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One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells
on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from
liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in
origins of life includes study of the structure, function, and evolution of such systems. However, the goal of
primitive LLPS research is not simply curiosity or striving to understand one of life’s biggest unanswered
questions, but also the possibility to discover functions or structures useful for application in the modern day.
Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phase-
separated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied
to primitive compartment research and then present some examples of LLPS applied to biomolecule purifi-
cation, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation.
Due to a significant focus on similar functions and structures, there appears to be much for origins of life
researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such
researchers can start meaningful cross-disciplinary collaborations in the future.
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separation; protocell

1. Introduction

One of the goals of origins of life (OoL) research is to
understand how the first cells on Earth, i.e., protocells,
formed. While it is unclear what these protocells were
exactly composed of, the OoL field has studied many
model systems that mimic compartments potentially
present on early Earth. These model systems include
fatty acid and phospholipid bilayer membrane vesicles
(Chen and Walde 2010; Imai and Walde 2019), oil-in-

water droplets (Hanczyc 2014; Zwicker et al. 2016),
mineral pores (Westall et al. 2018), and membraneless
droplet systems (Fox 1976; Poudyal et al. 2018),
among others (Monnard and Walde 2015). In particu-
lar, membraneless droplet systems formed from phase
separation have been explored as potential protocell
models since the early 1900s, when Oparin and Hal-
dane jointly proposed the existence of so-called mem-
braneless coacervate droplets (Lanham 1952; Tirard
2017).
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Although initially proposed as primitive compart-
ments, liquid-liquid phase separation (LLPS) has been
studied abundantly in biology as well (Yoshizawa et al.
2020). For example, it is believed that phase separation
and membraneless organelles control many essential
cellular processes including gene regulation (Peng
et al. 2020), cell division (Ong and Torres 2020; Peng
et al. 2020), tumorigenesis (Nozawa et al. 2020; Jiang
et al. 2020), and development of diseases such as
amyotrophic lateral sclerosis (Lin et al. 2016), among
others (Yoshizawa et al. 2018; Boeynaems et al. 2018).
However, while the number of recent studies reporting
LLPS-controlled cellular processes have increased
significantly compared to just a few years prior, there is
still some skepticism in the field regarding the exact
mechanisms of the contributions that phase separation
has on cellular processes (McSwiggen et al. 2019), and
specific methods or techniques suitable for analysis of
biological LLPS have yet to be agreed upon amongst
researchers in the field (Kamimura and Kanai 2021).
As such, more rigorous and wide-spanning research
into biological phase separation processes must con-
tinue, among the renewed interest (and the warranted
skepticism).
Skepticism is not a unique concept within biolog-

ical LLPS research, and is prevalent in OoL research
as well, where a wide range of theories are pursued
by a number of researchers from many fields of
study (Lazcano and Miller 1996; Peretó 2005; White
2007; Phillips 2010; Bruylants et al. 2011; Cleaves
2012, 2013; Scharf et al. 2015; Knab 2016; Krish-
namurthy 2018; Benner et al. 2019; Butch et al.
2021). In particular, it is not clear how membraneless
droplets could have assembled on early Earth,
let alone accomplished functions that a primitive cell
would have performed, although many theories exist.
Nevertheless, this should not preclude researchers
from exploring important and difficult OoL-related
questions, especially regarding the role of LLPS at
the origins of life (in particular, these questions are
worth studying because of their difficulty!). In fact, a
number of LLPS systems have been discovered and
characterized in the context of primitive compart-
ments, including aqueous two-phase systems (ATPS)
(Keating 2012); coacervates composed of a combi-
nation of nucleotides, nucleic acids, peptides, and
other polymers (Koga et al. 2011; Ghosh et al. 2020;
Abbas et al. 2021); and membraneless microdroplets
generated from polyesters and other primitive ‘non-
biological’ polymers (Jia et al. 2019, 2021a; Chandru
et al. 2020a, b), among others.

In these prebiotic simulation studies, phase-separated
compartments are assembled in vitro in the laboratory
by utilizing biomolecules that may have been present
on early Earth. The prebiotic milieu was likely very
‘messy’, and many laboratory simulations focus on
utilizing a small, isolated portion of the prebiotic milieu
for tractability purposes. The experiments used to study
primitive phase separation can be similar to the
approaches taken by applicational fields such as
biotechnology and synthetic biology, albeit with
somewhat different goals and starting materials. Prim-
itive LLPS research often focuses on the merits and
demerits of various LLPS functions in the context of
the emergence of life. These functions include
enhancement of internal reaction rates (Poudyal et al.
2019a, b), segregation and concentration of analytes
(Frankel et al. 2016), catalysis of chemical reactions
(Pir Cakmak and Keating 2017), engulfment of other
droplets (Qiao et al. 2017), and even growth and
division upon application of external stimuli (Yin et al.
2016), among others.
While some in engineering fields may argue that the

