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One typically disturbs a system from equilibrium and studies

its behavior to understand its stability. This procedure gives

insight into the dynamics at play. It is one of the few tech-

niques used in all areas of physics, be it Newtonian mechan-

ics, quantum mechanics, or general relativity. We have con-

tinued this effort by disturbing black holes. We will see that a

black hole chimes like a bell when it is disturbed. We will

study this chiming mathematically in Schwarzschild black

holes.

Introduction

Perturbations play a significant role in the stability of a system.

It is easy to reason that a car parked on a peak will go downhill

if it is disturbed. But such a deduction is not trivial when we are

dealing with complex mathematical objects. One such object is

produced by the gravitational collapse of huge stars—first pro-

posed by Oppenheimer and Snyder in 1939—and today known

as the black holes.

Everyone wanted to know if these exotic objects existed in reality

or were just a mathematical anomaly. Hence, they asked the ques-

tion, what happens if black holes are disturbed from their initial

state. Do they fizz out into oblivion, or do they come back to a

stable state?

The question was answered was provided 30 years later by C V

Vishveshwara, who proved that perturbed black holes returned to

a stable state by emitting waves in some characteristic frequen-

cies. And hence, these exotic objects were stable. Little did he
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know that his insight into perturbations of black holes would be-Keywords

Schwarzschild, black hole, quasi-

normal modes.

come the backbone for the detection of gravitational waves.

When one hits a bell with a hammer, the bell starts ringing, and

this clamor gradually fades away. This analogy can be extended

to black holes when they are impinged upon by some gravita-

tional disturbance—say two black holes are inspiraling towards

each other, and they ultimately merge into a single black hole.

The resulting black hole starts chiming in some characteristic fre-

quencies, and they become fainter and fainter until the black hole

settles to a stable state.

Huge gravitational wave detectors observe these dying notes in

the ringdown phase of the black hole merger.Ringdown is the last

stage of a black hole

merger preceded by

inspiral and merger.

We have a spe-

cial name for these notes, called the ‘quasinormal modes’. The

qualifier quasi- is used to indicate that these modes are similar to,

but not exactly equal to normal modes. We will see that quasi-

normal mode frequencies also have an imaginary part which acts

as a damping term. This article aims to find these quasinormal

modes. We start with the simplest of these complex mathemati-

cal objects, a non-rotating, non-charged and spherical black hole,

also known as ‘Schwarzschild black hole’.

We start with a formalism of gravity, the Einstein gravity in 4 di-

mensions (3 space + 1 time). The equations which relate space-

time curvature to matter in the space are the Einstein equations,

Rµν −
1

2
gµνR = 8πTµν µ, ν = 0, 1, 2, 3 (1)

where Tµν is the measure of energy in matter and radiation, called

the stress-energy tensor. The spacetime is governed by gµν, which

encodes the information about distance between two spacetime

points, and it is called the metric tensor. Rµν is the measure of

curvature of spacetime which depends on gµν, called the Ricci

tensor. The trace of Ricci tensor is known as the Ricci scalar,

R = g
µν

Rµν
11

We have used Einstein sum

convention. If there is a re-

peated lower and upper index,

it implies sum over that in-

dex. For example, xµy
µ =

∑3
µ=0 xµy

µ .

. (1) can be written succinctly as

Gµν = 8πTµν, (2)
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with

Gµν = Rµν −
1

2
gµνR.

Gµν is known as the Einstein tensor. An important point to note is

that Gµν and Tµν are 4 × 4 symmetric matrices (symmetric under

the exchange of indices, µ and ν) and hence, the Einstein equa-

tions are a set of 10 equations2 2
In an n-dimensional space-

time, there are
n(n + 1)

2
inde-

pendent equations.

. One, in general, is interested

in finding the spacetime (the metric tensor) given a particular

arrangement of matter (the stress-energy tensor). We then per-

turb these solutions away from the background spacetime (g0
µν)

by adding a small perturbation, hµν so that gµν = g
0
µν + hµν still

satisfies the Einstein equations (1) up to linear order in hµν.

