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Abstract In this paper, we present a rigorous mathematical

analysis of a deterministic model for the transmission

dynamics of hepatitis C. The model is suitable for populations

where two frequent modes of transmission of hepatitis C virus,

namely unsafe blood transfusions and intravenous drug use,

are dominant. The susceptible population is divided into two

distinct compartments, the intravenous drug users and indi-

viduals undergoing unsafe blood transfusions. Individuals

belonging to each compartment may develop acute and then

possibly chronic infections. Chronically infected individuals

may be quarantined. The analysis indicates that the eradication

and persistence of the disease is completely determined by the

magnitude of basic reproduction number Rc. It is shown that for

the basic reproduction number Rc \ 1, the disease-free equi-

librium is locally and globally asymptotically stable. For

Rc [ 1, an endemic equilibrium exists and the disease is uni-

formly persistent. In addition, we present the uncertainty and

sensitivity analyses to investigate the influence of different

important model parameters on the disease prevalence. When

the infected population persists, we have designed a time-

dependent optimal quarantine strategy to minimize it. The

Pontryagin’s Maximum Principle is used to characterize the

optimal control in terms of an optimality system which is

solved numerically. Numerical results for the optimal control

are compared against the constant controls and their efficiency

is discussed.

Keywords Hepatitis C � Quarantine � Optimal control �
Basic reproduction number

Introduction

Hepatitis C virus (HCV) is the common cause of liver dis-

eases worldwide and a major public health problem (Bi-

sceglie 1998). The disease hepatitis C was first recognized in

1975 and the causative agent HCV was identified in 1989.

Hepatitis C is characterized by an acute, often asymptomatic

stage, followed in most cases by chronic infection that can

lead to cirrhosis and liver cancer. HCV, which causes hepa-

titis C in humans, is a small, enveloped, positive-sense single-

stranded RNA virus of the family Flaviviridae. Replication of

the RNA-based virus involves the use of the enzyme RNA-

dependent RNA polymerase (RdRP) that has a high error rate.

Consequently, the virus mutates very rapidly and has no

single genotype. Currently, there are seven known genotypes

of HCV (Jawaid and Khuwaja 2008; Torresi et al. 2011).

According to World Health Organization, nearly 3 % of the

world population has been infected with HCV. An estimated

170 million people globally are infected with chronic HCV

and are at risk of developing liver cancer/cirrhosis, while

nearly 350,000 people die worldwide as a result of hepatitis

C-related liver diseases each year (Waheed et al. 2009; Jiw-

ani and Gul 2011).
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Hepatitis C is characterized by an acute and a chronic

stage. Initial infection by HCV results in acute hepatitis C,

which is largely asymptomatic. Only about 15 % of cases

display mild symptoms such as decreased appetite, fatigue,

nausea, muscle or joint pains, and weight loss. The infec-

tion resolves spontaneously in 20% of the cases. About

80% of the people exposed to HCV, however, eventually

develop a chronic infection, thus progressing to the chronic

stage of the disease. This stage can last for decades. Most

people experience minimal or no symptoms during the

initial few years of the infection. After several years of

living with the disease hepatitis C becomes the primary

cause of cirrhosis and liver cancer. Nearly 5–20 % of

chronic hepatitis C patients develop cirrhosis over 30 years

and 1–5 % die from cirrhosis or liver cancer. Those who

develop cirrhosis have a 20-fold greater risk of hepato-

cellular carcinoma, a rate of 13 % per year. It is estimated

that hepatitis C is the cause of 27 % of cirrhosis cases and

25 % of hepatocellular carcinoma worldwide (Bisceglie

et al. 1991; Fattovich 1997; Kiyosawa 1990; Hutin 2004).

The standard treatment of infected individuals comprises

a combination of pegylated interferon alpha (Peg IFN-a)

and the potent antiviral drug Ribavirin for a period of 24 or

48 weeks, depending on the HCV genotype (Jawaid and

Khuwaja 2008). The response to treatment also varies by

genotype and ranges from 70–80 % for genotypes 2 and 3 to

almost non-existent for genotype 6. Also, recent treatment

advances of genotype 1 infection using directly acting

antiviral agents are encouraging; there is still a need to

develop an effective vaccination strategy capable of pre-

venting infection. The vaccines used in clinical and pre-

clinical trials include recombinant proteins, DNA-based

proteins, synthetic peptide vaccines, etc. The implementa-

tion and success of the above-mentioned vaccines along

with future designs of vaccine strategies have been dis-

cussed in detail by Toressi et al. (2011). Furthermore, the

high cost of the therapy results in low clinical usage. In

USA, the median HCV health care expenditure of Interferon

therapy exceeds $2470 (Armstrong and Charland 2004).

Recovery from infection with HCV does not result in long-

term immunity. Therefore, any model for hepatitis C must

reflect this lack of acquired immunity by allowing recov-

ered individuals to become susceptible again.

HCV is primarily spread by blood-to-blood contact

through blood transfusions, the use of poorly sterilized

medical equipment and intravenous drug use (IDU).

Screening at blood transfusion has resulted in a significant

decline in HCV transmission, especially in the developed

world. However there are countries lacking resources where

screening costs have posed a hinderance to blood screening

for HCV (Alter 2007). The primary route of transmission in

the developed world is IDU, while in the developing world

HCV is predominantly spread through unsafe blood

transfusions and therapeutic procedures (Maheshwari and

Thuluvath 2009). The HCV prevalence among IDUs is

greater than HIV [67, 72.5 and 73.4 % among the IDUs in

China, Russia and the USA, respectively (Nelson et al.

2011)]. The World Health Organization declares IDUs as an

important target group for HCV treatment and prevention

(Nelson et al. 2011). Among IDUs in USA and Europe,

transmissions occur via sharing injection equipments such as

syringes, needles and other paraphernalia (Mathei et al.

2006). Both modes of HCV transmission (unsafe blood

transfusion and IDUs) are significant for certain communities

[studies indicate prevalence percentages of 48.67 ± 1.75 %

and 57 ± 17.7 %, respectively, in Pakistan (Waheed et al.

2009) see also Ali et al. (2009)].

Developing countries of South Asia (especially Pakistan)

have high HCV prevalence rates. Pakistan is a highly popu-

lated, developing country with low health and education

standards and therefore the population is particularly vul-

nerable to infection with the hepatitis C virus. In Pakistan 10

million people are presumed to be infected with HCV. Per-

centage prevalence of HCV in the adult population of Paki-

stan is estimated to be about 4.95 ± 0.53 % (Waheed et al.

2009). It was estimated that there were about 5 million drug

users in Pakistan, out of which 15 % were regular IDUs. In

contrast to the US, where the majority of HCV infections are

caused by genotype 1 of HCV, an overwhelming majority of

hepatitis C patients in Pakistan are infected with genotype 3a

of the virus. In 2004, a panel of gastroenterologists reported

that 75–90 % of HCV patients in Pakistan had genotype 3a

(Waheed et al. 2009; Jiwani and Gul 2011). The therapy of

the genotype 3a HCV is more expensive than other genotypes

of the virus which poses a great threat of affordability in a

developing country such as Pakistan.

Other HCV transmission modes, though less efficient

(and not included in the current model), include occupa-

tional exposures where HCV prevalence among healthcare

workers is roughly 1–2 % (Alter 2007) [about 5.2 ± 0.63 %

in Pakistan (Waheed et al. 2009)] with an average trans-

mission rate of 0.5 % to patients (Alter 2007); perinatal

exposure with a transmission rate of 4–7 % per pregnancy

(Alter 2007), which increases with HIV co-infection; sexual

exposure, where the transmission rate is controversial with

inconsistent results reported by various studies (Alter 2007).

However the risk increases with unsafe, high risk sex prac-

tices, multiple sex partners, etc. as this increases the prob-

ability of a sexual relationship with an HCV positive partner

(Alter 2007). Other human activities, least rarely associated

with HCV transmission, include percutaneous exposure to

blood such as during tattooing, body-piercing, intranasal

drug use, and acupuncture (Alter 2007).

Several studies on modeling epidemics in populations

already exist (Hutin 2004; Dontwi et al. 2010) and they are

pertinent to our work. Most of these papers classify individuals
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in the population into different states and then formulate a

system of ordinary differential equations (ODE) to analyze the

time evolution of each of these population states. Reade et al.