exhibited functions of primitive LLPS systems are
quite simple compared to what can be achieved through
synthetic biology (Meng and Ellis 2020), some modern
applied processes use structures and/or functions
observed in primitive LLPS. For example, drug deliv-
ery (Mohamed and Van der Walle 2008; Johnson and
Wang 2014) and biomolecule purification (Xu et al.
2011) in biotechnology, synthetic microbioreactors
(Garenne et al. 2016) and membraneless cellular
organelle mimics (Yewdall et al. 2020; Deng 2020) in
synthetic biology, pollution control systems in envi-
ronmental engineering (Zhang et al. 2019), and flavor
encapsulation in the food industry (Yeo et al. 2005;
Madene et al. 2006) have used LLPS to accomplish
functions. Recent OoL research has also been heavily
focused on increasing the structural complexity of
primitive LLPS, such as lipid layer- (Tang et al. 2014)
and lipid vesicle-encapsulated (Pir Cakmak et al. 2019)
coacervates, co-assembly of DNA liquid crystals in
coacervates (Jia and Fraccia 2020; Fraccia and Jia
2020), mineral particle pickering emulsions scaffolded
by polyethylene glycol (PEG)/dextran ATPS (Pir
Cakmak and Keating 2017), and multiphase mem-
braneless droplets (Lu and Spruijt 2020). Increases in
structural complexity could lead to more complex
emergent functions of LLPS, some of which may
approach functions which could be used in modern
engineering and biotechnology applications. Here, we
briefly review the history of the study of LLPS in OoL
research, followed by examples of LLPS used in
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biotechnology, synthetic biology, and engineering
applications. Information gleaned from LLPS in OoL
research and from applicational fields can be mutually
beneficial to each other, and collaborations resulting in
significant contributions both to new knowledge and
novel technologies can result from such connections.
Thus, we hope to promote further connections and
discourse between OoL researchers and those in related
fields such as biology, biochemistry, materials science,
environmental engineering, and many others.

2. LLPS systems as primitive compartments

The assembly behavior of LLPS systems can be gen-
erally described using Flory-Huggins theory, which
describes the thermodynamics of mixing polymer
solutions (Flory 1942, 1945; Huggins 1942). Polymers
in particular exhibit physical characteristics that cannot
be predicted when compared to other ideal molecules
of similar size, as different parts of a long polymer
chain may act independently of other parts (Flory
1942). In particular, Flory-Huggins theory places all
molecules and liquids within a mixture in a lattice,
from which thermodynamic parameters such as
entropy, enthalpy, and Gibbs free energy of mixing can
be predicted; the Gibbs free energy of mixing is
dependent on the average degree of polymerization
(Wang et al. 2019). These parameters can then help to
predict phase separation characteristics, including
phase diagrams, of mixed polymer solutions (Tian
et al. 2013; Lopes et al. 2020). Describing the ther-
modynamics of complex coacervation, a specialized
case of LLPS resulting from binding of oppositely
charged polymers, requires a modification of Flory-
Huggins theory (Veis 2011). Voorn and Overbeek
modified the Flory-Huggins theory to take into account
that phase separation of a complex coacervate does not
result in complete depletion of either polymer in any
phase (both polymers are present in both resulting
phases, although perhaps at very low concentrations)
(Overbeek and Voorn 1957). However, further detailed
discussion of the physics of phase separation is beyond
the scope of this review.
Since the initial proposals by Oparin and Haldane in

the 1920s, several LLPS systems have been studied in
an OoL context, even being proposed as model pro-
tocells. Here, we first introduce the concept of com-
partmentalization, describe the history of research
regarding primitive compartments, and then present a
broad overview of relevant primitive compartment

systems, in particular focusing on those generated from
phase separation.

2.1 Compartmentalization

The process by which any given volume of space is
completely confined (internal space) and separated
from the rest of the environment is considered com-
partmentalization. Household objects such as contain-
ers or vehicles such as cars or trains could be
considered compartments that separate different
objects. The compartment boundary itself is usually an
interface, and it must be compatible and interact with
both the internal and external components in some way.
One such example of a compartment interface is a
micellar boundary, which can be generated when
washing oil from one’s hands with soap; the amphi-
philic soap molecules coat and encapsulate the oil
molecules. The inner boundary of the soap micelle
interacts with oil molecules, while the external
boundary of the soap interacts with water molecules
(Sorrenti et al. 2013). Such boundaries may also have
variable porosity. Some are fairly porous, such as
cheese wrapped in cheesecloth, allowing some internal
and external components to exchange. Other compart-
ment boundaries are relatively non-porous, such as a
water balloon, which allows very little internal/external
component exchange. Compartments can also be of
many sizes, from nanomachines on the nanoscale
(Endo and Sugiyama 2018) all the way to planets,
which may contain a variety of geological and chem-
ical processes (Vita-Finzi and Fortes 2013).
Perhaps one of the most important functions of

compartments is for the internal components inside a
compartment to have different properties (physical,
chemical, etc.) than the excluded components, although
this is not guaranteed. One example is an in-flight
airplane, which controls temperature, pressure, and
oxygen content of the air within the fuselage to allow
humans to survive. Outside of a flying airplane, the air
is too cold and oxygen-poor to sustain human life,
although some extremophiles have been found in the
upper stratosphere (Smith et al. 2018). However, when
the airplane boundary is made more porous (for
example, through opening a door), equilibration results
in the internal components being largely equivalent to
those of the excluded components. Exclusion through
compartment boundaries can also be explored in biol-
ogy at various scales. At the sub-cellular scale, the
internal chemical environment within each organelle is
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distinctly different from the cellular cytoplasm and
other organelles. Thus, different organelles can perform
essential cellular functions such as nutrient synthesis
(Fagone and Jackowski 2009), waste export (Ito et al.
2014), and gene expression regulation (Drino and
Schaefer 2018). Differentiation of cellular compart-
ments (Zakrzewski et al. 2019) allows formation of
specific biological tissues and organs (Bryant and
Mostov 2008). Each tissue and organ has a distinct
internal environment and can help support the growth
and survival of a macrocellular organism. Even within
human society, each human can be considered to be
compartmentalized within our own distinct bodies.
While compartmentalization is a defining feature of
life–a cell is a compartment, and all life requires cells–
it is less clear how biological compartments came to
exist in the first place.

