed (i.e., CN = I(C) ) and satisfies (L) and, moreover, 
ℌ[C] = ℌ[I(C)] is a galled tree. Applying Observation 16 
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again to ℌ[I(C)] yields that all hybrid vertices w in ℌ[I(C)] 
have indegℌ[I(C)](w) = 2 . Now, apply Theorem 14. 	�  ◻

The converse of Corollary 43 is not true, i.e., a phy-
logenetic level-1 networks N for which there is a binary 
level-1 network N′ with CN ⊆ CN′ may contain a hybrid 
vertex w with indeg N(w) > 2 . To see this, consider a binary 
level-1 network N′ with a non-trivial block B such that 
(maxB, minB) ∉ E(N�) and the non-binary network N that 
is obtained from N′ by adding the shortcut (maxB, minB) . 
Clearly, N is still phylogenetic and level-1 and by Lemma 1 
satisfies � N = � N� but the vertex minB has indegree 3.

Level‑1 networks encoded by their cluster multisets

In this part, we focus on a particular subclass of networks:

Definition 32  A network N is a quasi-binary if 
indeg N(w) = 2 and outdeg N(w) = 1 for every hybrid vertex 
w ∈ V(N) and, additionally, outdeg N(maxB) = 2 for every 
non-trivial block B in N.

We note that, in particular, all binary networks are quasi-
binary. Moreover, quasi-binary networks are separated. 
Therefore and by Corollary 39, we obtain

Observation 20  Quasi-binary level-1 networks are separated 
galled trees.

Theorem 5 shows that all semi-regular networks are 
encoded by their multisets of clusters. None of the condi-
tions (PCC) or shortcut-free can be omitted, as shown be the 
examples in Fig. 9. Nevertheless, replacing some of these 
conditions by a different one might be possible. In the fol-
lowing, we replace shortcut-freeness by requiring that N is 
a phylogenetic quasi-binary level-1 network. In this case, 
we obtain Property (PCC) as an immediate consequence of 
Lemma 44. Again, we observe that neither of the proper-
ties phylogenetic or quasi-binary or level-1 can be dropped: 
Fig. 17A shows two phylogenetic quasi-binary networks that 
are not level-1; Fig. 17B shows two quasi-binary level-1 
networks that are not phylogenetic; and Fig. 17C shows 
two phylogenetic level-1 networks that are not quasi-binary 
where, in all three examples, the respective networks have 
the same multisets of clusters but are not isomorphic. As a 
by-product, we obtain the following result:

Observation 21  Let ℙ denote the class of all networks N for 
which either precisely one or at least one of the following 
conditions hold: 

1.	 N is level-k, k ≥ 2 but not level-1 and contains at least 
three leaves.

2.	 N does not satisfy (PCC);
3.	 N is not quasi-binary;
4.	 N is not shortcut-free;
5.	 N is not phylogenetic.

Then, no network N ∈ ℙ is encoded (w.r.t. ℙ ) by its multiset 
MN of clusters and thus, by its set CN of clusters.

Theorem 15  Let N be a phylogenetic quasi-binary level-1 
network. Then, N is the unique phylogenetic quasi-binary 
level-1 network tree whose cluster multiset is MN.

Proof  Suppose that both N and Ñ are phylogenetic quasi-
binary level-1 networks and MN = MÑ  . Lemma  44 
implies that both N and Ñ  satisfy (PCC). We show that 
𝜑∶=𝜑PCC ∶ V(N) → V(Ñ) is a graph isomorphism. By 
Lemma 31, � is a bijection between V(N) and V(Ñ) that is 
the identity on the common leaf set X. In the following, we 
write ṽ∶=𝜑(v) for all v ∈ V(N) , and make free use of the 
facts that, by Lemma 31, � N(v) = � Ñ(ṽ) and v is a leaf if 
and only if ṽ is a leaf, and moreover, u ≺N v if and only if 
ũ ≺Ñ ṽ for all u, v ∈ V(N) . In the following, we will make 
frequent use of the fact that both N and Ñ are galled trees 
(cf. Observation 20).

It remains to show that, for all u, v ∈ V(N) , it holds 
(v, u) ∈ E(N) if and only if (ṽ, ũ) ∈ E(Ñ) . To this end, sup-
pose (v, u) ∈ E(N) and, for contradiction, that (ṽ, ũ) ∉ E(Ñ) . 
Since N is acyclic and finite, we can assume w.l.o.g. that 
(v, u) ∈ E(N) is a ⪯N-minimal arc that is “missing” in 
Ñ  , i.e., there is no arc (v�, u�) ∈ E(N) with u′ ≺N u and 
(ṽ�, ũ�) ∉ E(Ñ) . We have u ≺N v and thus also ũ ≺Ñ ṽ . 
The latter together with (ṽ, ũ) ∉ E(Ñ) implies that there 
is w̃ ∈ V(Ñ) such that ũ ≺Ñ w̃ ≺Ñ ṽ . This in turn implies 
u ≺N w ≺N v , and thus, (v, u) is a shortcut in N. In particular, 
u is a hybrid vertex and, since by definition the non-trivial 
blocks in the galled tree N correspond to the undirected 
cycles, v = maxB for some non-trivial block B of N whose 
unique hybrid vertex is u = minB.

We continue with showing that ũ is also a hybrid vertex. 
Since N is quasi-binary, the hybrid vertex u has a unique 
child c. By the ⪯N-minimal choice of (v, u) ∈ E(N) , c̃ must 
be a child of ũ in Ñ . Suppose, for contradiction, that ũ is a 
tree vertex. Hence, since Ñ is phylogenetic, it must have a 
second child c̃� ∈ child Ñ(ũ)⧵{c̃} . Now, c̃′ ≺Ñ ũ implies that 
c′ ≺N u . Therefore and by the choice of (v, u), there is an arc 
(p, c�) ∈ V(N) (where p ≠ u since c is the only child of u) 
such that (p̃, c̃�) is also an arc in Ñ . Thus, c̃′ is a hybrid vertex 
with distinct parents ũ and p̃ . Hence, neither of c′ and c̃′ is a 
leaf. Therefore, and because N is phylogenetic, c′ either has 
a second parent p′ (which is also distinct from u), or at least 
two children. By the choice of (v, u), the images of these 
vertices are adjacent with c̃′ in both cases. Hence, if c′ has a 
second parent p′ , then c̃′ has three distinct parents ũ , p̃ , and 
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p̃′ . If on the other hand c′ has at least two children, then the 
hybrid vertex c̃′ also has at least two children. Both cases, 
therefore, contradict that Ñ is quasi-binary. Hence, ũ must 
be a hybrid vertex.

Let z be the parent of the hybrid vertex u that is not 
v and observe that z ⪯N w ≺N maxB = v . Moreover, 
u ≺N z implies ũ ≺Ñ z̃ . Suppose, for contradiction, that 

(z̃, ũ) ∉ E(Ñ) . In this case, ũ ≺Ñ z̃ implies that there is z̃′ with 
ũ ≺Ñ z̃′ ≺Ñ z̃ and thus u ≺N z′ ≺N z . Hence, u must have a 
parent z′′ with z�� ⪯N z� ≺N z(≺N v) . Since N is acyclic, it 
holds that z′ ≠ v and thus, z′′ ≠ z, v . This contradicts the fact 
that z and v are the only two parents of u in N. Therefore, 
z̃ must be one of the two parents of ũ in Ñ . In particular, it 
holds ũ ≺Ñ z̃ ≺Ñ ṽ.