(1998) has discussed an ODE model of infections with acute

and chronic stages. Similarly, Luo and Xiang (2012) analyzed

a four state system with exposed, acute and chronic states. Suna

et al. (2012) has analyzed an SEIRS model where it was

assumed that recovered individuals lose their infection-

acquired immunity. Martcheva and Castillo-Chavez (2003)

have formulated a model for hepatitis C lacking an exposed

class and have discussed the stability of the equilibrium states.

Dontwi et al. (2010) considered the transmission of hepatitis C

through IDUs in an acute, chronic and recovered model. Other

deterministic models pertinent to our work have also been

proposed and analysed (Busenberg and Hadeler (1990); Est-

eva and Vargas (1999); Hadeler and Castillo-Chavez (1995);

Hethcote and Thieme (1985); and Hethcote et al. (2002)).

We present a deterministic model with two distinct sus-

ceptible population groups comprising IDUs and those getting

blood transfusion (unsafe needles in healthcare setting etc.),

respectively. So we are considering the transmission of hepa-

titis C among these two population groups (representing two

distinctive modes of transmission). Individuals in each group

are classified as susceptible, acute, chronic, quarantined and

recovered. The acute and chronic states represent the individ-

uals in the acute and chronic stage of the infections, respec-

tively. The quarantine state represents the chronically infected

individuals getting quarantined. The isolation of those with

disease symptoms is among the first infection control measures

ever recorded (Hethcote 2000). Over the course of time,

quarantine strategy has been used to combat the spread of many

emerging and re-emerging human diseases such as leprosy,

plague, cholera, typhus, yellow fever, smallpox, diphtheria,

tuberculosis, measles, Ebola, pandemic influenza and, more

recently, SARS (Chowell et al. 2004; Yan et al. 2007; Lloyd-

Smith et al. 2003). Luo and Xiang (2012) has performed a

global analysis of a four-state ‘susceptible’, ‘exposed’, ‘acute’

and ‘chronic’ model and proven certain theorems regarding the

stability of the steady states of the model. However, almost no

analysis of the effects of a quarantine class on a disease with a

chronic stage has been done and therefore, our paper will be one

of the first attempts to study the effect of quarantine (education

campaigns, self quarantine etc.) on the spread of a disease with

a chronic stage. It should be pointed out that quarantine or

isolation here is not being considered in the traditional sense.

Quarantine involves only the isolation of individuals who have

been exposed to the disease. Since hepatitis C is largely

asymptomatic, and chronically infected individuals can live for

years without being identified, a quarantine class can be used to

consider individuals who have been clearly identified as being

infected with HCV. Such individuals can then undergo treat-

ment for HCV and take extra precautions while interacting with

the people around them (self quarantine). The notion of

quarantine introduced also includes the educational campaigns

to spread awareness about HCV, its transmission modes and

how to proceed if infection is identified, free supply of needle to

intravenous drug users. Such quarantine strategy can poten-

tially play a significant role in hepatitis C control by decreasing

the effective contact rate.

Section 2 of the paper presents the mathematical formula-

tion of the model, its basic important properties and the ana-

lysis of a reduced model (of one mode, as the dynamics of the

two modes are identical). Section 3 includes the rigorous

mathematical analysis of the full model. The effect of using

quarantine on population is discussed using a threshold

quantity along with sensitivity and uncertainty analyses pre-

sented with simulations to investigate the dependence of the

reproduction number on some crucial parameters. In Sect. 4,

we design an optimal control strategy and numerically solve

the optimality system to illustrate the effects of an optimal

control strategy. Finally Sect. 5 presents the conclusions drawn

from the analysis.

Model formulation

The primary route of transmission of HCV in the devel-

oped world is IDU, while in the developing world the main

source is through blood transfusions. Our model will con-

sider transmission among both of these susceptible groups

as they are statistically significant. S1 represents the sus-

ceptible population who are intravenous drug users and

similarly S2 corresponds to the susceptible population who

undergo blood transfusion (frequently subjected to unsafe

needles in healthcare setting etc.). The susceptible indi-

viduals from either group can get infected and move to the

respective compartment.

The asymptomatic nature of the hepatitis C and its slow

progression make it difficult to characterize the natural

history of disease (Bisceglie et al. 1991). The following

assumptions are made in the construction of the model.

1. All infected individuals develop the acute form of

hepatitis C first.

2. Individuals with either the acute or chronic form of

hepatitis C are capable of transmitting the disease.

3. Individuals with the acute form of the disease either

progress to the chronic form or recover naturally. Since

the acute form of the disease is largely asymptomatic,

there is little chance of treatment at this stage.

4. There is no life long immunity against HCV after

recovering, thus the recovered individuals move back

to the susceptible class.

The model assumes that the susceptible drug user popula-

tion S1, has a constant recruitment rate P1 and natural death

rate l. Susceptible drug user individuals who get infected
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suffer from the acute form of hepatitis C and move to the

compartment A1 with the force of infection given by k1. Indi-

viduals in A1, in addition to the natural death rate l, die at a

disease-induced death rate da. They also have a natural

recovery rate of j1. Individuals with the acute form of the

infection progress to the chronic form of the disease at a rate n1,

in which case the individual is shifted to compartment C1.

Individuals in C1, in addition to the natural death rate l, also

die at a disease-induced death rate dc. Furthermore, these

individuals recover at a rate w1 and thus move to the recovered

compartment R1. Also, the individuals in compartment C1 are

quarantined and moved to compartment Q1 at a rate a1. Indi-

viduals in Q1, in addition to the natural death rate l, also die at

a disease-induced death rate dq. Quarantined individuals can

either become susceptible once more at a rate c1 f1 or regress to

become acutely infected with HCV at a rate c1 (1 - f1).

Recovery from HCV does not result in long-term immunity.

Therefore, recovered patients in R become susceptible at a rate

x1. Also the infected individual from one group can infect the

individual from the same group as well as the individuals from

other group and vice versa. This aspect has been captured in the

force of infections k1 and k2. However the relative ability to

infect the other group might be different and this will be dis-

cussed as the analysis is carried out later (Table 1).

Mathematically, the model is as follows:

dS1

dt
¼ P1 þ c1f1Q1 þ x1R1 � k1S1 � lS1

dA1

dt
¼ k1S1 þ c1ð1� f1ÞQ1 � ðn1 þ j1 þ lþ daÞA1

dC1

dt
¼ n1A1 � ða1 þ w1 þ lþ dcÞC1

dQ1

dt
¼ a1C1 � ðc1 þ lþ dqÞQ1

dR1

dt
¼ j1A1 þ w1C1 � ðx1 þ lÞR1

dS2

dt
¼ P2 þ c2f2Q2 þ x2R2 � k2S2 � lS2

dA2

dt
¼ k2S2 þ c2ð1� f2ÞQ2 � ðn2 þ j2 þ lþ daÞA2

ð1Þ

dC2

dt
¼ n2A2 � ða2 þ w2 þ lþ dcÞC2

dQ2

dt
¼ a2C2 � ðc2 þ lþ dqÞQ2

dR2

dt
¼ j2A2 þ w2C2 � ðx2 þ lÞR2

where

k1 ¼ b1

ðg1A1 þ C1 þ f1Q1Þ þ h12ðg2A2 þ C2 þ f2Q2Þ
N

� �

k2 ¼ b2

h21ðg1A1 þ C1 þ f1Q1Þ þ ðg2A2 þ C2 þ f2Q2Þ
N

� �

The description and values of the model are presented in

Table 2. The order of magnitudes of the assumed values is

discussed in the ‘‘Appendix’’.

Basic properties

Since the model (1) monitors human populations, all its

associated parameters are non-negative. Further, the fol-

lowing non-negativity result about population holds.

Lemma 1 The variables of the model (1) are non-negative

for all time t [ 0. In other words, solutions of the model (1)

with positive initial data will remain positive for all t [ 0.

Proof is presented in the ‘‘Appendix’’.

Lemma 2 The closed set

D ¼
�
ðS1;A1;C1;Q1;R1; S2;A2;C2;Q2;R2Þ 2 R10

þ :

: S1 þ A1 þ C1 þ Q1 þ R1 þ S2 þ A2 þ C2 þ Q2

þR2�
P
l
;where P ¼ P1 þP2

�

is positively invariant and attracting.

Proof If we add all the equations of the above model (1)

we will have,

dN

dt
¼ P� lN � ðdaA1 þ dcC1 þ dqQ1 þ daA2

þ dcC2 þ dqQ2Þ�P� lN

ð2Þ

Since N(t) C 0, a standard comparison theorem can be

used to show that NðtÞ�Nð0Þe�lt þ P
l ð1� e�ltÞ: Partic-

ularly, NðtÞ� P
l if Nð0Þ� P

l : Thus, the region D is posi-

tively invariant.