2.2 Historical context of primitive compartment
research

Around one century ago, Russian biochemist Alexan-
der Oparin (1965) and British scientist J. B. S. Haldane
(1929) independently introduced the first origin of life
hypothesis in modern scientific history. Both scientists
proposed a very similar scenario: the formation of the
early reducing atmosphere on Earth, subsequent
organic synthesis of primitive compounds, and
assembly of these organic compounds into structures
that could evolve, replicate, and sustain themselves
energetically (Lazcano 2010; Tirard 2017). Inciden-
tally, both models describe the first idea of prebiotic
compartmentalization. Oparin and Haldane both sug-
gested that organic molecules would be synthesized
from inorganic carbon compounds triggered by UV
irradiation, which would then settle and aggregate in
the primeval ocean to form a ‘prebiotic soup’. Oparin
suggested that the first polymers resembling proteins
and carbohydrates would assemble into colloidal par-
ticles, which would later develop a primitive metabo-
lism akin to fermentation. He proposed that the
colloidal particles would consume available nutrients
through fermentation and develop photosynthesis after
other nutrients became scarce. These particles are often
referred to as ‘coacervates’, organic-rich droplets
formed via LLPS. A specific class of coacervates, i.e.,
complex coacervates, result from the association of
oppositely charged molecules. However, Oparin did
not specifically identify that charged molecules played
a role in the assembly of these particles. However,
Haldane’s idea of compartmentalization was slightly

different from Oparin’s. He suggested that abiotically
formed macromolecules would instead serve as primi-
tive membranes, a component of a compartment.
In the 1950s and 1960s, Sidney Fox, an American

biochemist, described a putative protocell system that
became a basis for the proteinoid theory of the origin of
life (Fox and Harada 1958, 1960; Fox et al. 1959; Fox
1964, 1965). Fox showed that polymeric material
formed upon thermal condensation of a mixture of
amino acids assembled into microscopic spherules
upon suspension in water. The microspherules exhib-
ited interesting properties akin to cell reproduction, as
they grew in an apparent accretion mechanism and then
underwent ‘budding’ to eventually release smaller
microspherules. The microspheres tended to assemble
into long strands and resembled some of the earliest
fossils found in ancient rocks. The proteinoids have
additionally been shown to possess marginal catalytic
properties towards hydrolysis reactions (Fox and
Krampitz 1964; Oshima 1968; Quirk 2013). The sci-
entific community has extensively criticized these
studies of proteinoids due to unsubstantiated claims of
non-random incorporation of amino acids into the
polymeric material, linearity of the polymers, and, most
outrageously, suggestions that proteinoids were alive.
Proteinoid theory was largely dismissed and rarely
revisited in the context of prebiotic chemistry. Despite
the shortcomings of the proteinoid theory, it brought
forward the idea of phase-separated systems playing a
role in the origin of life (Fox 1976; Keating 2012).
A set of experiments related to proteinoid compart-

ments was then conducted in the 1960s by the team of
Krishna Bahadur, an Indian chemist (Bahadur 1967;
Grote 2011; Gupta 2014). In a photochemical reaction,
the team reported the formation of different variations
of microspheres, dubbed ‘Jeewanu’ (Sanskrit for ‘par-
ticles of life’), which were reported in a series of arti-
cles in the German journal Zentr. Bakteriol. Parasitenk.
((Bahadur 1964; Bahadur and Ranganayaki 1964;
Bahadur et al. 1964) cited in (Grote 2011)) (figure 1).
These compartments were synthesized by mixing
inorganic nitrogenous (e.g., ammonium phosphate and
ammonium molybdate) and organic (e.g., citric acid,
ascorbic acid, paraformaldehyde, and formaldehyde)
compounds with common biominerals from cells.
Colloidal ferric chloride, molybdenum compounds, or
other inorganics were also added due to their ability to
act as catalysts or reaction cofactors. After a few days
of sunlight exposure and shaking of the entire reaction
mixture, microscopic spherical Jeewanu particles
appeared. Bahadur claimed that the particles were
enclosed by a semipermeable membrane and also
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alleged Jeewanu’s reproductive capability by budding,
much like the process that single-celled organisms
utilize for fission. Bahadur’s later work on Jeewanu
also detected the presence of peptides, sugars, and
nucleobases synthesized within the compartments
(Bahadur et al. 1977; Grote 2011). Bahadur’s team
changed the Jeewanu synthesis and workup protocols
frequently, and their reports lacked in detail, so their
experiments were difficult to reproduce. The scientific
community largely dismissed Bahadur’s work because
of unsubstantiated claims that Jeewanu were alive
(Grote 2011). However, through recent discussions and
reexamination of Bahadur’s original work, some
researchers in the OoL field still consider Jeewanu to
be a relevant and promising system of study (which
was understudied and perhaps did not receive fair
treatment) for understanding specific aspects of the
origins of life (Gànti 2003; Gupta 2014). This example
of a poorly studied, although likely relevant, system
suggests that there may be a number of additional
compartment systems beyond those studied widely that
could contribute significantly to our understanding of
primitive compartment function and evolution.