Fig. 18   Illustration of Cases (a) 
and (b) in the proof of Theo-
rem 15. Dashed arrows indicate 
directed paths (possibly consist-
ing of a single vertex)

Table 3   Summary of main results: Mutual dependencies between the types of networks and clustering systems considered in this paper (color 
figure online)
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The properties highlighted in black and green refer to properties of networks and clustering systems, respectively. Properties in blue text are 
combinations of “basic” properties of networks. An entry at position (i, j) in the matrix is colored orange, turquoise, and white, if the property at 
pos. i implies j, is implied by j, or does have a non-empty overlap with j, respectively. Gray colored entries refer to equality. References within 
the matrix indicate the result where the respective dependencies are shown. All other colors in the matrix are either trivial observations or were 
derived by computing the transitive closure over the proven implications
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Now, let q̃ be the parent of the hybrid vertex ũ that is not 
z̃ . Since we assumed that (ṽ, ũ) ∉ E(Ñ) , it holds that q̃ ≠ ṽ 
(and thus q ≠ z ). We have ũ ≺Ñ q̃ and thus u ≺N q . There-
fore, and since q ∉ {v, z} = par N(u) , we must have z ≺N q 
or v ≺N q . Since z ≺N maxB = v , we have, in both of the 
latter two cases, that z ≺N q . Moreover, since the non-trivial 
block B consists of two paths that have only v and u in com-
mon and which do not contain additional hybrid vertices and 
since v and z are the unique two parents of u, it holds that 
z ≺N q and (a) q ≺N v or (b) v ≺N q . In particular, we also 
have (ũ ≺Ñ) z̃ ≺Ñ q̃ , which implies that (q̃, ũ) is a shortcut.

Case (a) q ≺N v . The situation that we will obtain in 
the following up to the final contradiction is illustrated in 
Fig. 18. Together with z ≺N q and Lemma 7, q ≺N v implies 
that q is also contained in B. In particular, minB = u ≺N q 
and thus q is a tree vertex. Since N is a galled tree, B is 
exactly the undirected cycle that is formed by the shortcut 
(v, u) and the directed path from v = maxB to u = minB 
(which contains q as an inner vertex). Hence, q has exactly 
one child c1 in B and, since N is phylogenetic, at least one 
child that is not in B. Consider an arbitrary such child c2 
that is not in B. Since all vertices of B lie on a directed 
path and z ≺N q , we must have z ⪯N c1 ≺N maxB . In par-
ticular, c1 is also a tree vertex since N is level-1. The vertices 
c1 and c2 must be ⪯N-incomparable. To see this, suppose 
c1 ≺N c2 . Then, (q, c1) is a shortcut, and thus, because N 
is a level-1 network whose non-trivial blocks correspond 
to undirected cycles, N contains a non-trivial block B′ that 
is formed be the shortcut (q, c1) and a directed path from 
q to c1 that passes through c2 . In particular, q = maxB� 
and both of c1 and c2 are contained in B′ . Therefore, B and 
B′ share the two vertices q and c1 and we have B = B� by 
Observation  1, a contradiction to c2 ∉ V(B) . Similarly, 
c2 ≺N c1 is not possible and thus c1 and c2 are ⪯N-incom-
parable. Suppose, for contradiction, that there is a vertex 
x ∈ � N(c1) ∩ � N(c2) . Then, Lemma 18 implies that c1 and 
c2 are contained in some non-trivial block B′ of N. Since 
they are ⪯N-incomparable, it holds c1 ≠ maxB′ , and thus, the 

unique parent q of the tree vertex c1 must also be contained 
in B′ . Similar as before, we therefore obtain B = B� , a con-
tradiction to c2 ∉ V(B) . Hence, � N(c1) and � N(c2) are dis-
joint. In particular, we have � N(c1)∪⋅ � N(c2) ⊆ � N(q) , and, 
because both of � N(c1) and � N(c2) are non-empty, we obtain 
� N(ci) ⊊ � N(q) , i = 1, 2 . Since c2 was chosen arbitrarily, 
we have � N(ci) ⊊ � N(q) for all children ci ∈ child N(q) . 
Together with Lemma 17 and the fact that every vertex w′ 
with w′ ≺N q satisfies w� ⪯N ci for some ci ∈ child N(q) , 
these inclusions imply that � N(w

�) ⊊ � N(q) . Hence, q is a 
⪯N-minimal vertex with clusterC∗∶= � N(q)(= � Ñ(q̃)) . Since 
(q̃, ũ) is a shortcut, q̃ = max B̃ of some non-trivial block B̃ 
in Ñ . Since Ñ is quasi-binary, q̃ has precisely two children 
ũ and c̃3 . Since (q̃, ũ) is a shortcut and the non-trivial blocks 
of N correspond to undirected cycles, we have ũ ≺Ñ c̃3 and 
thus � Ñ(ũ) ⊆ � Ñ(c̃3) by Lemma 17. Therefore, we obtain 
� Ñ(q̃) = � Ñ(ũ) ∪ � Ñ(c̃3) = � Ñ(c̃3) . Together with c̃3 ≺N q̃ , 
this implies that q̃ is not a ⪯Ñ-minimal vertex with cluster C∗ 
in Ñ (as opposed to q in N), a contradiction to the construc-
tion of � . In summary, therefore, Case (a) cannot occur.

Case (b) v ≺N q . This implies ṽ ≺Ñ q̃ . Since (q̃, ũ) is a 
shortcut, it holds q̃ = max B̃ and ũ = min B̃ for some non-
trivial block B̃ in Ñ  . Lemma 7, together with ṽ ≺Ñ q̃ and 
ũ ≺Ñ ṽ , implies that ṽ is also contained in B̃ . We can now 
apply similar arguments as in Case (a), where the roles of 
N and Ñ are interchanged, to conclude that Case (b) is also 
impossible. The situation up to the final contradiction is 
again illustrated in Fig. 18.

In summary, therefore, (ṽ, ũ) ∈ E(Ñ) must hold. By analo-
gous arguments, (ṽ, ũ) ∈ E(Ñ) implies (v, u) ∈ E(N) . Hence, 
� is a graph isomorphism that is the identity on X and thus 
N ≃ Ñ . Therefore, N is the unique phylogenetic quasi-binary 
level-1 network whose cluster multiset is MN . 	�  ◻

Our colleagues Simone Linz and Kristina Wicke drew 
our attention to an alternative proof for Theorem 15 that 
proceeds by induction on the size of the leaf set of N. It 
utilizes the concepts of cherries and reticulated cherries that 
have been used extensively in the literature, see, e.g., Bor-
dewich and Semple (2016); Murakami et al. (2019); Semple 

Fig. 19   Summary of main 
results: Transitive reduction of 
the implication graph defined in 
Table 3 (see there for explana-
tion of the colors) (color figure 
online)
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and Toft (2021). We opted for a non-inductive proof that 
remains closer to the construction utilized throughout this 
contribution.

Corollary 44  Let N be a binary level-1 network. Then, N is 
the unique binary level-1 network whose cluster multiset is 
MN.