Further if Nð0Þ[ P
l ; then either the solution enters D in

finite time, or N(t) approaches P
l asymptotically. Hence, the

region D attracts all solutions in R?
10 and the solutions

remain bounded.

Since the region D is positively invariant and attracting,

it is sufficient to consider the dynamics of the flow

Table 1 State variables

Variable Description

N(t) Total population

S1, 2(t) Population of susceptible individuals

A1, 2(t) Population with acute hepatitis C

C1, 2(t) Population with chronic hepatitis C

Q1, 2(t) Population of quarantined individuals

R1, 2(t) Population of Recovered individuals

Subscript 1 denotes intravenous drug users; subscript 2 represents

individuals who undergo blood transfusions
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generated by the model (1) in D where the model is epi-

demiologically and mathematically well-posed.

Analysis of reduced model

Before continuing with the analysis of the model (1), we

will first discuss a reduced version (2), of main model (1),

comprising of just one group of population corresponding

to one mode of transmission (either IDUs or those getting

blood transfusion). The model is as follows (with sub-

scripts 1 or 2 dropped for simplicity)

dS

dt
¼ Pþ cfQþ xR� kS� lS

dA

dt
¼ kSþcð1� f ÞQ� ðnþ jþ lþ daÞA

dC

dt
¼ nA� ðaþ wþ lþ dcÞC

dQ

dt
¼ aC � ðcþ lþ dqÞQ

dR

dt
¼ jAþ wC � ðxþ lÞR

k ¼ b
ðgAþ C þ fQÞ

N

� �

ð3Þ

The basic properties (positivity of the states and positive

invariance of a corresponding region in R?
5 ) of the reduced

model are identical to those of (1). This model has a DFE

@0 ¼ ðS�;A�;C�;Q�;R�Þ ¼
P
l
; 0; 0; 0; 0

� �
;

where, N = S ? A ? C ? Q ? R. The local stability

property of @0 will be determined using the next

generation operator method described in van den

Driessche and Watmough (2002). The non-negative

matrix F, of the new infection terms, and the M-matrix,

V, of the transition terms associated with the model are

given by

F ¼
bg b bf
0 0 0

0 0 0

0
@

1
A

and,

V ¼
nþ jþ lþ da 0 �cð1� f Þ

�n aþ wþ lþ dc 0

0 �a cþ lþ dq

0
@

1
A

The eigenvalues of matrix FV-1 are

0; 0; 0; 0;
b½gk1k2 þ nk3 þ fan�

k1k2k3 � ank4

� �

It follows that the basic reproduction number R0 =

q(FV-1), is given by,

R0 ¼
b½gk2k3 þ nk3 þ fan�

k1k2k3 � ank4

Table 2 Description and values of the model parameters

Description Values References

P1 Recruitment rate of drug users (IDUs) 10 Conservative estimate

P2 Recruitment rate for those undergoing blood transfusions etc 10 Conservative estimate

l Natural death rate 1/(12 9 60) Conservative estimate

b1 Effective contact rate 0.3 Zhang and Zhou (2012)

b2 Effective contact rate 0.2 Zhang and Zhou (2012)

c1 Recovery rate of quarantined 1/(3 9 12) Conservative estimate

c2 Recovery rate of quarantined 1/(3 9 12) Conservative estimate

f1,2 Fraction of quarantined that becomes susceptible 0.9 Conservative estimate

n1,2 Progression rate from acute to chronic 2/12 Corson et al. (2013)

a1 Proportion of chronically infected being quarantined 1/7 Conservative estimate

a2 Proportion of chronically infected being quarantined 1/10 Conservative estimate

j1,2 Proportion of acute infection recovering spontaneously 0.26 Corson et al. (2013)

w1,2 Proportion of chronic infection recovering spontaneously 0.05/12 Zhang and Zhou (2012)

x1,2 Proportion of recovered who lost immunity (both) 0.75 Corson et al. (2013)

g1,2 Modification parameter for infectiousness of acute infection 1.25 Zhang and Zhou (2012)

f1;2 Modification parameter for infectiousness of quarantined 0.2 Conservative estimate

h12, h21 Modification parameter for cross infectiousness 0.01 Conservative estimate

da Disease-induced death rate for individuals with acute infection 0.001 Conservative estimate

dc Disease-induced death rate for chronically infected individuals 0.001 Conservative estimate

dq Disease-induced death rate for quarantined individuals 0.0005 Conservative estimate

Subscripts 1 and 2 denote drug users and individuals who undergo blood transfusions, respectively
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where,

k1 ¼ ðnþ jþ lþ daÞ; k2 ¼ ðaþ wþ lþ dcÞ; k3

¼ ðcþ lþ dqÞ; k4 ¼ cð1� f Þ

Now we discuss the existence of an endemic equilibrium

of the reduced model. We define endemic equilibria to be

those fixed points of the system in which at least one of the

infected compartments of the model is non-zero.

Let @1 = (S**, A**, C**, Q**, R**) denote an arbitrary

endemic equilibrium of the reduced model so that

N�� ¼ S�� þ A�� þ C�� þ Q�� þ R��:

Solving the equations of the reduced model at steady

state gives

b
gA�� þ C�� þ fQ��

N��

� �
S�� ¼ k1k2

n
� k4a

k3

� �
C��

bgk2

n
C�� þ bC�� þ bfa

k3

C��
� �

S�� ¼ k1k2

n
� k4a

k3

� �
C��N��

bgk2k3 þ bk3nþ bfan
nk3

� �
S��C�� ¼ k1k2k3 � k4an

nk3

� �
C��N��

Note that if C** = 0, then A** = Q** = R** = 0 and we

obtain the disease-free equilibrium solution. Thus, we may

assume that C�� 6¼ 0: Therefore,

bgk2k3 þ bk3nþ bfan½ �S�� ¼ k1k2k3 � k4an½ �N��

bgk2k3 þ bk3nþ bfan
k1k2k3 � k4an

� �
S�� ¼ N��

k2

n
þ 1þ a

k3

þ 1

k5

k1k2

n
þ w

� �� �
C��

R0 � 1

Y

� �
S�� ¼ C��

where,

Y ¼ k2

n
þ 1þ a

k3

þ 1

k5

k1k2

n
þ w

� �� �

Finally the endemic steady states are given by:

A�� ¼ k2

n
R0 � 1

Y

� �
S��

C�� ¼ R0 � 1

Y

� �
S��

R�� ¼ 1

k5

k1k2

n
þ wþ a

k3

� �
R0 � 1

Y

� �
S��

Q�� ¼ a
k3

R0 � 1

Y

� �
S��

Thus, we have established the following result:

Lemma 3 The reduced model has endemic equilibria,

given by @1, whenever R0 [ 1.

In next section we will perform the analysis of our full

model (1)

Equilibrium states and sensitivity analysis

Disease-free equilibrium (DFE)

The model (1) has a DFE, obtained by setting the right

hand sides of the equations in (1) to zero, given by

@0 ¼ ðS�1;A�1;C�1;Q�1;R�1; S�2;A�2;C�2 ;Q�2;R�2Þ

¼ P1

l
; 0; 0; 0; 0;

P2

l
; 0; 0; 0; 0

� � ð4Þ

Local stability

The local stability property of @0 will be determined using

the next generation operator method (van den Driessche

and Watmough 2002). The drug users are unlikely to infect

the individuals having blood transfusions, mainly because

the drug users need to follow the screening procedure

(previous health record, smoking/drug habits etc.) used at

blood centers. Therefore, we will take h21 = 0. However,

we will discuss the case where h21 [ 0. The non-negative

matrix F, of the new infection terms, and the M-matrix, V,

of the transition terms associated with the model (1) are

given in the ‘‘Appendix’’.

The eigenvalues of (FV-1) are

0; 0; 0; 0;R0 ¼
b1P1½g1k2k3 þ n1k3 þ f1a1n1�

Pðk1k2k3 � a1n1k4Þ
[ 0;

�

R00 ¼
b2P2½g2k02k03 þ n2k03 þ f2a2n2�

Pðk01k02k03 � a2n2k04Þ
[ 0

�

where

k1 ¼ ðn1 þ j1 þ lþ daÞ;
k01 ¼ ðn2 þ j2lþ daÞ
k2 ¼ ða1 þ w1 þ lþ dcÞ;
k02 ¼ a2 þ w2 þ lþ dc

k3 ¼ ðc1 þ lþ dqÞ;
k03 ¼ ðc2 þ lþ dqÞ
k4 ¼ c1ð1� f1Þ;
k04 ¼ c2ð1� f2Þ
k5 ¼ ðx1 þ lÞ; k05 ¼ ðx2 þ lÞ:

It is easy to verify (by expanding the terms) that the

denominators of R0 and R0

0
are greater than zero. Clearly

F - V is reducible and the equations of the infected

compartment decouple near the disease-free equilibrium

(DFE). The two non-zero eigenvalues correspond to the

basic reproduction numbers for each mode of transfer.