2.3 Common primitive compartment model
systems

Since the initial studies mentioned above, a number of
compartment systems have been explored in the con-
text of primitive compartmentalization. One of the
most widely studied systems are lipid bilayer mem-
brane vesicles or liposomes (Luisi et al. 1999; Chen
and Walde 2010). If we consider a very simplistic case,
a modern cell is composed of a phospholipid

membrane bilayer encapsulating heritable genetic
information and biochemical reactions that allow the
cell to maintain genetic replication, cell growth, and
cell division (Alberts et al. 2007). Working backward
in time, an ancient version of a cell would likely not
have contained such complex biochemical reactions or
structures that resulted from evolutionary processes
taking place over billions of years. In particular, folded
proteins are likely too complex to have existed in the
earliest compartments on Earth and phospholipid syn-
thesis may not have been plausible in the complex
prebiotic milieu. As such, primitive vesicles are pro-
posed to be composed of pure (Hargreaves and Deamer
1978) or mixtures (Jordan et al. 2019; Sarkar et al.
2020a) of fatty acids, which have been observed in
meteorites (Kvenvolden 1974; Huang et al. 2005; Lai
et al. 2019) or as products in prebiotic reactions (Allen
and Ponnamperuma 1967; McCollom et al. 1999;
Simoneit et al. 2007; Furukawa et al. 2008). Several
reviews delve into the topic of lipid vesicles in the
context of primitive compartments (Chen and Walde
2010; Schrum et al. 2010; Del Bianco and Mansy
2012; Deamer 2017; Wang and Szostak 2019; Sarkar
et al. 2020b).
Recent OoL research has also resulted in a greater

emphasis in studying other non-membrane-bound
structures such as mineral pores/cavities/surfaces
(Baaske et al. 2007; Cleaves et al. 2012; Hansma 2014;
Kreysing et al. 2015; Westall et al. 2018; Gillams and
Jia 2018) and membraneless phase-separated systems
as primitive compartment models (Keating 2012; Mann
2012; Poudyal et al. 2018; Ghosh et al. 2020). The
increase in interest and understanding of phase-sepa-
rated compartments may be commensurate with the
increase in understanding of the importance of modern

Figure 1. Jeewanu particles after 24 hours of sunlight exposure as observed by different microscopy methods. Left: Light
microscopy. Middle: Confocal microscopy. Right: Scanning Electron Microscopy (SEM). Figures reproduced with
permission from Gupta VK and Rai R K 2018 Cytochemical characterisation of photochemically formed, self-sustaining,
abiogenic, protocell-like, supramolecular assemblies ‘Jeewanu’. Int. J. Life Sci. 6(4):877–884 (Gupta and Rai 2018) under a
Creative Commons License.
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membraneless organelles in biological processes
(McSwiggen et al. 2019; Yoshizawa et al. 2020).
Although it is plausible that some lipids could have
been produced prebiotically, high and pure yields of
complex lipids such as multiple-tail phospholipids
would have been difficult to synthesize efficiently on
early Earth due to the complexity of the prebiotic
chemical milieu (Guttenberg et al. 2017). However,
recent work has also shown the contribution and sig-
nificance of diverse lipid mixtures in the assembly of
primitive vesicle compartments (Jordan et al. 2019;
Sarkar et al. 2020a), and thus existence of pure lipids
on early Earth may not be so important. At the same
time, it has been shown that prebiotically relevant
polymers such as peptides (Campbell et al. 2019),
depsipeptides (Forsythe et al. 2015; Yu et al. 2016;
Frenkel-Pinter et al. 2021), or polyesters (Mamajanov
et al. 2014; Chandru et al. 2018) could have been
synthesized on early Earth, potentially through envi-
ronmental effects such as wet-dry or temperature
cycles. These products were likely to be mixtures of
polymers containing polydisperse compositions such as
a range of molecular weight, charge density/distribu-
tion, etc. Phase separation is a physical process that can
occur under a variety of conditions, including in mixed/
polydisperse peptide and polyester systems (Koga et al.
2011; Jia et al. 2019), and thus phase separation has
been proposed to be a plausible mechanism to assemble
primitive compartments before the emergence of lipid
membrane-bound compartments. As such, LLPS sys-
tems such as polyester microdroplets (Jia et al. 2019;
Chandru et al. 2020b), coacervates (Ghosh et al. 2020),
or ATPS (Keating 2012) have been widely used as
primitive compartment model systems studied in lab-
oratory-simulated prebiotic environments (figure 2)
(Smith et al. 1967; Jia and Fraccia 2020; Fares et al.
2020). While depsipeptide compartments have not yet
been explicitly shown in the laboratory, it is likely
possible for these polymers to also form similar com-
partments due to their similarity in structure both to
polyesters and peptides.
One additional point of interest in the OoL field is

understanding whether membraneless droplets can
contribute functions that could have aided in the evo-
lution or function of primitive chemical systems. For
example, LLPS can segregate catalytic molecules such
as ribozymes or clay particles (Pir Cakmak and Keating
2017; Drobot et al. 2018). This may result in enhanced
ribozyme catalysis through increases in local concen-
tration or favorable chemical interactions (Poudyal
et al. 2019a, b). Enhanced catalysis within such dro-
plets could have helped to promote the synthesis of

primitive biomolecules essential for evolution, includ-
ing peptides, small molecules, or nucleic acids. Other
observed primitive reactions within LLPS systems
include replication of encapsulated genetic polymers
(Mizuuchi and Ichihashi 2021) or simple chemical
transformations catalyzed by encapsulated clay parti-
cles (Pir Cakmak and Keating 2017). In particular, the
absence of a membrane results in the ability for ana-
lytes to cross the membraneless boundary of a mem-
braneless droplet with lower energetic cost than
crossing a membrane, as long as the analyte has
chemical affinity and compatibility (charge, polarity,
etc.) for the interior of the droplet (i.e., high enough
partition coefficient, which will be discussed in more
detail in a section below). This can be seen in the
spontaneous multiple orders-of-magnitude increase in
concentration of DNA within a DNA-peptide coacer-
vate (Jia and Fraccia 2020) or of magnesium ions,
nucleotides, and RNA within a polyamine/nucleotide
coacervate (Frankel et al. 2016).
Certain LLPS systems can also interact with, scaf-

fold, and/or segregate lipid vesicles, perhaps fore-
shadowing a transition from membraneless
compartments to membrane-bound compartments at
some point at the origins of life (Tang et al. 2014; Jia
et al. 2014, 2019; Jing et al. 2019; Pir Cakmak et al.
2019; Lin et al. 2020). Other prebiotically relevant
functions observed in phase-separated droplets include
division (Yin et al. 2016; Zwicker et al. 2016), fusion
(Jing et al. 2020), and protection of encapsulated
molecules from degradation (Okihana and Ponnampe-
ruma 1982; Zhao and Zacharia 2018), all of which
could assist in evolution of a primitive compartment.
While functions in primitive LLPS systems appear to
be relatively simple compared to modern engineering
applications, there are cases where functions or prop-
erties of primitive LLPS can be used in applied tech-
nologies. These will be discussed in the following
sections.