Again, we can observe that neither of the properties 
binary or level-1 in Corollary 44 can be dropped: Fig. 9A 
shows two level-1 networks (where one is not binary), and 
Fig. 17A shows two binary level-2 networks (that are not 
level-1) where, in both examples, the respective networks 
have the same multisets of clusters but are not isomorphic.

Summary

In this contribution, we investigated the mutual dependen-
cies between the different concept of networks in the lit-
erature and their connection to clustering systems. Most 
of our findings are summarized in Table 3 and Fig. 19. As 
one of the main results, level-1 networks as well as some of 
their subclasses, such as galled trees or binary phylogenetic 
level-1 networks, are characterized by the structure of their 
clustering system C  . Moreover, we showed that semi-regular 
networks and phylogenetic quasi-binary level-1 (and thus, 
binary level-1 networks) are uniquely determined by their 
multisets of clusters. Furthermore, regular and cluster net-
works (and their subclasses as, e.g., phylogenetic trees) are 
uniquely determined by their clustering system. We provided 
a plethora of examples that show, however, that most classes 
of networks cannot be encoded in such way if there are not 
sufficiently many extra restrictions placed on such networks. 
In addition, we showed that it is possible to determine in 
polynomial time whether a clustering system is compatible 
with a level-1 network and to construct such a network in 
the affirmative case.

It remains an open question as whether general level-k 
networks can be characterized by their clustering systems. 
Moreover, under which conditions is a clustering system 
compatible with other specified networks and what is the 
computational complexity to determine them? While we 
have shown that some types of networks can be encoded by 
the multisets of clusters, a characterization of multisets that 
encode the underlying networks as well as reconstruction 
algorithms are part of future research.

From the point of view of clustering systems, phyloge-
netic networks suggest properties that may also be of rel-
evance in practical data analysis beyond applications in phy-
logenetics. Since clustering systems that satisfy property (L) 
are between hierarchies and weak hierarchies (Bertrand and 

Diatta 2014), they appear as an attractive alternative, e.g., 
to pyramidal clustering (Bertrand and Diatta 2013) for data 
that are not naturally linearly ordered.

Appendix 1: Additional results and proofs

Appendix 1.1: Expansion, contraction, and blocks

We first provide the proof of

Lemma  3 Let N be a network and (u,w) ∈ E(N) be an 
arc that is not a shortcut. Then, CNTR (u,w) applied on 
N results in a network N′ with leaf set X or X ⧵ {w} and 
V(N�) = V(N) ⧵ {u} . Moreover, for all v, v� ∈ V(N�) , 

1.	 v ⪯N v� implies v ⪯N� v� , and
2.	 v ⪯N� v� implies (i) v ⪯N v� or (ii) w ⪯N v� and v ⪯N w� 

for some w� ∈ child N(u) ⧵ {w} that is ⪯N-incomparable 
with w.

In particular, v ≺N′ v′ always implies v ≺N v′ or v and v′ are 
⪯N-incomparable.
Proof  Assume that (u, w) is not a shortcut in N and recall 
that CNTR (u,w) consists in replacing arcs (v, u) by (v, w) 
for all v ∈ par N(u) , replacing arcs (u, v) by (w, v) for all 
v ∈ child N(u) ⧵ {w} , and deleting (u, w) and u. Observe that 
only the arcs incident with u are removed and all inserted 
arcs are incident with w. While u does not exist in N′ any-
more, both the in- and out-neighborhood of w may change in 
such a way that w may get additional in/out-neighbors of u.

We show first that N′ has a single vertex with indegree 
0. Suppose first u ≠ �N , and thus, �N ∈ V(N�) . Since clearly 
�N ∉ child N(u) , we did not insert the arc (w, �N) . Together 
with the fact that all inserted arcs are incident with w, this 
implies that �N still has indegree 0 in N′ . Since u ≠ �N , 
vertex u has at least one in-neighbor, which becomes an 
in-neighbor of w if it was not already an in-neighbor of w 
in N. Now, suppose, for contradiction, that there is a ver-
tex v ∈ V(N�)⧵{�N ,w} with indeg N� (v) = 0 . Since v ≠ �N , 
there must be an arc (u�, v) in N which is no longer con-
tained in N′ . By construction and since v ≠ u , we must have 
u� = u . But then (u, v) = (u�, v) ∈ E(N) implies that (w, v) is 
an arc in N′ , contradicting that indeg N� (v) = 0 . Now, con-
sider the case u = �N . Then, u is the unique in-neighbor of 
w in N. To see this, assume, for contradiction, that there 
is v ∈ par N(w)⧵{u} and thus w ≺N v . Since u = �N is the 
unique root, there is a uv-path. Since v ≠ u , this path passes 
through some child w′ of u. Since w ≺N v ⪯N w� , we must 
have w ≠ w′ and thus w ≺N w′ ≺N u , i.e., (u, w) is a short-
cut, a contradiction. Therefore, u is the unique in-neighbor 
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of w. Moreover, since par N(u) = � , w does not get any new 
in-neighbors. After deletion of u, w has outdegree 0 in N′ . 
Re-using the arguments from the case u ≠ �N , there is no 
vertex v ∈ V(N�)⧵{�N ,w} with indeg N� (v) = 0 . Hence, N′ 
is a directed graph that has a unique vertex with indegree 0, 
i.e., a unique root �N′ , in both cases.

We continue by showing that N′ is a DAG. Assume, 
for contradiction, that N′ contains a directed cycle K com-
prising the vertices v1, v2,… , vk , k ≥ 2 , in this order, i.e., 
(vi, vi+1) , 1 ≤ i ≤ k − 1 and (vk, v1) are arcs in N′ . If all 
arcs along K are arcs of N, then K is a directed cycle in 
N. a contradiction. Hence, at least one arc e in K cannot 
be contained in N. By construction, e must be of the form 
(v, w) with v ∈ par N(u)⧵ par N(w) or of the form (w, v) with 
v ∈ child N(u)⧵ child N(w) . Since w can appear in at most 
two arcs of this form, all other arcs in K must also be arcs in 
N. Assume w.l.o.g. that v1 = w . Then, the following cases 
have to be considered: 

(a)	 (w, v2) = (v1, v2) ∉ E(N) but all other arcs are contained 
in N,

(b)	 (vk,w) = (vk, v1) ∉ E(N) but all other arcs are contained 
in N, and

(c)	 exactly the arcs (w, v2) = (v1, v2) and (vk,w) = (vk, v1) 
are not contained in N.

In case (a), we must have (u, v2) ∈ V(N) by construction, 
i.e., v2 ∈ child N(u) . Since all arcs except (v1, v2) exist in N 
and w = v1 ≠ v2 , there is a v2w-path in N, i.e., w ≺N v2 . This 
together with w, v2 ∈ child N(u) implies that (u, w) is a short-
cut, a contradiction. In case (b), we must have (vk, u) ∈ V(N) 
by construction. Then, N contains a directed cycle along 
v0∶=u, v1, v2,… , vk in this order, i.e., (vi, vi+1) , 0 ≤ i ≤ k − 1 
and (vk, v0) = (v, u) are arcs in N, a contradiction. In case (c), 
we must have (vk, u), (u, v2) ∈ V(N) by construction. Replac-
ing v1 and its incident arcs in the cycle K by vertex u (which 
is not already in V(K) ⊆ V(N�) ) and arcs (vk, u) and (u, v2) 
thus yields a directed cycle K′ in N, a contradiction. In sum-
mary, neither of the three cases is possible and thus N′ is 
acyclic. Since N′ has a unique root and acyclicity is pre-
served as well, N′ is a rooted network.