Since the reproduction number is the spectral radius of

(FV-1) (van den Driessche and Watmough 2002), we have

Rc ¼ maxfR0;R
0
0g
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The basic reproduction number is interpreted as the

average number of new infections that one infectious

individual can produce if introduced into a population

composed of susceptibles. Since Rc is the maximum of the

two basic reproduction numbers for each mode, it is

sufficient to discuss one of them as their expressions are

completely identical, except that they represent different

modes of transfer of HCV. Assume, without loosing

generality, that Rc = R0 (because the expressions are

identical to the case Rc = R0

0
, and there is no biological

bias to choose one over the other). Susceptible individuals

acquire infection following contact with either an acute

(A1), chronic (C1) or quarantined (Q1) individual. The

number of infections produced by an acutely infected

individual (near the DFE) is
b1g1

k1
given by the product of the

infection rate of an acute individual (b1g1) and the average

duration in the acute class ( 1
k1

). Furthermore, the number of

infections produced by a chronically infected individual

(near the DFE) is
b1n1

k1k2
given by the product of the infection

rate of a chronic individual (b1), the average duration in the

chronic class ( 1
k2

) and the probability that an acute

individual survives and progresses to the chronic stage

(n1

k1
). Similarly, the number of infections produced by a

quarantined individual (near the DFE) is
b1f1n1a1

k1k2k3
given by

the product of the infection rate of a quarantined individual

(b1h11f1), the average duration in the quarantined class ( 1
k3

)

and the probability that an acute individual survives and

progresses to the quarantined stage (n1a1

k1k2
Þ: Finally, we

observe that a fraction
n1a1c1ð1�f Þ

k1k2k3
of newly infected

individuals will re-enter the acute class (A1). Thus, the

average number of new infections generated by a single

infectious individual is given by�
S�1
N�

��
b1g1

k1

þ b1n1

k1k2

þ b1f1n1a1

k1k2k3

�X1
n¼0

n1a1c1ð1� f1Þ
k1k2k3

� �n

¼
�

P1

P

�
b1g1

k1

þ b1n1

k1k2

þ b1f1n1a1

k1k2k3

� �
1

1� n1a1c1ð1�f1Þ
k1k2k3

" #

¼ Rc

The local stability of the DFE holds due to Theorem 2 of

van den Driessche and Watmough (2002).

Theorem 1 The disease-free equilibrium DFE, @0, of the

model (1) is locally asymptotically stable if Rc \ 1 and

unstable if Rc [ 1

Theorem 1 implies that, with Rc \ 1, a small influx of

infectious individuals will not lead to large outbreaks of the

disease. To ensure that the disease elimination is indepen-

dent of the initial sizes of sub-populations, it is necessary to

show that the DFE is globally asymptotically stable if

Rc \ 1. This is explored below. Since Rc is calculated with

h21 = 0, we continue with this assumption.

Global stability

Theorem 2 The disease-free equilibrium DFE of the

model (1), given by (4) is globally asymptotically stable

whenever Rc \ 1.

The epidemiological implication of the above result is

that the disease can be eliminated from the population if

the basic reproduction number Rc can be brought down to

(and maintained at) a value less than unity (that is, the

condition Rc \ 1 is sufficient and necessary for disease

elimination). Figure 2 depicts numerical results by simu-

lating the model (1) using various initial conditions with

Rc \ 1. It is evident from the simulation that all solutions

converge to DFE, @0, in line with Theorem 2. Proof is

presented in the ‘‘Appendix’’.

Lemma 4 The disease is uniformly persistent in D if and

only if Rc [ 1: there exists a d[ 0 such that

limt!1 inf X [ d where X represents the infected states of

(1).

Proof The necessity for Rc [ 1 follows from Theorem 1

and the fact the global stability of the (DFE) precludes any

kind of persistence for Rc \ 1. The theorem can be proved

using the approach used to prove Proposition 3.3 by Li

et al. (1999), by applying a uniform persistence result in

Freedman et al. 1994) and noting that the DFE of the

model (1) is unstable whenever Rc [ 1 (Theorem 1). h

Endemic equilibrium

In this section we discuss the endemic equilibrium, the steady

state for which at least one of the infected components of the

model is non-zero. We assume, as before, h21 = 0.

Theorem 3 The model (1) has an endemic equilibrium

whenever Rc [ 1.

A proof is given in the ‘‘Appendix’’.

After solving the system for the endemic states explic-

itly, we came across some interesting results. In case of

Rc = R0, the infected population of blood transfusion will

vanish and infected population of drug users will prevail.

This implies there is a boundary endemic equilibrium Eb ¼
ðS001;A001;C001 ;Q001;R001 ; S002 ; 0; 0; 0; 0Þ where only drug users

infected population exists. This can be verified easily from

the expressions of k1
** and k2

** presented in the ‘‘Appen-

dix’’. On the other hand Rc = R0

0
will result in endemic

equilibrium in both blood transfusion and drug users

infected population. This is an example of co-existence
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Ec = (S1
**, A1

**, C1
**, Q1

**, R1
**, S2

**, A2
**, C2

**, Q2
**, R2

**)

where each infected population of both modes prevails.

The difference in notation (S001 for Eb against S1
** for Ec) of

the equilibria only conveys the difference in magnitude.

A discussion is presented in the ‘‘Appendix’’.

These results can be related to the nature of the infection

functions (k1, k2). Since the blood transfusion infected can

infect the drug user population, so when Rc = R0

0
this results

not only in an endemic among blood transfusions popula-

tion but also among the drug users. On the other hand, the

assumption h21 = 0 restricts the drug user to infect blood

transfusion population. Therefore, in case of Rc = R0 the

endemic equilibrium exists only among drug users. How-

ever, if we take h21 [ 0 we will have three endemic equi-

libria. Two of these are similar to Eb and Ec, while the third

one is of the form E
b
0 ¼ ðS001; 0; 0; 0; 0; S002 ;A002 ;C002 ;Q002 ;R002Þ:

But we could not find the exact conditions in which either of

them exists, primarily because with h21 [ 0, explicit

expressions for Rc cannot be found.

Sensitivity analysis

The asymptotic dynamics of the model are completely

determined by the threshold quantity Rc, which determines

the prevalence of the disease. Since we have a deterministic

model, the only uncertainty is generated by the input vari-

ation (initial conditions and model parameters). Model

parameters are the most integral part of the input data.

Therefore, in this section we present parameter-related

global uncertainty and sensitivity analyses on Rc. Mea-

surement errors or imperfect measurement techniques and

natural variations are among factors of uncertainty in

parameter estimates. To qualitatively decide which param-

eters influence the model output (Rc) most, uncertainty

analysis is carried out, and the degree of confidence on the

available parameter estimates is quantified. Critical model

parameters for the model are identified, and their impact on

Fig. 1 Flow diagram of the

model
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Fig. 2 Disease-free equilibrium: simulations showing the total

chronically infected population eventually dying out for different

sets of initial conditions
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the model output, in combination with the other model

parameters, is quantified using the sensitivity analysis.

We quantify the uncertainty and sensitivity of Rc (using

the assumption Rc = R0) as a function of 12 model

parameters (l; c1; n1; a1; j1; w1; b1; g1; f1; da; da and

dq). For the sensitivity analysis, Partial Rank Correlation

Coefficient (PRCC) measures the impact of the parameters

on the output variable. To reduce the nonlinearity effects,

PRCC method uses the rank transformation by rearranging

the data in ascending order and then replacing the values

with their array ranks. The Rank Correlation Coefficient

(RCC) is used to measure the amount of monotonicity

between the input and output variables.

The assumed distributions and mean values of the model

parameters are mentioned in the ‘‘Appendix’’. Based on the

uncertainty analysis, our estimates of R0 for hepatitis C is

2.47 with 95 % CI (1.60, 3.71) (Fig. 3).