3. LLPS applied to biotechnology

LLPS has been traditionally applied towards biotech-
nology and biomedical techniques due to their favor-
able properties such as differential partitioning,
compartmentalization of biomolecules or cells (Shin
et al. 2018; Mastiani et al. 2019), and biodegradability
and biocompatibility (Chao and Shum 2020; Ma et al.
2020). Here, we present a few examples of LLPS
applied to biomolecule purification and extraction and
drug delivery.
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3.1 Biomolecule purification and extraction

LLPS systems inherently contain a different chemical
environment from the surrounding aqueous solution,
which is one of the reasons that phase separation occurs
in the first place. Different LLPS systems also vary
amongst themselves in terms of chemical environment.
The subsequent affinities for various chemical com-
pounds to partition into phase-separated droplets are
highly dependent upon the chemical composition and
character of both the LLPS system components and the
partitioning chemical itself. For this reason, each
molecule and LLPS system pair has a ‘partition coef-
ficient’, which is a measure of the propensity of the
biomolecule to segregate into the droplet compared to
the surrounding solution (Iqbal et al. 2016). More
specifically, the partition coefficient is the concentra-
tion of the given molecule within the droplet divided
by the concentration of the given molecule outside of
the droplet at equilibrium. The partition coefficient of
various molecules in phase-separated systems has been
investigated broadly (Albertsson 1986; Diamond and
Hsu 1989; Iqbal et al. 2016), and recent studies have

investigated this parameter in the context of primitive
molecules and compartments (Keating 2012; Jia et al.
2014; Frankel et al. 2016; Jia and Fraccia 2020). As
such, bioprocess researchers and engineers have uti-
lized the differential partition coefficients of molecules
in various LLPS systems as a means towards selective
purification and extraction of biomolecules, a technique
often used in industrial biomolecule synthesis.
Traditional molecular separation techniques utilizing

ideas from organic chemistry may involve water-or-
ganic mixed-media separations, such as chromatogra-
phy or extraction. While this process may be amenable
for separation of organic molecules, biomolecules often
have poor solubility or denature in such mixtures
(especially in the organic phase), and thus traditional
water-organic mixed-media purification/isolation pro-
cesses can be quite inefficient (Mazzola et al. 2008;
Benavides et al. 2011). However, LLPS often occurs
between two purely aqueous phases, resulting in
biomolecular partitioning without the need for an
organic phase at all. As such, a number of the industrial
systems used for biomolecule purification and extrac-
tion involve ATPS, which forms two immiscible liquid

Figure 2. Formation of membraneless droplets through segregative (top; (a) and (b)), e.g. ATPS, and associative (bottom;
(c) and (d)), e.g., complex coacervates, phase separation. In segregative phase separation, the polymers and molecules
involved in the phase separation process are generally confined to separate phases (generally due to thermodynamic reasons).
In associative phase separation, the polymers and molecules involved in the phase separation process generally interact and
reside in the same condensed phase, with a dilute aqueous phase surrounding the concentrated droplet. Figures reproduced
with permission from Crowe CD and Keating CD 2018 Liquid–liquid phase separation in artificial cells. Interface Focus
8(5):20180032 (Crowe and Keating 2018). Copyright The Royal Society 2018.
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phases where biomolecules remain stable and do not
immediately denature. Proteins are of particular interest
in the ATPS biomolecule separation field due to their
propensity to denature quickly in unamenable envi-
ronments. Purification and extraction of a number of
proteins using ATPS (Schütte 1997; Benavides et al.
2011; Khan et al. 2019), including enzymes
(Mukherjee 2019) and antibodies (Rosa et al. 2009),
has been demonstrated. However, there are still some
limitations of applying ATPS to protein purification
and extraction, such as low partition coefficients of
proteins in ATPS. The concentration difference of a
protein between the different phases in an ATPS is not
high (Mazzola et al. 2008), and would lead to signifi-
cant loss and efficiency issues during purification.
However, optimization of separation parameters (pH,
salinity, temperature, etc.) or the use of novel tech-
niques, such as the introduction of so-called system
affinity ligands (Ku et al. 1989) or magnetic particles
(Suzuki et al. 1995) with a high affinity towards the
target protein into the system, have been used to
improve protein purification efficiency.
The purification of biomolecules such as nucleic

acids (Yau et al. 2015; McQueen and Lai 2019) by
phase separation has also been demonstrated, although
the utility of nucleic acid purification purely through
phase separation is still unclear. In particular, the
chemical diversity of nucleic acids is far lower than
proteins, as there are four or five nucleotides of fairly
similar chemical structure vs. the 20 or more amino
acids that can be of quite a different chemical structure.
As such, commercially available nucleic acid extrac-
tion and purification kits utilizing enzymes and spin
columns often have sufficient efficiency for down-
stream purposes (Claassen et al. 2013; Becker et al.
2016). For example, some kits can limit the purified
components to nucleic acids of a specific size (primi-
tive systems on early Earth have also shown the ability
to segregate nucleic acids by size (Mast et al. 2013)),
while some kits can isolate nucleic acids of a specific
strandedness (i.e., single-strands only). Additionally,
because nucleic acid strands contain a string of bases, a
very clearly defined complementary strand can also be
used to identify, localize, and even isolate specific
nucleic acid sequences from both in vitro and in vivo
samples. Such ‘pulldown’ or ‘hybridization’ techniques
have been applied to purify and isolate specific nucleic
acids which are then subjected to further analysis such
as sequencing (Licatalosi et al. 2008; Zhao et al. 2010;
Tan et al. 2014). However, although specific nucleic
sequences can be isolated by these techniques, the use
of phase separation in combination with such