As we will see in the later sections, when perturbations (hµν) are

applied to Einstein’s equations, we get a Schrödinger-like differ-

ential equation for the perturbation,

d
2Ψ

dr
2
∗

+
(

ω2 − V(r∗)
)

Ψ = 0, (3)

where V(r∗) is the analogue
Compare equation (3)

with the

time-independent

Schrödinger equation in

1 dimension,

d
2Ψ

dx2
+

2m

~2
(E−V(x))Ψ = 0,

where ~ is the Planck

constant. E, and m are

the energy and mass of

the particle moving in a

potential V(x). In

quantum mechanics, the

particle is described by a

complex valued function

called the wavefunction

Ψ.

of potential in Schrödinger equation,

ω is the frequency of oscillations, and r∗ is known as the tortoise

coordinate in the literature. The exact expressions for V(r∗) and

r∗ depend on the background spacetime g
0
µν.

These quasinormal frequencies are independent of the processes

which give rise to oscillations. By analyzing the ringdown be-

havior, we can probe black holes to determine their mass, charge,

and angular momentum, in addition to confirming their existence.

Quasinormal frequencies serve as a unique fingerprint for oscil-

lating black holes.

In this article, we have used natural units, that is, c = 1 = G,

where c is the speed of light, and G is Newton’s gravitational

constant. In the following sections, we will discuss the bound-

ary conditions and will ultimately find the differential equations

for perturbations of Schwarzschild (non-rotating and uncharged)

black holes.

RESONANCE | October 2020 1355



GENERAL ARTICLE

1. Quasinormal Modes

We wish to find the quasinormal mode (QNM) spectrum, that is,

the frequencies33
The frequency ω is, in gen-

eral, a complex number.

of oscillation which are subject to certain bound-

ary conditions. We choose boundary conditions in a manner such

that the solutions are physically valid. We are also interested in

enumerating the number of such ω’s. Finally, we want to find a

way to calculate them.

To review boundary conditions, we take Schwarzschild black holes

as an example. The Schwarzschild line element44
A line element can be thought

of as the distance between two

points which are infinitesimally

close to each other.

for a spherical

object of mass M is given by

ds
2 = g

0
µνdx

µ
dx
ν,

=

(

1 −
2M

r

)

dt
2 −

(

1 −
2M

r

)−1

dr
2 − r

2(dθ2 + sin θ2dϕ2).

(4)

The above solution for metric tensor is found for no matter or ra-

diation outside the spherical body, that is, Tµν = 0. The Einstein’s

equations read as, Rµν = 0 since R can be proved to be zero.

A particular surface of interest is the event horizon where the

metric (4) becomes singular. Anything which crosses the event

horizon, cannot counter the gravitational pull of the black hole,

and therefore, cannot escape the black hole. For a Schwarzschild

black hole, the event horizon is at r = 2M where the coefficient

of dr
2 in (4) blows up!55

However, by a suitable coordi-

nate transformation, the singu-

larity can be removed. Hence,

the singularity is a manifesta-

tion of the coordinate system

we used, but there is no phys-

ical singularity.

Another useful trick is to change the radial coordinate (r) to tor-

toise coordinate (r∗), which are related by,

r∗ = r + 2M ln

(

r

2M
− 1

)

. (5)

Observe that, as r → 2M, r∗ → −∞ and as r → ∞, r∗ → ∞. As

we approach the event horizon, r changes slowly with r∗, that is,

for a large change in r∗, the change in r is small. That is why r∗

is called the tortoise coordinate.

If nothing can escape the event horizon, the gravitational waves

should be no exception. So, QNMs should be purely ingoing at
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the event horizon of black holes (r∗ → −∞). Asymptotically as

r∗ → −∞, Ψ should be an ingoing plane wave,

Ψ∼e
iω(t+r∗). (6)

At spatial infinity, none of the QNMs should reflect back. There is

no physical significance of wave coming in from spatial infinity.