The most significant (PRCC values above 0.5 or below

-0.5 in Fig. 4) sensitivity parameters to R0 are

a1; j1; b1 and f1: This implies that even a small error in the

estimation of these parameters can greatly affect the value

of R0 and hence, the analysis of our model. Therefore, these

parameters need to be estimated with utmost precision and

accuracy to capture the transmission dynamics of the

hepatitis C. Out of these four parameters, a1, b1 and f1 are

the ones which can be controlled and we can try to keep

theses values within a range so that the R0 value does not

exceed 1. This is explored below using simulations of R0

plotted against these parameters. The analyses further

suggest the quarantine strategy aimed to reduce the infec-

ted population yields the desired result as evident from the

fact that a and R0 have a negative correlation.

In order to qualitatively measure the effect of quarantine

on the transmission dynamics of hepatitis C, a threshold

analysis of the parameter a associated with the quarantine

of chronically infected individuals is discussed. We com-

pute the partial derivative of R0 with respect to a1:

oR0

oa1

¼ �b1n1½k1ðk3Þ2 � ½k1f1X þ n1k4�ðk3Þ � g1k1k4X�;

where,

X ¼ k2 � a1 ¼ w1 þ l1 þ dc [ 0:

This quadratic polynomial (in k3) has a negative and a

positive root (k3?), given by

k3þ ¼
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B
p

2
[ 0;

with

A ¼ f1X þ n1k4

k1

; B ¼ g1k4X:

It is easy to see that

oR0

oa1

\0ð[ 0Þ iff k3 [ k3þð\k3þÞ:

Thus, the quarantine of chronically infected individuals

will reduce R0 and, therefore, reduce disease burden (new

infections, mortality etc.) if k3 exceeds the threshold k3?

(i.e., if the per capita rate of individuals leaving quarantine

k3 is greater than the threshold value k3?). This case is

presented in Fig. 5. The parameter values in Table 2 ensure

that k3 exceeds k3?. Negative correlation of quarantine rate

a1 with R0 also reinforces the claim that quarantining has a

positive effect on reducing disease spread.

Lemma 5 The use of quarantine of the chronically

infected individuals will have positive (negative) popula-

tion-level impact if k3 [ k3? (\ k3?).

Figure 6 presents the dependence of the basic repro-

duction number on the parameters a1 and b1, where a1

denotes the quarantine rate of chronic and b1 denotes the

effective contact rate. These parameters were chosen

because of high correlation with the R0 as shown by the

sensitivity analysis. From the contour plot, we see that if b1

is larger, then R0 is always greater than one, which implies

that it is important to control the effective contact rate.

Figure 6b shows that the basic reproductive number may

be less than one if a1 and b1 can be restricted to a range,

leading to the potential extinction of the disease. Also as b1

increases the rate of change R0 is high.

Optimal control

Pontryagin and Boltyanskii (1986) formulated the optimal

control theory for the models with underlying dynamics
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Fig. 3 Uncertainty analysis: the probability that R0 [ 1 is 99 % with

95 % confidence interval (1.60, 3.71). This suggests that hepatitis C

will get endemic under the present conditions. However, the time

taken to reach that state could be large. 10,000 values were generated

for each parameter according to their assumed distributions and mean

values. These values (presented in ‘‘Appendix’’) were used to

calculate R0 and its central tendency
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defined by a system of ordinary differential equations. The

theory, application areas and the numerical methods have

progressed considerably. The Pontryagin’s Maximum

Principle allows us to adjust the control in a model to

achieve the desired results. The control parameters are

mostly functions of time, mainly appearing as the coeffi-

cients in the model.

Optimal control theory has been employed to make

decisions involving epidemic and biological models. The

desired results and performance of the control functions

depend on different situations. Fister et al. (1998), Kirs-

chner et al. (1997) in their study of HIV models (1998);

(1997) used optimal control to design the treatment

strategies. Agusto (2009) used optimal control strategies

of a tuberculosis transmission model. Jung et al. (2002)

provide a very good example of deciding how to divide

the efforts between two treatment strategies (case holding

and case finding) of the two strain TB model. Joshi

(2002) formulated two control functions as coefficients of

the ODE system representing treatment effects in a two

drug regime in an HIV immunology model. The goal was

to maximize the concentration of T cells while mini-

mizing the toxic effects of the drug. The analytic and

numerical results illustrated the level of two drugs to be

used over the chosen time interval. The required bal-
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Fig. 4 Sensitivity analysis: the proportion of chronically infected

being quarantined a1, proportion of acute infections recovering

spontaneously j1, effective contact rate b1 and modification param-

eter for infectiousness of quarantined f1 are the most significant

parameters. This means that even a small error in the estimation of

these parameters can greatly affect the value of R0 and hence, the

analysis of our model. Partial Rank Correlation Coefficients (PRCC)

are calculated with respect to R0. Parameters with modulus of PRCC

values in excess of 0.5 are declared sensitive to R0
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Fig. 6 Plots of the basic reproduction number R0 with respect to

infected being quarantined rate a1 and effective contact rate b1; a a

contour plot of the surface R0, showing higher quarantine rate a1 will

reduce R0. b Surface plot of R0, higher quarantine rate a1 and low

contact rate b1 will keep R0 \ 1
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ancing effect between two competing goals was well

predicted by optimal control theory. Behncke (2000)

studied SIR models including vaccination, quarantine and

health promotion campaign and obtained analytical

results for optimal control. The optimal control inter-

vention policies for stochastic epidemic models were

treated by Clancy (1999).

Pontryagin’s Maximum Principle appends an adjoint

system of differential equations with terminal boundary

conditions, to the original model (state system) of dif-

ferential equations, in the attempt to characterize an

optimal control. The optimality system, which charac-

terizes the optimal controls, consists of the differential

equations of the original model (state system) along with

the adjoint differential equations (adjoint system). The

number of equations in the adjoint system is same as that

of the state system. The adjoint functions behave very

similar to the Lagrange multipliers (appending constraints

to the function of several variables to be maximized or

minimized). The adjoint variables maximize or minimize

the state variables with respect to the desired objective

functional. The details of the necessary conditions for the

adjoint and optimal controls are presented in Pontryagin

and Boltyanskii (1986), Fleming and Rishel (1975). For

the application of these results see the work of Fister

et al. (1998).

Since an effective vaccine is not available against all the

genotypes of HCV, we have to look for alternate strategies

to control the spread of HCV. The isolation of those with

disease symptoms, constitute what is probably the first

infection control measure since the beginning of recorded

human history (Hethcote 2000). Over the decades, quar-

antine has been used to reduce the transmission of

numerous emerging and re-emerging human diseases such

as leprosy, plague, cholera, typhus, yellow fever, smallpox,

diphtheria, tuberculosis, measles, ebola, pandemic influ-

enza and, more recently, SARS. In our model of HCV, the

quarantine compartment was introduced to investigate the

effect on the infected population size and results were

discussed in the last section. Now we attempt to control the

quarantine rate of the chronically infected individuals to

control the HCV transmission. This section will explore the

effects of quarantine control rate, of chronically infected

individuals, on the total size of the infected population. In

addition to the dynamics of the original model (1), the

quarantine rates labeled as a1 and a2 will now be consid-

ered as time dependent control parameters. Let this model,

with time-dependent control parameters, be labeled as

(4.1).

Yan et al. (2007) discuss the application of optimal

and sub-optimal control for SARS outbreak, a pair of

control parameters were introduced representing quaran-

tine and isolation strategies. The use of quarantine and

isolation control has also been studied by Yan and Zou

(2008, 2009). The cost of the quarantine facility will

strongly influence the policy and we have to consider it

in our analysis.

Now we design an optimal control strategy to minimize

an objective functional that takes into account both the cost

and the number of infectious individuals. The control

set U is

U ¼fa1ðtÞ; a2ðtÞ : 0� a1ðtÞ; a2ðtÞ� bi; 0� t� T ;

a1ðtÞ; a2ðtÞ are Lebesgue measureableg
ð5Þ

where bi are positive constant which are fixed.

The goal is to minimize the cost function defined as

J½a1;a2� ¼
ZT

0

X1C1þX2C2þ
1

2
W1a

2
1ðtÞ þ

1

2
W2a

2
2ðtÞ: ð6Þ

The coefficients Xi and Wi are balancing cost factors due

to scales and importance of the all parts of the objective

function. This specification involves the numbers of

individuals with chronic infection as well as the cost for

maintaining quarantine control facilities for drug users as

well as blood transfusion individuals. The total cost also

includes the cost related of organizational, management,

and cooperation, etc. Hence, the cost function should be

nonlinear. In this paper, a quadratic function is implemented

for measuring the control cost with reference to literature in

epidemics control (Fister et al. 1998; Kirschner et al. 1997;

Jung et al. 2002).