techniques could afford further selectivity or efficiency
and should continue to be explored. In particular, LLPS
compartments have been suggested as potential
mechanisms by which primitive systems can separate
and sort primitive genetic materials (such as nucleic
acids). As such, further developments from bioengi-
neering of nucleic acid purification and extraction
techniques that utilize phase separation would be of use
for designing the next generation of nucleic acid
purification techniques. For example, purification of
plasmid DNA from crude E. coli lysate in an ATPS
system (PEG-phosphate) resulted in a yield of 80-85%
(Frerix et al. 2005). A similar PEG-phosphate ATPS
system resulted in the separation of plasmid DNA from
RNA (from a mixture containing only plasmid DNA
and RNA) with yields of 89% (plasmid DNA) and 70%
(RNA), depending on pH (Frerix et al. 2006). These
demonstrations suggest that with more optimization,
LLPS could aid in both bulk/crude purification of
nucleic acids as well as more fine purification of
nucleic acids (such as separation of different types of
nucleic acids). Such ideas/processes could also be of
interest to those studying protocell genetic speciation in
the origins of life field as well, as one mechanism of
protocell genetic speciation would be through dis-
criminate compartmentalization of different nucleic
acid strands in different phase-separated compartments
(Jia et al. 2021b).

3.2 Drug delivery

As mentioned previously, LLPS systems have a certain
affinity for compartmentalizing specific molecules
owing to their chemical properties and other added co-
solutes. As such, phase-separated droplets have been
applied to the compartmentalization of small molecule
drugs and medicines, many of which are not readily
soluble in aqueous solution (Johnson and Wang 2014;
Dutta and Das 2015; Indulkar et al. 2016). However,
this is not the only reason one may apply LLPS to drug
delivery, as they provide a number of other favorable
characteristics, such as drug protection and
biodegradability. For example, researchers have
reported a coacervate system coupled with sodium-al-
ginate beads capable of protecting an encapsulated
small molecule drug from low pHs caused by gastric
juices, resulting in its release further downstream in the
gastrointestinal tract (in the intestines) (Feng et al.
2014). Such a technique could be utilized to protect
drugs from degradation before their intended delivery
destination and can potentially increase the efficacy of
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the drug formulation without any chemical structural
changes to the drug itself. Similarly, coacervates can
afford protection to encapsulated proteins from tem-
perature, pH, and even denaturing solutions such as
urea (Zhao and Zacharia 2018). In particular, Nojima,
et al. utilized ionic surfactants to generate phase-sep-
arated protein condensates containing a high concen-
tration of more than 600 different proteins while
preserving their inherent structure (Nojima and Iyoda
2017; Nojima et al. 2019). Development of such
technologies that form phase-separated droplets com-
posed of multiple proteins, which themselves do not
phase separate naturally, could help in the design of
LLPS systems capable of transport of active protein
cascades to specific locations in human patients.
Therapeutic protein therapies have grown significantly
in the recent few years; one such demonstration even
utilized amylose-based coacervates to deliver func-
tional myoglobin to human stem cells (figure 3) (Xiao
et al. 2020). As such, the use of phase-separated pro-
tein complexes may become even more widespread as
more efficient protein therapies are discovered (La-
gassé et al. 2017), suggesting that application of LLPS

to therapeutic protein delivery could be an important
avenue of investigation going forward.
In particular, when subjecting a human or other liv-

ing organism to drug delivery, the delivery vessel itself
must also be safe. The vessel must either be degraded
into harmless byproducts or eliminated/excreted
through other natural means. A number of phase-sep-
arated systems afford safe biodegradability due to their
composition, which results in their widespread use in
such drug delivery applications. One type of phase-
separated drug delivery vessel that highlights this
characteristic are polyester microspheres (Husmann
et al. 2002; Mohamed and Van der Walle 2008), often
composed of polylactate, polyglycolate, poly(lactate/
glycolate) co-polymers, or other aliphatic polyesters
that can be charged with various small-molecule drugs
(Ghalia and Dahman 2017; Washington et al. 2017;
Karthick et al. 2019). These polymers are composed of
simple aliphatic residues, and degrade into their
monomer species (lactic acid and/or glycolic acid)
through a simple hydrolysis mechanism. Upon degra-
dation, lactic acid can be degraded safely by various
natural processes such as neuron metabolism,