Since outdeg N(u) > 1 , we do not delete any leaf of N, 
i.e., X ⊆ V(N�) . Moreover, the only vertices whose out-
neighborhood changes are w and the vertices in par N(u) . 
Since all vertices in par N(u) have w as out-neighbor in N′ , 
they do not become leaves. Hence, the leaf set of N′ is either 
X or X ⧵ {w}.

We continue with showing that v ⪯N v� implies v ⪯N� v� 
for all v, v� ∈ V(N�) . Thus, assume that v ⪯N v�, i.e., there 
is a v′v-path P∶=(v� = v1,… , v = vk) in N. If P does not 
contain u, then P is also a v′v-path in N′ since only arcs 
that are incident with u are removed. Now, suppose P con-
tains u. Then, clearly u = vi for some 1 < i < k . Since u 

appears in P at most once and only arcs incident with u 
were removed, all arcs in P except (vi−1, u) and (u, vi+1) are 
also arcs in N′ . Observe that (vi−1,w) ∈ E(N�) holds by con-
struction. If vi+1 = w , then (vi−1, vi+1) is an arc in N′ and 
thus P̃ = (v1,… , vi−1, vi+1,… , vk) is a v′v-path in N′ . Oth-
erwise, we have vi+1 ∈ child N(u) ⧵ {w} and thus (w, vi+1) 
is an arc in N′ . The vertex w is not contained in P. To see 
this, observe first that w ≠ vi+1 and w ∈ child N(u = vi) 
imply w ≺N vj for 1 ≤ j ≤ i . If w = vj for some i + 1 < j ≤ k , 
then w ≺N vi+1 which implies that (u, w) is a shortcut, a 
contradiction. Taken together, these arguments imply that 
P̃ = (v1,… , vi−1,w, vi+1,… , vk) is a v′v-path in N′ . Hence, 
we have v ⪯N� v� is all cases.

Conversely, suppose v ⪯N� v� , i.e., there is a v′v-path 
P�∶=(v� = v1,… , v = vk) in N′ . If all arcs in P′ are arcs in N, 
then P′ is a v′v-path in N and thus v ⪯N v� . Now, suppose that 
P′ contains at least one arc that is not in N. By construction, 
any such arc must be incident with w and thus P′ contains at 
most two arcs that are not in N. These are then consecutive 
in P′ . We therefore have to consider three cases: 

(a’)	� (w, vi+1) = (vi, vi+1) ∉ E(N) for some 1 ≤ i < k but all 
other arcs in P′ are contained in N,

(b’)	� (vi−1,w) = (vi−1, vi) ∉ E(N) for some 1 < i ≤ k but all 
other arcs in P′ are contained in N, and

(c’)	� exa c t ly  t h e  a r c s  (vi−1,w) = (vi−1, vi)  a n d 
(w, vi+1) = (vi, vi+1) with 1 < i < k in P′ are not con-
tained in N.

 In case (a’), we have by construction that (u, vi+1) ∈ E(N) , 
i.e., vi+1 ∈ child N(u) . Since all other arcs of P′ are arcs 
in N, the subpath of P′ from v′ to w is a v′w-path in N 
and thus w ⪯N v� . Similarly, the subpath from vi+1(≠ w) 
to v is a vi+1v-path in N implying that v ⪯N vi+1 with 
vi+1 ∈ child N(u)⧵{w} . Clearly w ≺N vi+1 is not possible 
since otherwise (u, w) would be a shortcut in N. Hence, 
we have either v ⪯N vi+1 ≺N w ⪯N v� or w and vi+1 are ⪯N

-incomparable children of u.
In case (b’), we have by construction that (vi−1, u) ∈ E(N) , 

i.e., vi−1 ∈ par N(u) . Since all arcs of P′ except (vi−1, vi) are 
also in N, we have v ⪯N vi = w ≺N u ≺N vi−1 ⪯N v�.

In case  (c’),  we have by construction that 
(vi−1, u), (u, vi+1) ∈ E(N) . Since all arcs of P′ except 
(vi−1, vi) and (vi, vi+1) are also arcs in N, we obtain 
v ⪯N vi+1 ≺N u ≺N vi−1 ⪯N v� . In summary, in all cases 
it holds that at least one of (i) v ⪯N v� or (ii) w ⪯N v� and 
v ⪯N w� for some w� ∈ child N(u) ⧵ {w} that is ⪯N-incom-
parable with w is true.

For the final statement, assume that v ≺N′ v′ . If v� ⪯N v 
would, then (1) implies v� ⪯N� v , a contradiction. Conse-
quently, we have v ≺N v′ or v and v′ are ⪯N-incomparable. 	
� ◻
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In the following, we show that the operation EXPD (w) 
does not introduce shortcuts and that neither EXPD (w) nor 
CNTR (w�,w) increases the level of a network. Besides pro-
viding additional results, we give here the proofs for state-
ments that were omitted in the main text.

Lemma 72  Let N1 be a network, N2 be the network obtained 
from N1 by applying EXPD (w1) for some w1 ∈ V(N1) , and 
w2 be the unique vertex in V(N2) ⧵ V(N1) . Then, for every 
shortcut (u, v) ∈ E(Ni) , it holds either (i) v ≠ wi and (u, v) is 
a shortcut in Nj or (ii) v = wi and (u,wj) is a shortcut in Nj 
such that i, j ∈ {1, 2} are distinct.

Proof  In the following, we put N = N1 , N� = N2 , w = w1 
and w� = w2 . Recall that by Lemma 5, N and N′ are (N�,N)

-ancestor-preserving.
Suppose first that (u, v) ∈ E(N�) is a shortcut in N′ , i.e., 

there is a v� ∈ child N� (u) ⧵ {v} such that v ≺N′ v′ . The 
fact that N′ is acyclic, v ≺N′ v′ ≺N′ u and (u, v) ∈ E(N�) 
together imply that indeg N� (v) ≥ 2 . By construction, it holds 
par N� (w) = {w�} and child N� (w�) = {w} which yield v ≠ w 
and u ≠ w′ , respectively. 

	 (i)	 Suppose first that v ≠ w′ . Then, (u, v) is also an arc 
in N since moreover u ≠ w′ and all newly inserted 
arcs are incident with w′ . Similarly, if in addition 
v′ ≠ w′ , then (u, v�) ∈ E(N) and moreover v ≺N′ v′ 
implies v ≺N v′ . Hence, (u, v) is a shortcut in N. If 
on the other hand v� = w� , then w ∈ child N(u) and 
v ≺N� v� = w� implies that there is a w′v-path in N′ . 
Since w is the unique child of w′ and v ≠ w′ , this path 
must pass through w and thus v ≺N′ w which together 
with v,w ∈ V(N) implies v ≺N w . Hence, (u, v) is a 
shortcut in N.

	 (ii)	 Suppose now that v = w� . Then, by construction, 
(u,w) ∈ V(N) . Moreover, we have w ≺N� w� ⪯N� v� . In 
particular, u, w, and v′ are all vertices in N′ . Hence, 
w ⪯N� v� implies w ⪯N v� and since all newly inserted 
arcs are incident with w′ , (u, v�) ∈ V(N�) is also an 
arc in N. In summary, therefore, (u,w) ∈ V(N) and 
w ⪯N v� for v� ∈ child N(u)⧵{w} , i.e., (u,  w) is a 
shortcut in N.