We need to find an optimal control pair (a1
*(t),a2

*(t)) such

that

J½a�1; a�2� ¼ min
a1;a22U

J½a1; a2�:

The existence of a solution to the optimal control problem

can be obtained by verifying sufficient conditions. We refer

to the conditions in Theorem III.4.1 and its corresponding

Corollary in Fleming and Rishel (1975). The boundedness

of solutions to the system (4.1) for the finite time interval

is needed to establish these conditions. Pontryagin’s

Maximum Principle (Pontryagin and Boltyanskii 1986)

provides the necessary conditions to be satisfied by the

optimal control pair. This principle reduces (4.1), (5) and

(6) into a problem of minimizing pointwise a Hamiltonian,

H, with respect to a1(t) and a2(t)
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H ¼ X1C1 þ X2C2

þ 1

2
W1a

2
1ðtÞ þ

1

2
W2a

2
2ðtÞ þ

Xi¼10

i¼1

/iki

ð7Þ

where ki represents the right hand side of the ith equation of

the model (4.1). Using Pontryagin’s Maximum Principle

(Pontryagin and Boltyanskii 1986) and the optimal control

existence result from Fleming and Rishel (1975), we have

the following result:

Theorem 4 There exists a unique optimal control pair

(a1
*(t),a1

*(t)) which minimizes J over U. Also, there exists an

adjoint system of /i’s (see Eq. 9) such that the optimal

treatment control pair is characterized as

a�1ðtÞ ¼ min b1;max 0;
C1ð/3 � /4

W1

� �� �
;

a�2ðtÞ ¼ min b2;max 0;
C2ð/8 � /9

W2

� �� �
:

ð8Þ

The proof is presented in the ‘‘Appendix’’.

The following optimality system, consisting of 20

equations, characterizes the optimal vaccination control as

defined in (8)

dS1

dt
¼ P1

P
þ c1f1Q1 þ x1R1 � k1S1 � lS1

dA1

dt
¼ k1S1 þ c1ð1� f1ÞQ1 � ðn1 þ j1 þ lþ daÞA1

dC1

dt
¼ n1A1 � ða1 þ w1 þ lþ dcÞC1

dQ1

dt
¼ a1C1 � ðc1 þ lþ dqÞQ1

dR1

dt
¼ j1A1 þ w1C1 � ðx1 þ lÞR1

dS2

dt
¼ P2

P
þ c2f2Q2 þ x2R2 � k2S2 � lS2

dA2

dt
¼ k2S2 þ c2ð1� f2ÞQ2 � ðn2 þ j2 þ lþ daÞA2

dC2

dt
¼ n2A2 � ða2 þ w2 þ lþ dcÞC2

dQ2

dt
¼ a2C2 � ðc2 þ lþ dqÞQ2

dR2

dt
¼ j2A2 þ w2C2 � ðx2 þ lÞR2

fSið0Þ ¼ Si0;Aið0Þ ¼ Ai0;Cið0Þ ¼ Ci0;Qið0Þ ¼ Qi0;

Rið0Þ ¼ Ri0ji ¼ 1; 2g
ð9Þ

d/1

dt
¼ ðk1 þ lÞ/1 � ðk1Þ/2

d/2

dt
¼ b1g1S1

N

� �
/1 þ k1 �

b1g1S1

N

� �
/2 � ðn1Þ/3

� ðj1Þ/5

d/3

dt
¼ b1S1

N

� �
/1 �

b1S

N

� �
/2 þ ðk2Þ/3 � ða�1Þ/4

� ðw1Þ/5 � X1

d/4

dt
¼ b1f1S1

N
� c1f1

� �
/1 � k4 þ

b1f1S1

N

� �
/2 þ ðk3Þ/4

d/5

dt
¼ �ðx1Þ/1 þ ðk5Þ/5

d/6

dt
¼ ðk2 þ lÞ/6 � ðk2Þ/7

d/7

dt
¼ b1h12g2S1

N

� �
/1 �

b1h12g2S1

N

� �
/2

þ b2g2S2

N

� �
/6 þ k01 �

b2g2S2

N

� �
/7

� ðn2Þ/8 � ðj2Þ/10

d/8

dt
¼ b1h12S1

N

� �
/1 �

b1h12S1

N

� �
/2 þ

b2S2

N

� �
/6

� b2S2

N

� �
/7 þ ðk02Þ/8 � ða�2Þ/9 � ðw2Þ/10 � X2

d/9

dt
¼ b1h12f2S1

N

� �
/1 �

b1h12f2S1

N

� �
/2

þ b2f2S2

N
� c2f2

� �
/6 � k04 þ

b2f2S2

N

� �
/7

þ ðk03Þ/9

d/10

dt
¼ �ðx2Þ/6 þ ðk05Þ/10

f/iðTÞ ¼ 0ji ¼ 1; 2; . . .; 10g

Next, we discuss the numerical solutions of the optimality

system and the corresponding optimal control pairs and the

parameters. Solving the optimality system (9), using an

iterative method, will result in the optimal quarantine

strategy. First solve the state equations with a guess for the

control pair (a1(t), a2(t)) over the simulated time using a

forward fourth order Runge–Kutta scheme. The adjoint

functions have final time conditions. Because of this

transversality conditions on the adjoint functions (9), the

adjoint equations are then solved by a backward fourth order

Runge–Kutta scheme using the current iteration solution of

the state equations. Then, the controls are updated using a

convex combination of the previous control and the value
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from the characterizations (8). This process is repeated and

iteration is stopped if the values are converging.

Numerical solutions to the optimal system (9) are car-

ried out using MATLAB and are presented here. The

parameter values are used from Table 2 and the initial

conditions are given in the ‘‘Appendix’’. The parameter

values used have Rc [ 1 when the model without time

dependent control is considered. Thus, the disease is not

expected to die out without intervention strategies.

Figure 7 represents the optimal quarantine strategy to be

employed to minimize the cost and the infected population.

Considering the practical constraints, an upper bound of

0.5 was chosen for the optimal quarantine control pair

(a1(t), a2(t)).The optimal control a1 is at its upper bound

value at the start of time before reaching the minimum

value at a slower rate. On the other hand, a2 is at the

maximum value initially and then it sharply decreases

before getting to the minimum value of 0. In fact, at the

beginning of simulated time, the optimal controls are

staying at the upper bound to quarantine as many chroni-

cally infected individuals as possible to prevent the infec-

ted population from increasing. The steadily decreasing of

the control pairs is determined by the balance between the

cost of the infected individuals and the cost of the control

facilities. Also the assumption of h21 = 0 appears to be

reasonable as a positive value of h21 does not change the

optimal control strategy.

Figure 8a shows the total infected population for the

optimal control and constant control l. It is clear that with

the use of an optimal control strategy disease epidemic can

be prevented and disease remains under control at all times.

Figure 9 shows the cost associated with the optimal and

constant control strategy. It is clear the costs of optimal

strategy are much less than the cost of relatively low (but

practically feasible) constant control and in fact differ by

order of magnitude of tens. It is important to note that high

constant quarantine rate (a1,a2 = 0.4) incurs almost the

same cost as of optimal control. However, practically it is

highly unlikely to implement these high constant controls

primarily due to the lack of required resources and

facilities.

Figure 10 captures the effect of change in effective

contact rate over the optimal control strategy. It is clear

from the simulation that an increase in the contact rate will

lead to higher rates of quarantine. This result is in line with

the sensitivity analysis where it was shown that contact rate

b1 have a positive correlation with Rc (which determines

the disease prevalence).
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Fig. 7 Optimal quarantine control: simulation presents the quaran-

tine strategy to be followed to prevent the epidemic and disease

spread. Also the positive value of the cross infectiousness parameter

h21 is not making any significant difference in the outcome as

assumed earlier
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Fig. 8 Chronically infected population: simulation presents compar-

ison of the total chronically infected individuals under optimal and

constant control. Clearly optimal strategy prevents the epidemic and

retains the infected population to a minimum
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Conclusions

In this paper we have discussed an ODE-based determin-

istic model for the transmission dynamics of the Hep C

virus. The main contributions of this work are the inclusion

of two distinct susceptible population groups; individuals

associated with the unsafe blood transfusions and intrave-

nous drug users (IDUs) along with looking at the effects of

quarantine on the dynamics. The two different susceptible

groups were considered as these are the major transmission

pathways for Hep C, in developing countries such as

Pakistan. Further in the absence of an effective vaccine

against all known genotypes of hepatitis C formulating

optimal quarantine strategies would provide insight to

public health officials.