Figure 3. Use of amylose-based coacervates for protein therapy delivery to cells. Oppositely charged cationic Q-Amylose
and anionic Cm-Amylose polymers interact (top) to form a phase-separated coacervate (bottom right). This phase coacervate
can then be loaded by protein therapies, such as myoglobin, to be delivered to specific cells, such as human stem cells.
Figure reproduced with permission from Xiao W et al. 2020 Biopolymeric coacervate microvectors for the delivery of
functional proteins to cells. Adv. Biosyst. 4(11):2000101 (Xiao et al. 2020) under a Creative Commons License.
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glucogenesis in the liver, oxidation to pyruvate in
muscle cells, or excretion through urine or breath as
carbon dioxide (da Silva D et al. 2018), suggesting the
biocompatibility and biosafety of such polymers
(Schakenraad and Dijkstra 1991). However, the
degradation time of polyesters may be weeks or longer
and also varies depending on a number of factors such
as molecular weight, additives, and physical environ-
ment (such as pH and temperature), among other fac-
tors (Kopinke et al. 1996; Shive and Anderson 1997).
Adverse or allergic reactions to polyesters and their
byproducts have also been shown to occur in some
situations (da Silva D et al. 2018). As such, new
techniques to tune the degradation rate, such as addi-
tion of other polymers (Carvalho et al. 2020), novel
polyester materials (like foams) (Mikos et al. 1994), or
engineering of polyesters that can selectively degrade
based on chosen external stimuli (Urbánek et al. 2019)
are currently being explored.
Personalized genetic medicine such as DNA (Patil

et al. 2005) or RNA (Dammes and Peer 2020) thera-
peutics, including miRNA (microRNA) (Avci and
Baran 2014; Detassis et al. 2017) and siRNA (small
interfering RNA) therapy (Hu et al. 2019, 2020), have
been used as approved clinical treatments in recent
years (Nair 2010; Horton and Lucassen 2019; Manolio
et al. 2020). Additionally, recent interest in mRNA
(Buschmann et al. 2021) and DNA-based vaccines
(Silveira et al. 2021) has also increased, especially as
mechanisms to inoculate the global population against
the recent COVID-19 viral pandemic (Forni and
Mantovani 2021). In particular, current mRNA vacci-
nes against SARS-CoV-2 (the virus causing COVID-
19) utilize lipid particles (Mulligan et al. 2020; Jackson
et al. 2020; Buschmann et al. 2021; Forni and Man-
tovani 2021) and current DNA vaccines against SARS-
CoV-2 utilize an adenovirus vector as delivery vessels
(Feng et al. 2020; Ura et al. 2021). Various primitive
LLPS systems have also shown the ability to harbor
and/or concentrate nucleic acids (Frankel et al. 2016;
Drobot et al. 2018; Jia and Fraccia 2020; Cakmak et al.
2020; Jia et al. 2021a), while recent work has begun
focusing on stabilization of encapsulated viruses (as
vaccine vectors) in coacervates (Mi et al. 2020). Per-
haps incorporating LLPS systems as genetic carriers in
future RNA or DNA vaccines could be an interesting
direction of future study. However, while some studies
probing the immune response of nanoparticles and
other compartments as drug delivery vectors have been
performed (Zolnik et al. 2010; Sutradhar and Amin
2013; Malachowski and Hassel 2020; Gagliardi et al.
2021), more work focusing on immune response of

various LLPS systems must be completed to confirm
the safety and efficacy of various LLPS systems before
further pursuing novel LLPS systems as therapeutic
delivery vectors (Jiskoot et al. 2009).

4. LLPS applied to synthetic biology

Synthetic biology is a broad field that includes goals
such as engineering organisms or other biological
constructs to perform certain functions. One sub-field
in particular is the artificial cell field, which seeks to
design or engineer cell-like compartments that exhibit
life-like properties (such as metabolism, evolution, etc.)
while not requiring an excess amount of energy input
to maintain life. LLPS compartments have been pro-
posed as primitive cell models and phase separation
also produces membraneless organelles in modern
organisms (Yoshizawa et al. 2020). As such, there is
significant interest in use of LLPS within synthetic
biology, especially with the recent major development
of cell-free enzymatic systems and processes applied to
synthetic biology (Lu 2017; Tinafar et al. 2019; Cho
and Lu 2020). Here, we briefly review recent studies
which seek to imbue biological processes into LLPS
compartments and also discuss recent research utilizing
phase separation in artificial cell construction.

4.1 Biological processes imbued into LLPS
systems

Modern biology consists of a number of complex and
fine-tuned biochemical processes which control various
aspects of cellular function. For example, the classical-
view central dogma of biology proposes biochemical
processes which result in the expression of proteins
starting from genetic information: replication of DNA,
transcription from DNA to mRNA, and translation
from mRNA to protein (Alberts et al. 2014) (although a
number of recent studies have begun to reconsider the
exact definition of the central dogma (Koonin 2012;
Piras et al. 2012)). As such, there has been interest in
observing biochemical processes in in vitro compart-
ments, including those produced from phase separa-
tion, as a means to engineer more ‘life-like’
compartments in the laboratory.
In a recent study, Sokolova et al. produced coacer-

vates from E. coli cell lysate and observed that tran-
scription could still occur within the phase-separated
coacervates (Sokolova et al. 2013). In fact, transcrip-
tion rates increased within the coacervates as compared
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to within the lysate, potentially due to greater binding
between DNA and RNA polymerase within the coac-
ervates from concentration increases and crowding.
Other studies have even proposed in vitro translation of
various fluorescent RNA aptamers within coacervates
(Deng 2020). Moving on from transcription, translation
has also been studied within phase-separated com-
partments. Cell-free mRNA translation processes in
PEG/dextran ATPS can occur unimpeded, and are of
interest to large scale production of proteins in bioin-
dustrial applications (Marszal et al. 1995). Targeted
mRNA suppression and translation has also been
observed to occur within a membraneless organelle
inside eukaryotic cells (Reinkemeier et al. 2019). In
fact, the possibility of in vitro gene expression (starting
from DNA) of a fluorescent reporter protein within
membraneless phase-separated coacervates has been
reported, combining both transcription and translation
processes in a concerted fashion (Tang et al. 2015). A
recent study by Mizuuchi and Ichihashi further
designed a PEG/dextran ATPS system within which
mRNA could be translated into RNA polymerase,
which would proceed to replicate its own coding
mRNA (Mizuuchi and Ichihashi 2020). All of these
aforementioned processes are complex and require a
number of enzymes and other cofactors, but prebiotic
biopolymerization processes likely took place in a non-
enzymatic fashion. Researchers have thus reported
coacervates which can also harbor non-enzymatic
processes that can affect primitive nucleic acid repli-
cation and evolution such as nucleic acid polymeriza-
tion (Poudyal et al. 2019a) or duplex melting (Nott
et al. 2016), suggesting that even simple ‘biology-like’
processes can be encapsulated within phase-separated
components.
Other than transcription and translation, other