Hence, they are purely outgoing. As r∗ → ∞,

Ψ∼e
iω(t−r∗), (7)

which is a purely outgoing plane wave.

Compare the boundary

conditions on QNMs

with propagating waves

which can be written as

cos (ωt − kx + φ0) or

cos (ωt + kx + φ0), if

they are moving in +x or

−x direction

respectively.

To summarize, QNMs are purely ingoing at the event horizon and

purely outgoing at the spatial infinity. Also, no incident radiation

is given to the system.

With these boundary conditions in mind, we need to solve for the

angular frequencies, ω from differential equation (3) viewed as

an eigenvalue problem:

LΨ = −ω2Ψ, (8)

where

L =
d2

dr
2
∗

− V. (9)

Now, the problem boils down to finding the eigenvalues of the L

operator. The problem is simple to state but a nightmare to solve.

Later, we will discuss the Wentzel–Kramers–Brillouin (WKB)

approximation with a slight modification used to find QNMs.

2. Schwarzschild Black Hole

Karl Schwarzschild solved Einstein equations (1) in 1916 for the

gravitational field outside a spherical object. It was the first solu-

tion found for Einstein equations, which can be used for approxi-

mating the spacetime outside stars and planets.
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Schwarzschild line element (4) can be put into a compact form:

ds
2 = g

0
µνdx

µ
dx
ν, (10)

where µ = 0, 1, 2, 3 corresponds to t, r, θ, φ respectively, and g
0
µν

is the metric tensor given by,

g
0
µν =


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. (11)

As noted previously, we add a perturbation to the above metric,

gµν = g
0
µν + hµν. (12)

By imposing the symmetry condition on the metric, the number

of independent components of hµν are reduced from 16 to 10.

Further, there is a neat analogy with the transverse nature of elec-

tromagnetic waves prompting us to set three components of hµν

to be zero. To capture the remaining variables, we introduce a

metric which is non-stationary, axisymmetric66
For simplicity and clarity, we

focus only on QNMs arising

from axisymmetric perturba-

tions.

, and also satisfies

the Einstein equation in the vacuum7:

ds
2 = e

2ν
dt

2−e
2ζ(dϕ−Ωdt−q1dr−q2dθ)2−e

2µ1(dr)2−e
2µ2(dθ)2.

(13)

The Schwarzschild metric7
This metric can be proved to

be the most general solution of

the non-stationary, axisymmet-

ric spacetimes [1].

is a specific case of this generalization

with no rotation, that is, Ω = q1 = q2 = 0 and

e
2ν = e

−2µ1 = κ/r2 ≡ 1 − 2M/r, (14)

κ = r
2 − 2Mr, (15)

e
µ2 = r, (16)

e
ζ = r sin θ. (17)

When the metric is slightly perturbed, Ω, q1, q2 may become non-

zero, and ν, ζ, µ1, µ2 may experience small increments. This is an
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indication that these two types of perturbations must be dealt with

independently. We will consider the case of non-zero Ω, q1, q2—

collectively known as axial perturbations. These impart rotation

to the black hole. The perturbations of remaining parameters are

known as polar perturbations8 8
In literature, axial perturba-

tions are also known as Regge–

Wheeler or odd perturbations or

vector-type perturbations. The

polar perturbations are also

known as Zerilli or even per-

turbations or scalar-type pertur-

bations. The names, odd and

even, are inspired from their

parity which are (−1)l+1 and

(−1)l respectively.

.

Chandrasekhar showed that QNMs obtained from these two types

of perturbations are the same, that is, they are isospectral. In

particular, he showed that the form of potential in equation (3)

obtained from axial perturbations could be transformed to the one

obtained from polar perturbations.