Dynamical system techniques were used to analyze the

model. We observed the following points

1. The disease-free equilibrium of the model is globally

asymptotically stable whenever the basic reproduction

number Rc is less than unity;

2. The disease persists uniformly if and only if Rc [ 1, in

which case the model has an endemic equilibrium;

3. The infected population corresponding to the mode

(blood transfusions or IDUs) with the higher basic

reproduction number surely persists;

To ascertain the relative importance of various

parameters, sensitivity analysis was performed, this would

help epidemiologists and public health officials to focus

on the more important parameters in formulating a dis-

ease control policy. Our analysis led to the following

observations

1. The model is most sensitive to the control variables ai

(proportion of infected population being quarantined),

bi (effective contact rate) and fi (relative infectious-

ness of quarantined individuals);

2. Given the nature of the disease, controlling quarantine

parameter (i.e. devising an effective quarantine strat-

egy) seems to the most workable solution;

3. Quarantining of the chronically infected individuals

has a positive population-level impact if a certain

condition is met;

Finally we considered control strategies to prevent the

spread of the disease. In our analysis we assumed a

quadratic cost function due to obvious non linearity of

the cost as briefly discussed in the optimal control sec-

tion, and the fact that convexity of the function allows

one to apply established results from optimal control

theory, as has been done in similar work in the literature.

Using techniques from optimal control theory we con-

cluded that
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Fig. 9 Accumulated cost: simulation presents comparison of the cost

incurred to implement optimal and different constant control strat-

egies to control hepatitis C. Optimal strategy is considerably cheaper

than different feasible constant control strategies
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Fig. 10 Optimal control: simulation presents the change in the

optimal quarantine strategy as the effective contact rate is changed for

intravenous drug users and for blood transfusion group
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1. An optimal control (rather than a high constant

control) is preferable, where quarantining rate of

chronically infected individuals is a function of time.

That is, the proportion that is quarantined optimally

with respect to time has a higher favorable impact (as

compared to implementing a high but constant quar-

antine rate) in keeping the cost of disease control low.

2. However, it should be pointed out that the ideal time-

varying optimal strategy might not be applied easily.

Still, it does provide a basis on which to design

practical quasi-optimal control strategies

There are several directions in which to extend the present

work, we outline some of these here. In our analysis we took

the modification parameter for cross infectiousness, h21 = 0,

this was justified as the numerics showed no qualitative

difference between the zero and non-zero h21 case. It would

be interesting to analytically verify this numerical observa-

tion. We considered two modes of transmission of the dis-

ease, one can also look at a third important mode of

transmission, the spread of virus via facilities such as the

dentists or barber shops. Finally an interesting extension of

this work would be looking at a Markov Chain based sto-

chastic model, involving the two transmission pathways.

While early diagnosis and treatment of HCV might be

able to reduce the progression of disease, the majority of

infected individuals are asymptomatic and most infected

persons are unaware of their exposure to the virus. Increase

in the public awareness of HCV can play a significant role

in increasing the recovery from acute and chronic stages of

the disease. Therapy along with an effective quarantine

strategy can greatly reduce the prevalence of hepatitis C.

Appendix

Proof of Lemma 1

Let t1¼ supft[0 : S1 [0;A1 [0; C1 [0;Q1 [0;R1 [0;

S2 [0;A2 [0;C2 [0;Q2 [0;R2 [0g: Thus, t1 [ 0. It

follows from the first equation of the (1) that

dS1

dt
¼ P1 þ c1f1Q1 þ x1R1 � k1S1 � lS1

�P1 � ðk1 þ lÞS1ðtÞ

which can be rewritten as

d

dt
S1ðtÞexp lt þ

Z t

0

k1ðsÞds

2
4

3
5

0
@

1
A

�P1exp lt þ
Z t

0

k1ðsÞds

2
4

3
5;

Hence,

S1ðt1Þexp lt1 þ
Zt1

0

k1ðsÞds

2
4

3
5� S1ð0Þ

�
Zt1

0

P1exp lyþ
Zy

0

k1ðsÞds

2
4

3
5dy;

so that,

S1ðt1Þ� S1ð0Þexp �lt1 �
Zt1

0

k1sds

2
4

3
5

þ exp �lt1 �
Zt1

0

k1sds

2
4

3
5

0
@

1
AZ

t1

0

P1exp lyþ
Zy

0

k1ðsÞds

2
4

3
5dy [ 0

Similarly, it can be shown that A1 [ 0, C1 [ 0, Q1 [ 0, R1

[ 0, S2 [ 0, A2 [ 0, C2 [ 0, Q2 [ 0, R2 [ 0 for all t[0.

Rc calculation

F ¼

b1g1P1

P
b1P1

P
b1f1P1

P
b1h12g2P1

P
b1h12P1

P
b1h12f2P1

P

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
b2g2P2

P
b2P2

P
b2f2P2

P

0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

V ¼

k1 0 �k4 0 0 0

�n1 k2 0 0 0 0

0 �a1 k3 0 0 0

0 0 0 k01 0 �k04

0 0 0 �n2 k02 0

0 0 0 0 �a2 k03

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Proof of Theorem 2

A comparison theorem will be used for the proof. The

equations for the infected components of (1) can be written as

(where the prime denotes the derivative with respect to time),

A01 ¼
b1ðg1A1þC1þ f1Q1þ h21½g2A2þC2þ f2Q2�Þ

N

� �
S1

þ c1ð1� f1ÞQ1� ðn1þ j1þ lþ daÞA1

C01 ¼ n1A1� ða1þw1þ lþ dcÞC1

Q01 ¼ a1C1� ðc1þ lþ dqÞQ1

A02 ¼ b2

ðg2A2þC2þ f2Q2Þ
N

� �
S2þ c2ð1� f2ÞQ2
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� ðn2 þ j2 þ lþ daÞA2

C02 ¼ n2A2 � ða2 þ w2 þ lþ dcÞC2

Q02 ¼ a2C2 � ðc2 þ lþ dqÞQ2

These equations can be simplified and written as follows

A01
C01
Q01
A02
C02
Q02

0
BBBBBBBB@

1
CCCCCCCCA
¼ S1 þ S2

N

� �
F

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA
� V

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA

� ðF1 þ F2Þ

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA

� S1 þ S2

N

� �
F

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA
� V

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA

�ðF � VÞ

A1

C1

Q1

A2

C2

Q2

0
BBBBBBBB@

1
CCCCCCCCA

Recall Theorem 1, which established the local asymptotic

stability of the DFE when Rc \ 1, or equivalently,

q(F V -1) \ 1, which is equivalent to all eigenvalues of

F - V having negative real parts when Rc \ 1 (van den

Driessche and Watmough 2002). Therefore, the linearized

differential inequality system is stable whenever Rc \ 1.

By comparison theorem (Lakshmikantham et al. 1989),

ðA1;C1;Q1;A2;C2;Q2Þ ! ð0; 0; 0; 0; 0; 0Þ as t!1:
Substituting A1 = A2 = C1 = C2 = Q1 = Q2 = 0 into the

model (1) gives S! P
l and R! 0 as t !1: Thus

ðS;A1;C1;Q1;R1;A2;C2;Q2;R2Þ ! @0 as t !1 for

Rc \ 1. Hence DFE @0 is GAS whenever Rc \ 1. h

Proof of Theorem 3

First we will show there exists a positive periodic solution

(period T). Since the infected states are persistent, this

along with positive periodic solution implies the existence

of an endemic state. Define a map P such as P(X) =

Y where

X ¼ðS1ð0Þ;A1ð0Þ;C1ð0Þ;Q1ð0Þ;R1ð0Þ;
S2ð0Þ;A2ð0Þ;C2ð0Þ;Q2ð0Þ;R2ð0ÞÞ

Y ¼ðS1ðTÞ;A1ðTÞ;C1ðTÞ;Q1ðTÞ;R1ðTÞ;
S2ðTÞ;A2ðTÞ;C2ðTÞ;Q2ðTÞ;R2ðTÞÞ

Let X1 be a set such as

D1 ¼ fðS1;A1;C1;Q1;R1; S2;A2;C2;Q2;R2Þ 2 D :

where the infected states are nonnegative:g

For the existence of a positive periodic solution, we

assume that D1 is a convex and relatively open subset in

D. The map P clearly satisfies the following conditions

1. P : D! D is point dissipative (since all the positive

trajectories eventually lie in a bounded set);

2. P is compact (since P is continuous in R?10);

3. P is uniformly persistent with respect to D.

The existence of a positive T periodic solution follows

directly by Theorem 1.3.6 of Zhao (2003). Lemma 3 along

with the existence of a periodic solution implies the exis-

tence of an endemic state whenever Rc [ 1.