Suppose now that (u, v) ∈ E(N) is a shortcut in N, i.e., there 
is a v� ∈ child N(u) ⧵ {v} such that v ≺N v′.

(i’) Suppose v ≠ w . By construction, the arc (u, v) still 
exists in N′ . Since moreover u, v, v� ∈ V(N) ⊂ V(N�) , 
v ≺N v′ ≺N u and N and N′ are (N�,N)-ancestor-preserving 
(cf. Lemma 5), we have v ≺N′ v′ ≺N′ u . Hence, (u, v) must 
be a shortcut in N′.

(ii’) Finally, suppose v = w . Observe that u� ⪯N v�(≺N u) 
for some u� ∈ par N(v)⧵{u} and that u, u�, v� ∈ V(N) . In 

particular, it holds u′ ≺N′ u since N and N′ are (N�,N)-ances-
tor-preserving (cf. Lemma 5). By construction, we have 
(u,w�), (u�,w�) ∈ V(N�) and thus w′ ≺N′ u′ . In summary, we 
have w′ ≺N′ u′ ≺N′ u , which implies that (u,w�) is a shortcut 
in N′ . 	�  ◻

Lemma 73  Let N be a network, (w�,w) ∈ E(N) be an arc 
that is not a shortcut, and N′ be the network obtained 
from N by applying CNTR (w�,w) . If two distinct vertices 
u, v ∈ V(N�) are in a common non-trivial block of N′ , then 
either (i) w ∉ {u, v} and u, v ∈ V(N) are in a common non-
trivial block of N or (ii) w ∈ {u, v} and the unique element 
in {u, v} ⧵ {w} and w′ are in a common block in N.

P r o o f   S u p p o s e  t w o  d i s t i n c t  v e r t i c e s 
u, v ∈ V(N�) = V(N) ⧵ {w�} are in a common non-trivial 
block of N′ . Thus, u and v are contained in an undirected 
cycle K′ in N′ . If (the directed versions of) all arcs in K′ are 
arcs of N, then K′ is an undirected cycle in N, and thus, u and 
v are contained in a non-trivial block of N. Now, suppose that 
at least one arc e in K′ is not contained in N. By construction, 
e must be of the form (p, w) with p ∈ par N(w

�)⧵ par N(w) 
or of the form (w, c) with c ∈ child N(w

�)⧵ child N(w) . Since 
such an arc is incident with w, the only arcs of N′ that pos-
sibly are not contained in N are the two arcs incident with w 
in K′ . Hence, we have to consider the following cases: 

(1)	 both of the incident arcs of w in K′ are not contained in 
N but all other arcs are contained in N, 

(a)	 w is incident in K′ with two distinct parents 
p1, p2 ∈ par N(w

�)⧵ par N(w),
(b)	 w is incident in K′ with two distinct children 

c1, c2 ∈ child N(w
�)⧵ child N(w) , or

(c)	 w  i s  i n c i d e n t  i n  K′  w i t h  a  p a r-
en t  p ∈ par N(w

�)⧵ par N(w) and  a  ch i ld 
c ∈ child N(w

�)⧵ child N(w).

(2)	 exactly one of the arcs incident with w in K′ is not con-
tained in N, while all other arcs of N′ are contained in 
N. 

(a)	 w  i s  inc ident  in  K′  wi th  a  paren t 
p ∈ par N(w

�)⧵ par N(w) , or
(b)	 w  i s  i nc iden t  i n  K′  w i t h  a  ch i ld 

c ∈ child N(w
�)⧵ child N(w).

Observe that w� ∉ V(N�) and thus w′ is not contained in 
K′ . One therefore easily verifies that, in each of cases (1a), 
(1b), and (1c), replacing w by w′ in K′ yields an undirected 
cycle K in N. If w ∉ {u, v} , then u and v are contained in K 
and thus contained in a common non-trivial block of N. If 
on the other hand w ∈ {u, v} , then the unique element in 
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{u, v} ⧵ {w} and w′ are contained in K and thus contained in 
a common non-trivial block of N. In case (2a), K′ contains 
the arc (p, w) by construction of N′ . Replacing this arc by 
vertex w′ and the arcs (p,w�), (w�,w) ∈ V(N) therefore yields 
an undirected cycle K in N that contains all vertices in K′ . In 
particular, therefore, u, v ∈ V(K�) are contained in a common 
non-trivial block in N. The latter is also true in case (2b) by 
similar arguments. 	�  ◻

From Lemma 8, we obtain

Corollary 45  Let N be a network and u, v,w ∈ V(N) three 
distinct vertices. If u and v are contained in block Buv , u and 
w are contained in block Buw , and v and w are contained in 
block Bvw , then Buv = Buw = Bvw.

Proof  If u ∉ {maxBuv, maxBuw} , then Lemma 9 immedi-
ately implies that Buv = Buw . Thus, suppose (a) u = maxBuv 
or (b) u = maxBuw . In Case  (a), we have v ≺N u and 
v ≠ maxBuv . If v ≠ maxBvw , then Buv = Bvw by Lemma 9. 
Now, assume v = maxBvw which implies w ≺N v and 
w ≠ maxBvw . If w ≠ maxBuw , then Buw = Bvw by Lemma 9. 
The case w = maxBuw is not possible since otherwise 
u ≺N w , and thus, u ≺N w ≺N v ≺N u , a contradiction. One 
argues similarly in Case (b). Hence, in all possible case, u, v, 
and w are contained in a common non-trivial block B. Since 
each of Buv , Buw , and Bvw shares two vertices with B, it holds 
B = Buv = Buw = Bvw . 	�  ◻

Lemma 74  Let N be a network, (w�,w) ∈ E(N) be an arc 
that is not a shortcut, and N′ be the network obtained 
from N by applying CNTR (w�,w) . Let B′ be a non-trivial 
block of N′ . Then, there is a non-trivial block B of N with 
V(B�)⧵{w} ⊆ V(B) . Moreover, w ∈ V(B�) and w ∉ V(B) 
imply w� ∈ V(B).

If v ∈ V(B�) ⧵ {w} is a hybrid vertex and properly con-
tained in B′ , then v is a properly contained hybrid vertex in 
B. If w is a properly contained hybrid vertex in B′ , then at 
least one of w and w′ is a properly contained hybrid vertex 
in B.

Proof  Suppose B′ is a non-trivial block of N′, and thus, 
it contains at least three vertices. In particular, we can 
find two distinct vertices in u, v such that w ∉ {u, v} . By 
Lemma 73, u, v ∈ V(N) are in a common non-trivial block 
B∶=Buv of N. Now, suppose there is u� ∈ V(B�) ⧵ {w, u, v} . 
By Lemma 73, u, u� ∈ V(N) and v, u� ∈ V(N) , resp., are in 
common non-trivial blocks Buu′ and Bvu′ of N. By Corol-
lary 45, u, v, and u′ are contained in B = Buv = Buu� = Bvu� 
of N. Since u� ∈ V(B�) ⧵ {w, u, v} was chosen arbitrarily and 
blocks that share two vertices are equal by Observation 1, 
we have V(B�) ⧵ {w} ⊆ V(B).