It is a common saying that hindsight is 20/20. And with the above

insight in mind, we will only deal with axial perturbations in this

article. For a complete treatment, Chandrasekhar’s book is an

excellent resource, and apart from some difference in notation,

we have followed Historically, it was

Regge and Wheeler [9]

who first derived Eq. (3)

and the exact expression

for the potential for axial

perturbations. And

rightfully so, the

potential is known as the

Regge–Wheeler

potential. And it was

Zerilli [10] who solved

the problem of polar

perturbations. But in this

article, we don’t follow

the procedure by either

Regge and Wheeler or

Zerilli, but our method is

akin to what is followed

by Chandrasekhar [1].

Chandrasekhar’s book.

2.1 Regge–Wheeler Equation

A small perturbation of the Einstein equation (1) will give9, δRµν =

0. The equations governing the three variables (Ω, q1, q2) in an

unperturbed Schwarzschild metric are, Rφr = 0 = Rφθ. The equa-

tions governing their perturbation are

(

e
3ζ+ν−µ1−µ2 Q12

)

,2
= −e

3ζ−ν+µ2−µ1 Q01,0 (δRφr = 0), (18)
(

e
3ζ+ν−µ1−µ2 Q12

)

,1
= e

3ζ−ν+µ1−µ2 Q02,0 (δRφθ = 0), (19)

where

Q12 = q1,2 − q2,1, (20)

Q0i = Ω,i − qi,0 i = 1, 2. (21)

We have used a shorthand 9
Recall that Rµν = 0 for

Schwarzschild background.

And since we are only

interested in gravitational

perturbations, δTµν = 0.

notation for writing derivatives. γα,β

means partial derivative of γα with respect to x
β where γ can be

any variable, and x
β corresponds to t, r, θ, φ for β = 0, 1, 2, 3 re-

spectively. For example, in equation (20), q1,2 refers to partial

derivative of q1 with respect to x
2 (= θ).
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We now introduce a new variable, Q(t, r, θ) = κQ12 sin3 θ, where

κ is defined in (15) and we get,

1

r4 sin3 θ

∂Q

∂θ
= −

(

Ω,1 − q1,0
)

,0 , (22)

κ

r4 sin3 θ

∂Q

∂r
=

(

Ω,2 − q2,0
)

,0 . (23)

We assume that the perturbations (Ω and qi) have time depen-

dence of the form, e
iωt. This corresponds to a single Fourier mode

of frequency ω. The equations now become

1

r4 sin3 θ

∂Q

∂θ
= −iωΩ,1 − ω

2
q1, (24)

κ

r4 sin3 θ

∂Q

∂r
= iωΩ,2 + ω

2
q2. (25)

Eliminating Ω from above equations, we get,

r
4 ∂

∂r

(

κ

r4

∂Q

∂r

)

+ sin3 θ
∂

∂θ

(

1

sin3 θ

∂Q

∂θ

)

+ ω2 r
4

κ
Q = 0. (26)

Observe that the above equation is separated between the radial

(r) and the angular part (θ). Writing Q(r, θ) = R(r)Θ(θ), we can

decouple the equations as

d

dθ

(

1

sin3 θ

dΘ(θ)

dθ

)

+ sin3 θ(l + 2)(l − 1)Θ(θ) = 0, (27)

κ
d

dr

(

κ

r4

dR(r)

dr

)

− (l + 2)(l − 1)
κ

r4
R(r) + ω2

R(r) = 0. (28)

Equation (27) is known as the Gegenbauer equation and its solu-

tions are called the Gegenbauer functions and is well known in

mathematical literature. Equation (28) can be further simplified

by introducing tortoise coordinate,

r∗ = r + 2M ln(r/2M − 1),
d

dr∗
=
κ

r2

d

dr
, (29)

and let,

R(r) = rΨ(r). (30)
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Figure 1. The potential

barrier for Schwarzschild

black holes is shown for

modes, l = 2, 3, 4.
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Using substitutions (29) and (30), we find that (28) reduces to

d2Ψ

dr
2
∗

+ ω2Ψ = VΨ, (31)

where potential, V is given by

V(r) =
κ

r5
(l(l + 1)r − 6M) , (32)

or,

V(r) =

(

1 −
2M

r

) (

l(l + 1)

r2
−

6M

r3

)

. (33)

Equation (31) is known as the Regge–Wheeler equation and the

potential (33) is known as the Regge–Wheeler potential. The po-

tential for a solar mass black hole versus the tortoise coordinate

is plotted in Figure 1. V(r∗) is implicitly defined as, V(r∗) ≡
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V(r(r∗)), where r(r∗) is found by inverting equation (29).