Endemic equilibrium

Let @1 = (S1
**, A1

**, C1
**, Q1

**, R1
**, S2

**, A2
**, C2

**, Q2
**, R2

**)

denote an arbitrary endemic equilibrium of the Hepatitis C

model so that N** = S1
** ? A1

** ? C1
** ? Q1

** ? R1
** ?

S2
** ? A2

** ? C2
** ? Q2

** ? R2
**. Solving the equations of

(1) at steady-state gives

A��1 ¼
k2

n1

C��1 ; Q��1 ¼
a1

k3

C��1

A��2 ¼
k02
n2

C��2 ; Q��2 ¼
a2

k03
C��2

R��1 ¼
1

k5

j1k2

n1

þ w1

� �
C��1

R��2 ¼
1

k05

j2k02
n2

þ w2

� �
C��2

ð10Þ

Furthermore, we also obtain the following equations

involving S1
** and S2

**

k��1 S��1 ¼ k1A��1 � k4Q��1 ¼ XC��1
k��2 S��2 ¼ k01A��2 � k04Q��2 ¼ X0C��2

ð11Þ

where

X ¼ k1k2k3 � n1a1k4

n1k3

[ 0;

X0 ¼ k01k02k03 � n2a2k04
n01k03

[ 0
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Using (10) and (11) in N**we have

N�� ¼ S��1 þ A��1 þ C��1 þ Q��1 þ R��1
þ S��2 þ A��2 þ C��2 þ Q��2 þ R��2
¼ S��1 þ ZC��1 þ S��2 þ Z 0C��2

¼ S��1 1þ Z

X
k��1

� �
þ S��2 1þ Z 0

X0
k��2

� �
ð12Þ

where

Z ¼ k2n1 þ
a1

k3

þ 1þ 1

k5

j1k2

n1

þ w1

� �

Z 0 ¼ k02n2 þ
a2

k03
þ 1þ 1

k05

j2k02
n2

þ w2

� �

Now using (10) and (12) in k1
**, we get

k��1 ¼
b1ðg1A��1 þ C��1 þ f1Q��1

N��

þ h21½g2A��2 þ C��2 þ f2Q��2 �Þ
N��

N��k��1 ¼
b1k

��
1

X

� �
g1k2

n1

þ 1þ f1a1

k3

� �
S��1

þ b1h21k
��
2

X0

� �
g2k02
n2

þ 1þ f2a2

k03

� �
S��2

¼ b1k
��
1

X

� �
Y½ � S

��

N��

þ b1h21k
��
2

X0

� �
Y 0½ � S

��

N��
ð13Þ

where

Y ¼ g1k2k3 þ n1k3 þ f1a1n1

n1k3

;

Y 0 ¼ g2k02k03 þ n2k03 þ f2a2n2

n2k03
:

It is easy to check that
b1Y
X
¼ PR0

P1
; b2Y 0

X0 ¼
PR0

0

P2
and thus (13)

simplifies to

N��k��1 ¼ AR0k
��
1 S��1 þ A0R00k

��
2 S��2 ð14Þ

where

A ¼ P
P1

A0 ¼ b1h12P
b2P2

:

Similarly for k2
**

k��2 N�� �PR00S��2
P2

� �
¼ 0: ð15Þ

Solving (14) and (15) yields the endemic equilibrium. It is

easy to see that when k2
** = 0, we have a boundary equi-

librium Eb where the blood transfusion population goes to

zero and the drug users population remains. Otherwise, we

have non-zero k1
** and k2

**. This results in an endemic

equilibrium where both population groups prevail and we

have a co-existing equilibrium Ec.

Sensitivity analysis

The recruitment rate P is taken to be 20 with the

assumption that roughly this is the increase in number of

drug users or those undergoing blood transfusions (getting

exposed to needle in healthcare setting etc.) per month.

Natural death rate is chosen so that 1
l corresponds to the

60 9 12 (average life span in months). Drug users interact

much more frequently than those undergoing blood trans-

fusion (needles in healthcare setting). Therefore, the

effective contact rate b = 0.3 is higher for drug users than

the rest b2 = 0.2. We assumes that there is 1 in a 3 chance

to get infected while interacting with intravenous drug

users compared to 1 in a 5 chance to catch the infection

while undergoing blood transfusion or reuse of needles in

healthcare setting. Among IDU’s, a high percentage can be

drug addicts and so the quarantine recovery time will be

greater compared to the other half of infected population.

Considering this we have assumed c1 and c2 such that the

recovery time ( 1
c1
; 1
c2

) is around 36 and 24 months, respec-

tively. It is well known and documented that the progres-

sion from acute to chronic infection takes 6 months time

and so the progression rate n1;2 ¼ 2
12

is chosen accordingly.

Quarantine of the IDU’s will serve well both for their

chronic infection and the drug habits.Also the IDU’s are

easier to identify, therefore their quarantine rate is assumed

to be higher. The infectiousness of acute infection is higher

than chronic infection (Corson et al. 2013; Zhang and Zhou

2012). Hence a reasonable estimates of g1,2.

Parameter Distribution Mean SD

l (N) 1.4E-03 2E-04

da (G) 3E-03 7E-04

dc (G) 9.3E-04 9E-04

dq (G) 2E-04 4E-04

c (N) 2.8E-02 9.9E-05

n (N) 1.67E-01 1.5E-02

a (U) 1.5E-01 2.9E-02

j (N) 2.6E-01 4.9E-02

w (N) 4E-03 1E-04

b (G) 3E-01 7E-04

g (G) 9.3E-04 9E-04

f (G) 2E-04 4E-04

The mean values of the parameters are taken from

Table 2. The N, Uand G stands for normal, uniform and
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gamma distribution, respectively. Standard deviations have

been assumed to be 1–5 %. The distributions are assumed

considering the type and nature of each of the parameter and

unfortunately there is no extensive study and data available

to support this set of choice. Individuals who have been

identified with chronic infection carries are equally likely to

get quarantined and so we used a uniform distribution for a.

Mostly parameters (b, g etc.) are supposed to be skewed

towards a certain value, therefore we have used gamma

distribution for them. Parameters depending on natural

causes (natural death rate l, natural recovery rate j etc.)

have been assigned normal distributions.

Optimal Control S1 = 18,000, A1 = 1,000, C1 = 400,

Q1 = 20, R1 = 0, S2 = 15,000, A2 = 800, C2 = 250,

Q2 = 20, R2 = 0

Proof of Theorem 4

Clearly the integrand of J is convex with respect to

a1(t) and a2(t). Also the solutions of the model (4.1) are

bounded as NðtÞ� P
l for all time. Also it is easily verifiable

that the model (4.1) has the Lipschiz property with respect

to the state variables. With these properties and using the

Corollary 4.1 of Fleming and Rishel (1975), we have the

existence of the optimal control.

Since we have the existence of the optimal vaccination

control. Using the Pontryagin’s Maximum Principle, we

obtain

d/1

dt
¼ � oH

oS1

; /1ðTÞ ¼ 0

d/2

dt
¼ � oH

oA1

; /2ðTÞ ¼ 0

� � �
d/10

dt
¼ � oH

oR2

; /10ðTÞ ¼ 0

evaluated at the optimal control, which results in the stated

Adjoint system (8). The optimality condition is

oH

oai

¼ 0 at a�i i ¼ 1; 2

Therefore on the set {t : 0 \ ai
*(t) \ .7}, we obtain

a�1 ¼
C1ð/3 � /4Þ

W1

a�2 ¼
C2ð/8 � /9Þ

W2

Considering the bounds on v*, we have the characteriza-

tions of the optimal control as in (9). Clearly the state and

the adjoint functions are bounded. Also it is easily verifi-

able that state system and adjoint system have Lipschitz

structure with respect to the corresponding variables, we

obtain the uniqueness of the optimal control for sufficiently

small time T (Pontryagin and Boltyanskii 1986). The

uniqueness of the optimal control pair follows from the

uniqueness of the optimality system, which consists of

(4.1) and (8), with characterizations (9). There is a

restriction on the length of the time interval to guarantee

the uniqueness of the optimality system. This smallness

restriction on the length on the time interval is due to the

opposite time orientations of (4.1), and (8); the state

problem has initial values and the adjoint problem has final

values. This restriction is very common in control problems

(Fister et al. (1998; Kirschner et al. (1997). h
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