Now, suppose w ∈ V(B�) and w ∉ V(B) . By Lemma 75(ii), 
u,w� ∈ V(N) and v,w� ∈ V(N) , resp., are in common non-
trivial blocks Buw′ and Bvw′ of N. By Corollary 45, w′ is con-
tained in Buw� = Bvw� = Buv = B.

Suppose v ∈ V(B�) ⧵ {w} is a hybrid vertex and prop-
erly contained in B′ . By Lemma  11, all of the at least 
two vertices in par N� (v) are contained in B′ . Hence, let 
p, p� ∈ par N� (v) be two distinct parents, and assume 
w.l.o.g. that p ≠ w . Note that v, p ∈ V(B�)⧵{w} ⊆ V(B) . 
Moreover, since all newly inserted arcs to obtain N′ from 
N are incident with w, the arc (p, v) ∈ E(N�) is also an arc 
in N. Now, consider p′ . If (p�, v) ∈ E(N) , then v is a hybrid 
vertex in N. If (p�, v) ∉ E(N) , then, by construction of N′ , 
we must have p� = w and v ∈ child N(w

�)⧵ child N(w) . 
Hence, we have (w�, v) ∈ E(N) . Together with w′ ≠ p (since 
p ∈ V(N�) = V(N)⧵{w�} ) this implies that v is a hybrid ver-
tex in N also in this case. Therefore, and since p ∈ par N(v) 
and v, p ∈ V(B) , Lemma 11 implies that v is properly con-
tained in B.

Suppose w is a properly contained hybrid vertex in B′ . 
By Lemma 11, all of the at least two vertices in par N� (w) 
are contained in B′ . We distinguish cases (a) w ∈ V(B) and 
(b) w ∉ V(B).

Case  (a): w ∈ V(B) . Suppose first that there is 
p ∈ par N� (w) ∩ par N(w) . We have p ∈ V(B�)⧵{w} ⊆ V(B) . 
Moreover, w has at least the two distinct parents w′ and p in 
N, i.e., w is a hybrid vertex in N. By Lemma 10 and since 
w and its parent p are both contained in B, w is properly 
contained in B. Suppose now that par N� (w) ∩ par N(w) = � . 
By construction of N′ , this implies that all of the at least 
two vertices in par N� (w) must be vertices in par N(w�) . 
Hence, w′ is a hybrid vertex in N with at least two parents 
p and p′ that are parents of w in N′ and thus contained in 
V(B�) ⧵ {w} ⊆ V(B) . By Lemma 10, {w�, p, p�} ∈ V(B̃) for 
some block B̃ of N. Since B and B̃ are blocks in N that share 
the two vertices p and p′ , we conclude B = B̃ . In particular, 
w′ is a properly contained hybrid vertex in B.

Case  (b): w ∉ V(B) . We have already seen that this 
implies that w� ∈ V(B) . Since w is properly contained in 
B′ , all of its at least two parents in N′ are also contained 
in B′ . Let p ∈ par N� (w) . Suppose, for contradiction, that 
p ∈ par N(w) . Then, w has at least the two distinct parents 
w′ and p in N, i.e., w is a hybrid vertex in N. By Lemma 10, 
{w,w�, p} ∈ V(B̃) for some block B̃ of N. Since B and B̃ are 
blocks in N that share the two vertices w′ and p, we con-
clude B = B̃ and thus w ∈ V(B) , a contradiction. Hence, 
p ∉ par N(w) . Together with p ∈ par N� (w) , this implies 
p ∈ par N(w

�) . Since the latter is true for all of the at least 
two vertices p� ∈ par N� (w) , w′ must be a hybrid vertex in 
N. Therefore, and because p ∈ par N(w

�) and w�, p ∈ V(B) , 
Lemma 11 implies that w′ is properly contained in B. 	� ◻
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We are now in the position to prove Lemma 12. To recall, 
Lemma 12 states that CNTR (w�,w) of a non-shortcut arc 
(w�,w) in a level-k network N preserves the property of the 
resulting network N′ to be level-k.

Proof of Lemma 12  Suppose, for contraposition, that N′ is 
not level-k. Hence, there is a block B′ in N′ that properly 
contains at least k + 1 hybrid vertices. Denote the set of these 
vertices by A. By Lemma 74, it holds V(B�)⧵{w} ⊆ V(B) for 
some non-trivial block B of N, and in particular, all vertices 
in A ⧵ {w} are properly contained hybrid vertices in B. If 
w ∉ A , then B properly contains at least k + 1 hybrid verti-
ces. Otherwise, w is a properly contained hybrid vertex in B′ 
and B properly contains at least k hybrid vertices in A ⧵ {w} , 
and, by Lemma 74, at least on of w,w� ∉ A⧵{w} is an addi-
tional properly contained hybrid vertex in B. Therefore, the 
block B in N properly contains at least k + 1 hybrid vertices 
in both cases, and thus, N is not level-k. 	�  ◻

Lemma 75  Let N be a network, N′ be the network obtained 
from N by applying EXPD (w) for some w ∈ V(N) , and w′ be 
the unique vertex in V(N�) ⧵ V(N) . If two distinct vertices 
u, v ∈ V(N�) are in a common non-trivial block of N′ , then 
either (i) w� ∉ {u, v} and u, v ∈ V(N) are in a common non-
trivial block of N or (ii) w� ∈ {u, v} and w and the element 
in {u, v} ⧵ {w�} are in a common block in N.

Proof  Suppose two distinct vertices u, v ∈ V(N�) are in a 
common non-trivial block B′ of N′ . Then, u and v lie in an 
undirected cycle K′ in N′ . 

	 (i)	 Assume first that w� ∉ {u, v} , and thus, u, v ∈ V(N) . 
If w′ is not contained in K′ , then all arcs in K′ are 
also arcs in N since all newly inserted arcs are inci-
dent with w′ . Hence, u and v lie on an undirected 
cycle in N and are thus contained in a common 
non-trivial block B in this case. Now, suppose that 
K′ contains w′ . Assume that w′ is incident with its 
unique child w in K′ . Then, by construction of N′ , 
the second vertex that is incident with w′ in K′ must 
be a vertex p ∈ par N� (w�) = par N(w) . In particular, 
we have (p,w) ∈ E(N) and (p,w), (w, p) ∉ E(N�) . 
The latter implies that p and w are not incident in 
K′ and therefore K′ contains at least one additional 
vertex x ∉ {p,w�,w} . Together with the fact that N 
contains all arcs in K′ except (p,w�) and (w�,w) , the 
latter arguments imply that there is an undirected 
cycle K in N formed by the vertices in V(K�) ⧵ {w�} 
and the arcs in (E(K�)⧵{(p,w�), (w�,w)}) ∪ {(p,w)} . 
Hence, u, v ∈ V(K�)⧵{w�} lie in a common non-
trivial block of N. Now, suppose w′ is not incident 
with its unique child w in K′ , and thus, the two 

incident vertices in K′ must be two distinct ele-
ment p1, p2 ∈ par N� (w�) = par N(w) . Thus, we 
have (p1,w), (p2,w) ∈ E(N) . Since (p1,w�) and 
(p2,w

�) are the only arcs incident with w′ in K′ , 
all other arcs in K′ are also arcs in N. Thus, con-
sider the (not necessarily induced) subgraph K of N 
formed by the vertices (V(K�)⧵{w�}) ∪ {w} and arcs 
(E(K�) ⧵ {(p1,w

�), (p2,w
�)}) ∪ {(p1,w), (p2,w)}   . 