We may look for a solution of the form, Ψ = exp
(

i

∫

r∗

0
φdr∗

)

with,

φ→ −ω as r∗ → ∞ and φ→ ω as r∗ → −∞ (34)

as dictated by the boundary conditions (6) and (7). Using this

form in (31), we get a first order equation for perturbations,

iφ,r∗ + ω
2 − φ2 − V = 0. (35)

Solutions of (35) exist only whenω takes discrete values as shown

by Chandrasekhar [1]. The number of such frequencies are infi-

nite, as proved by Bachelot and Motet-Bachelot [6].

In the next section, we will explain one method to compute quasi-

normal frequencies.

2.2 WKB Approximation

Inspired by the quantum mechanics (QM), we can try to solve

(31) by the Wentzel–Kramers–Brillouin (WKB) approximation

method, which is the theme of this section. In 1-dimensional QM,

when a particle scatters off a potential (see Figure 2), some part

of the incident beam is reflected and the other part is transmitted.

The amplitudes of the transmitted (Region III), and reflected

(Region I) waves are e
−γ, and

√
1 − e−2γ times the amplitude of

the incoming wave from region I respectively. Thus, the am-

plitude of the transmitted wave is e
−γ times the amplitude of the

reflected wave (for γ ≫ 1). In general, γ =
∫

r2

r1
dr∗

√
V(r∗) − E,

where V(r∗) is the potential, E is the energy of wave, and r1 and

r2 are the turning points1010
The points at which the po-

tential is same as the energy

of the particle or radiation are

known as turning points as in-

dicated in Figure 2.

. And if the potential is slowly varying,

we can approximate the potential as a Taylor series to first order

in r∗ near the turning point r1, V(r∗) ≈ V(r1)+V
′(r1)(r∗− r1). For

an elaborate introduction to the topic, the reader is referred to [2].

But for the case of black holes, there is no analogue of the incident

wave. And, the waves are purely ingoing at the event horizon and

purely outgoing at the spatial horizon. Therefore, the transmitted

and reflected waves have comparable amplitudes.
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Figure 2. Dashed line rep-

resents the energy of the ra-

diation. Two turning points

r1 and r2 are shown. Three

regions I, II, and III are

marked.

r1 r2
V(r*)

Region   

The only way we can have comparable amplitudes for transmitted

and reflected waves is when the turning points are close to each

other. The transmitted and reflected waves will have the same

amplitude when there is only one turning point.

But if the turning points are very close or degenerate, the first

order approximation of the potential breaks down. Instead, we

should include higher order terms to the approximation of the

potential. In this section, we model the potential by a parabola

and discuss the results as first derived by Schutz and Will [11].

Rewriting (31) as

d2Ψ

dr
2
∗

+ p(r∗)Ψ = 0, (36)

where

p(r∗) = ω
2 − V(r∗). (37)

Approximating p(r∗) as:

p(r∗) = p(r0) +
1

2
p
′′
0 (r∗ − r0)2 + O(r∗ − r0)3, (38)

where r0 is the maximum of the potential barrier and

p
′′
0
= d

2
p/dr

2
∗ |r0

. Further let r1 and r2 be the two turning points,

that is, roots of the equation p(r∗) = 0. We define some new

quantities,

k =
1

2
p
′′
0 , t = (4k)1/4

e
iπ/4(r∗ − r0), (39)

ρ +
1

2
= −i

p(r0)

(2p
′′
0

)1/2
. (40)
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Using (38)–(40) in (31), we obtain,

d2Ψ

dt2
+

(

ρ +
1

2
−

1

4
t
2

)

Ψ = 0. (41)