If w ∉ V(K�) , then one easily verifies that K is an 
undirected cycle in N that contains u and v and 
thus they are contained in a common block B of 
N. On the other hand, if w ∈ V(K�) , then its two 
incident vertices in K′ are two distinct elements 
c1, c2 ∈ child N� (w) = child N(w) since, by assump-
tion, w is not incident in K′ with its unique parent 
w′ . In this case, one easily verifies that K consists 
of two undirected cycles that share only the vertex 
w and each of the two cycles contains exactly one 
of p1, p2 ∈ par N(w) and one of c1, c2 ∈ child N(w) . 
If u and v are contained in the same of these two 
cycles, then they are contained in a common non-
trivial block of N. Otherwise, they are contained 
in non-trivial blocks B and B′ , resp., that each con-
tain w and one of its parents. The latter implies that 
w ∉ {maxB, maxB�} . Hence, we have B = B� by 
Lemma 9.

	 (ii)	 Suppose now that w� ∈ {u, v} , say v = w� . We can 
essentially reuse the arguments from case (i), with 
exception of the case that w′ is not contained in K′ 
(which is impossible since w� = v ∈ V(K�) ), since we 
always have constructed an undirected cycle in N that 
contains u,w ∈ V(N) . Hence, they are contained in a 
non-trivial block of N.

	�  ◻

Lemma 76  Let N be a network, N′ be the network obtained 
from N by applying EXPD (w) for some w ∈ V(N) , and w′ 
be the unique vertex in V(N�) ⧵ V(N) . Let B′ be a non-triv-
ial block of N′ . Then, there is a non-trivial block B of N 
with V(B�) ⧵ {w�} ⊆ V(B) . Moreover, w� ∈ V(B�) implies 
w ∈ V(B).

If v ∈ V(B�) ⧵ {w�} is a hybrid vertex and properly con-
tained in B′ , then v is a properly contained hybrid vertex in 
B. If w� ∈ V(B�) and w′ is a hybrid vertex, then w is a prop-
erly contained hybrid vertex in B.

Proof  Suppose B′ is a non-trivial block of N′, and thus, it 
contains at least three vertices. In particular, we can find two 
distinct vertices in u, v such that w� ∉ {u, v} . By Lemma 75, 
u, v ∈ V(N) are in a common non-trivial block B∶=Buv of N. 
Now, suppose there is u� ∈ V(B�) ⧵ {w�, u, v} . By Lemma 75, 
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u, u� ∈ V(N) and v, u� ∈ V(N) , resp., are in common non-
trivial blocks Buu′ and Bvu′ of N. By Corollary 45, u, v, and 
u′ are contained in B = Buv . Since u� ∈ V(B�)⧵{w�, u, v} was 
chosen arbitrarily and blocks that share two vertices are 
equal by Observation 1, we have V(B�) ⧵ {w�} ⊆ V(B).

Now, suppose w� ∈ V(B�) . If w ∈ V(B�) , then we have 
already seen that w ∈ V(B) . Hence, suppose w ∉ V(B�) . By 
Lemma 75, u,w ∈ V(N) and v,w ∈ V(N) , resp., are in com-
mon non-trivial blocks Buw and Bvw of N. By Corollary 45, 
w must also be contained in B.

Suppose v ∈ V(B�) ⧵ {w�} is a hybrid vertex and prop-
erly contained in B′ . Since w has a unique parent in N′ , we 
have v ≠ w and thus par N� (v) = par N(v) . Moreover, since v 
is properly contained in B′ , we have par N� (v) ∈ V(B�) and 
thus par N� (v) ∈ V(B) . Taken together, the latter arguments 
imply that v ≠ maxB , i.e., v is properly contained in B.

Suppose w� ∈ V(B�) and w′ is a hybrid vertex. Since w′ has 
a unique child and must lie on an undirected cycle in N′ , w′ 
must be properly contained in B′ . Therefore, all of its at least 
two parent are also contained in B′ and thus in B. Together 
with the fact that w ∈ V(B) and par N� (w�) = par N(w) , we 
obtain that w is a hybrid vertex and properly contained in 
B. 	�  ◻

We now prove Lemma 13. To recall, Lemma 13 states 
that two networks N and N′ are always level-k whenever 
N′ is obtained from N by applying EXPD (w) for some 
w ∈ V(N) and at least one of them is level-k.

Proof of Lemma 13  Denote by w′ the unique vertex in 
V(N�) ⧵ V(N) . Suppose that N′ is not level-k. Hence, there 
is a block B′ in N′ that properly contains at least k + 1 hybrid 
vertices. Denote the set of these vertices by A. Observe that 
w ∉ A since it has a single parent w in N′ . By Lemma 76, it 
holds V(B�)⧵{w�} ⊆ V(B) for some non-trivial block B of N, 
and in particular, all vertices A ⧵ {w�} are properly contained 
hybrid vertices in B. If w� ∉ A , then B properly contains at 
least k + 1 hybrid vertices. Otherwise, B properly contains 
at least k hybrid vertices in A ⧵ {w�} and, by Lemma 76, 
additionally the hybrid vertex w ∉ A . Therefore, the block B 
in N properly contains at least k + 1 hybrid vertices in both 
cases, and thus, N is not level-k.

Conversely, suppose that N′ is level-k. Observe that N is 
recovered from N′ by applying CNTR (w�,w) . By Lemma 12, 
therefore, N is also level-k. 	�  ◻

Appendix 1.2: Closed clustering systems

As promised, we provide here a short proof of Lemma 16, 
which states that a clustering system C  is closed if and only 
if A,B ∈ C  and A ∩ B ≠ � implies A ∩ B ∈ C .

Proof of Lemma 16  Let C  be closed and let A,B ∈ C  . Since 
cl is enlarging, we have A ∩ B ⊆ cl (A ∩ B) . Moreover, since 
A ∩ B ⊆ A,B , it holds by Eq. (2) that cl (A ∩ B) ⊆ A ∩ B . 
Hence, cl (A ∩ B) = A ∩ B and the definition of “closed” 
implies A ∩ B ∈ C  . Assume now that C ∩ C� ∈ C  for all 
C,C� ∈ C  . Equation (2) implies cl (A) = A for all A ∈ C  . It 
remains to show that, for A ∈ 2X , cl (A) = A implies A ∈ C  . 
By Eq.  (2), cl (A) can be written as the intersection 
cl (A) =

⋂k

i=1
Ci of a finite number k of clusters Ci ∈ C  with 

A ⊆ Ci . Since A ⊆ X ∈ C  we have k ≥ 1 . If k ∈ {1, 2} , 
cl (A) = A ∈ C  follows immediately from the assumption 
that C ∩ C� ∈ C  for all C,C� ∈ C  . Otherwise, we can con-
struct a series of intersections C′

i
 , 1 ≤ i ≤ k , by setting 

C�
1
∶=C1 and C�

j
∶=C�

j−1
∩ Cj for 2 ≤ j ≤ k . By definition, 

C�
1
= C1 ∈ C  . Moreover, if C�

j−1
∈ C  , then C�

j
∈ C  holds by 

the assumption and the fact that Cj ∈ C  for all 2 ≤ j ≤ k . By 
induction, therefore, we obtain C�

k
∈ C  . We have C�

k
= cl (A) 

by construction and thus cl (A) = A ∈ C  . 	�  ◻

Appendix 1.3: Algorithmic details

We show here the correctness and runtime results for 
Check-L1-Compatibility.

Proof of Theorem 9  Let C ⊆ 2X be a clustering system. Sup-
pose first that Check-L1-Compatibility returns a 
network. In particular, C  satisfies (L) in this case. By Obser-
vation 15 and Lemma 65, I(C) is correctly computed and 
satisfies (L). By definition, I(C) is closed. The latter two 
arguments together with Proposition 21 imply that there is 
a (separated, phylogenetic) level-1 network on X such that 
C ⊆ I(C) = CN.

Conversely, suppose that Check-L1-Compatibil-
ity returns “no solution”. Assume for contradiction 
that there is a level-1 network N with C ⊆ CN . By Theo-
rem 8, CN is closed and satisfies (L). By Corollary 29, Prop-
erty (L) implies that C  is weak hierarchy. As shown in Ban-
delt and Dress (1989) (right below Lemma 1), this in turn 

implies that |C| ≤ |CN| ≤
(
|X| + 1

2

)
=

(
|X|
2

)
+ |X| . 

Inputs larger than this bound are therefore correctly rejected 
immediately. If, on the other hand, Property (L) is not satis-
fied for C  , then by the definition of Property (L), its superset 
CN also violates (L), a contradiction. Therefore, such a net-
work N cannot exist and Check-L1-Compatibility 
correctly exits with a negative answer.

We now proceed to show that the algorithm can be imple-
mented to run in O(|C|2|X|) ⊆ O(|X|5) time. To this end, 
we first enumerate the elements in X from 1 to |X| . We then 
initialize a list L containing a bitvector bi of size |X| for each 
Ci ∈ C  that has a 1-entry at position j if and only if the jth 
element of X is contained in Cj , and a 0-entry otherwise 



356	 Theory in Biosciences (2023) 142:301–358

1 3

requiring a total effort of O(|C||X|) time. Moreover, we cre-
ate an initially arcless auxiliary graph G whose vertices are 
(unique identifiers of) the clusters in C  . In the end, two clus-
ters Ci,Cj ∈ C  will be connected by an arc in G precisely if 
they overlap. Moreover, every arc {Ci,Cj} will be associated 
with a pointer to a bitvector that represents the intersection 
Ci ∩ Cj.

To achieve this, we proceed as follows for every pair 
Ci,Cj ∈ C  . We compute the bitvector b corresponding to 
the intersection Ci ∩ Cj as b ← bi ∧ bj . The clusters Ci and Cj 
overlap if and only if the number of 1-entries in b is greater 
than 0 but less than |Ci| and |Cj| (the latter cardinalities can 
be pre-computed for all clusters in C  ). If the clusters do 
overlap, then we continue as follows. If Ci is already adja-
cent with some other cluster in C ⧵ {Ci,Cj} , then we pick 
Ck among them arbitrarily. Let b′ be the bitvector associated 
with the arc {Ci,Ck} in G. By (L), b and b′ must be equal, 
which can be checked in O(|X|) . If they are not equal, we 
can exit “no solution.” If existent, we proceed analo-
gously with some neighbor Cl ∈ C⧵{Ci,Cj} of Cj in G with 
associated bitvector b′′ . We add the arc {Ci,Cj} to G. If at 
least one of Ci and Cj previously had a neighbor Ck or Cj , 
respectively, then we associate the bitvector b′ or b′′ , respec-
tively, with the new arc {Ci,Cj} and discard b. Otherwise, 
we associate b with {Ci,Cj} and add b to L . In summary, 
for a pair Ci,Cj ∈ C  , we only perform a constant number of 
operations, all of which require at most O(|X|) time. Hence, 
we obtain a total effort of O(|C|2|X|) time for processing all 
pairs of clusters in C .

One easily verifies that C  satisfies (L) if the algorithms 
did not exit at this point because all overlaps are represented 
by arcs in G and, for each C ∈ C  , the intersections with its 
overlapping clusters are stepwisely added and compared to 
the overlaps that where already computed. Moreover, we 
have added at most ⌊�C�∕2⌋ bitvectors to L . To see this, recall 
that we only added a new bitvector b (associated with arc 
{Ci,Cj} ) if neither of Ci and Cj had any other neighbors at 
that point. Since each arc is incident with two clusters, we 
can clearly do this at most ⌊�C�∕2⌋ times until all but possible 
one clusters are adjacent with some other cluster. Hence, L 
still contains only O(|C|) bitvectors. In particular, L contains 
all clusters in I(C) = C ∪ {C ∩ C� ∣ C,C� ∈ C overlap} (rep-
resented by their bitvectors) at least once.

We  n o w  s o r t  L  l e x i c o g r a p h i c a l l y  i n 
O(|X||C| log |C|) = O(|X| |C| log |X|) , where the additional 
factor |X| originates from the fact that each comparison 
of bitvectors requires O(|X|) comparisons of their entries. 
Removal of all duplicates in L now takes O(|C||X|) time, 
e.g., by iterating through the list and comparing each vector 
to the last added bitvector in a newly constructed list. The 
bitvectors in this final list L are thus in a 1-to-1 correspond-
ence with the clusters in I(C).

If we are only interested in the existence of a (separated, 
phylogenetic) level-1 network N such that C ⊆ CN and the 
clustering system CN , then we can stop here after a total 
effort of O(|C|2|X|) ⊆ O(|X|5) time.

Otherwise we continue with the construction of the inclu-
sion order, i.e., the Hasse diagram of I(C) . In the following, 
the cluster Ci ∈ I(C) corresponds to the ith bitvector in L . 
We initialize a |I(C)| × |I(C)|-matrix M with all zero entries 
(requiring O(|C|2) time and space). In the end, we will have 
Mi,j = 1 if and only if Ci ⊊ Cj . Since L is still sorted lexi-
cographically, observe that if Ci ⊊ Cj , then i < j . Hence, 
it suffices to check for all 1 ≤ i < j ≤ |I(C)| whether all 
1-entries in bi are also 1-entries in bj and, if so, set Mi,j = 1 . 
Finally, the adjacency matrix of ℌ[I(C)] is obtained from 
M by Transitive Reduction. As shown in Aho et al. (1972) 
for DAGs, this task has the same complexity as Transitive 
Closure, which, in our setting, is bounded O(|X|2�) . Here, 
� ≤ 2.3729 is the “matrix multiplication constant.” Thus, 
ℌ[I(C)] can also be constructed in quintic time. Thus, we 
obtain a regular (and thus phylogenetic) level-1 network 
N ∼ ℌ[I(C)] in O(|X|5) time. This network can be modi-
fied to be separated by arc expansion at all hybrid vertices v 
with outdeg (v) . Since ℌ[I(C)] has O(|X|2) vertices, for each 
vertex, one checks in constant time whether indeg (v) > 1 
and outdeg (v) > 1 , and EXPD (v) requires constant effort for 
moving the list of out-neighbors from v to the newly inserted 
vertex, the total effort for the modification of the Hasse dia-
gram is bounded by O(|X|2) . 	�  ◻
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