The solutions of this equation are the parabolic cylinder func-

tions. The asymptotic form for r∗ ≫ r2 is given by

Ψ ≈ Be
−3iπ(ρ+1)/4(4k)−(ρ+1)/4(r∗ − r0)−(ρ+1)

e
ik

1/2(r∗−r0)2/2

+

(

A +
B(2π)1/2

e
−iρπ/2

Γ(ρ + 1)

)

e
iπρ/4(4k)ρ/4(r∗ − r0)ρe−ik

1/2(r∗−r0)2/2,

(42)

and for r∗ ≪ r1,

Ψ ≈ Ae
−3iπρ/4(4k)ρ/4(r∗ − r0)ρe−ik

1/2(r∗−r0)2/2

+

(

B −
iA(2π)1/2

e
iρπ/2

Γ(−ρ)

)

e
iπ(ρ+1)/4(4k)−(ρ+1)/4

(r∗ − r0)−(ρ+1)
e

ik
1/2(r∗−r0)2/2, (43)

where Γ(x) is the usual gamma function given by,

Γ(x) =

∫ ∞

0

z
x−1

e
−z

dz.

Since there is no incident radiation, the coefficient of

exp
(

ik
1/2(r∗ − r0)2/2

)

must be zero. From these conditions, we

find B = 0 and 1/Γ(−ρ) = 0. The latter implies that ρ must be a

non-negative integer. We get, from (40),

p(r0)

(2p
′′
0

)1/2
= i

(

n +
1

2

)

, n = 0, 1, 2, . . . (44)

The quasinormal modes are summarized in Table 1 for different l.

To convert into kHz, multiply by 2π(5142)×(M⊙/M). A graphical

comparison between l = 2 quasinormal mode obtained via WKB

method [11] and numerical method used by Chandrasekhar and

Detweiler [5] is shown in Figure 3.

The formula works great for n = 0 but there is a large deviation

from the numerically obtained values for higher overtones (n ≥

1). But there is another method, called the Continued Fraction

Method ([7], [8]), using which we can find QNMs for n ≥ 1 and

they match well with numerical results.
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Figure 3. Comparison be-

tween the l = 2 quasinormal

mode found from the WKB

method and the Numerical

method [5].
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3. Conclusion

In this article, we have discussed the behavior of the black holes

when they are disturbed from their equilibrium. We saw that

black holes settle to a stable state by radiating out energy in some

characteristic frequencies, called the quasinormal modes. This

bell-like ringing down behavior is observed in gravitational wave

detectors. Here, we have focused our attention on uncharged

and non-rotating black holes. Figuratively, a black hole can be
Table 1. Comparison of

QNM obtained via WKB ap-

proximation and numerical

method. Numerical results

are from Chandrasekhar and

Detweiler [5].

n = 0 WKB Numerical

l = 2 0.3988 + i0.08828 0.3737 + i0.0889

l = 3 0.6165 + i0.09232 0.5994 + i0.0927

l = 4 0.8223 + i0.09392 0.8092 + i0.0941
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slightly perturbed either perpendicularly which results in a non-

zero change in the parameters of the black hole or it can be dis-

turbed tangentially which imparts a rotation to the black hole. We

have discussed this tangential perturbation in Section 2.

We confined ourselves to the study of perturbations of Schwarzschild

black holes and discussed a method of computing the lowest quasi-

normal mode (n = 0) using WKB approximation. To find the

QNMs for higher n’s, we need more sophisticated methods like

the continued fraction method [8].

The procedure we discussed for perturbations of Schwarzschild

black holes can be extended to charged black holes which lead

to a similar eigenvalue equation (3) with a different potential. We

refer the readers to Chandrasekhar’s book [1] for a thorough treat-

ment of the perturbations of charged black holes.

We observe that calculating QNMs is tedious even for the sim-

plest case of a black hole, but they can be tackled by semi-analytical

methods such as WKB approximation. However, finding QNM

spectrum for other black holes like Kerr (rotating) black holes

require the tools of numerical relativity.
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