important biological processes have also been observed
within phase-separated systems. For example, enzy-
matic cascades control a number of biosynthetic pro-
cesses within cells (Walsh and Moore 2019) (including
gene expression) and also have applications in bio-
catalysis (Sperl and Sieber 2018; Lee et al. 2021). In
particular, living cells have been shown to utilize
dynamic control of phase-separated structure assembly/
disassembly to segregate and organize successive
enzymatic cascades depending on homeostatic reac-
tions to various intracellular changes, as has been
observed in yeast subjected to nutrient-depletion
(Narayanaswamy et al. 2009) or in human cells sub-
jected to high purine conditions (An et al. 2008). Such
transient macromolecular associations of sequential
enzymatic reactions, termed ‘metabolons’, control a

variety of biological processes and have been widely
studied in a number of biology fields (Nakashima et al.
2018; Sweetlove and Fernie 2018; Obata 2019; Zhang
and Fernie 2021). As such, a number of research
groups have taken natural metabolons as inspiration to
design sequential enzymatic cascades within in vitro
LLPS systems. Davis, et al. observed and modeled the
activity of two sequential enzymes from a purine
biosynthesis cascade (adenylosuccinate lyase and
5-aminoimidazole-4-carboxamide ribonucleotide
transformylase/inosine monophosphate cyclohydro-
lase) within an ATPS (Davis et al. 2015). Utilizing
techniques to produce compartments within compart-
ments to separate enzymatic components, a number of
research groups have also shown engineered enzymatic
cascades within phase-separated systems. Kojima and
Takayama showed that a glucose oxidase (GOx)-
horseradish peroxidase (HRP) cascade could proceed
inside a coacervate-within-ATPS system, followed by a
further dextranase step to disassemble the ATPS sur-
rounding the coacervate (the dextranase actually pref-
erentially resides within the coacervate phase)
(figure 4) (Kojima and Takayama 2018). Chen, et al.
then designed immiscible coacervate-in-coacervate
droplets which could house an active GOx-HRP-cata-
lase enzymatic cascade (Chen et al. 2020). Booth, et al.
have also investigated a similar GOx-HRP cascade
inside spatially separated coacervates within a pro-
teinosome (although a proteinosome itself is not a
phase-separated compartment) (Booth et al. 2019).
These preceding three examples of enzymatic cascades
were all performed within compartment-within-com-
partment systems. However, relevant life-like proper-
ties driven by protein networks observed in single
compartment LLPS system, such as division, have also
been observed (Song et al. 2018). Nevertheless, further
study of enzymatic cascades or networks could be
complemented by recent studies demonstrating a wide
range of multiphase membraneless droplet systems
(Mountain and Keating 2020, 2021; Lu and Spruijt
2020; Sato et al. 2020). These systems should be
subjects of further study, perhaps even as a mechanism
to show prebiotically relevant catalytic ribozyme cas-
cades within a primitive compartment.

4.2 Phase separation in artificial cell research

One of the main goals of the artificial cell field is to
design and demonstrate in vitro produced cell-like
compartments with cell-like properties (Buddingh’ and
van Hest 2017; Beales et al. 2018; Martı́n et al. 2019),
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potentially for future application to modern engineering
or bioengineering problems (Xu et al. 2016). To that
end, a number of studies have proposed mechanisms to
or demonstrated properties such as energy generation
(Berhanu et al. 2019; Shin 2019; Jeong et al. 2020),
metabolism (Sikkema et al. 2019), division (Stein-
kühler et al. 2020), regeneration (Lavickova et al.
2020), motility (Bartelt et al. 2018; Ghosh et al. 2019;
Jeong et al. 2020), and/or homeostasis (Pols et al.
2019) within artificial cell systems. However, a self-
replicating or evolving artificial cell has yet to be
demonstrated in the lab (Ding et al. 2014). Addition-
ally, most current artificial cell research focuses on
using liposomes, which is reasonable considering that
liposomes are similar in structure to biological cells. As
such, the incorporation of phase separation processes
into artificial cell construction has not yet been
explored to the full potential, despite the existence and
importance of intracellular phase separation. Never-
theless, a number of very recent studies have utilized
membraneless compartments generated from phase
separation as artificial cell models (Martin 2019; Shang
and Zhao 2021; van Stevendaal MHME et al. 2021).
Encapsulation or assembly of LLPS systems within

liposomes or vesicles could result in the formation of
an artificial cell with similarities to membraneless
compartment-containing modern cells. For example,
various aspects of the structure and function of a
number of liposome-encapsulated LLPS systems have
been studied (Helfrich et al. 2002; Long et al. 2005; Li
et al. 2008; Crowe and Keating 2018; Liu et al. 2019;
Love et al. 2020; Cakmak et al. 2021). While these
studies share a common goal, they often differ in the

construction of each system. Some studies have
focused on utilizing microfluidics techniques to gen-
erate liposome-encapsulated LLPS systems, demon-
strating the great effect that modern technological
advances can have on construction and subsequent
understanding of such encapsulated LLPS systems
(Deng and Huck 2017; Deshpande et al. 2019; Jing
et al. 2019; Ma et al. 2020). One particular study uti-
lized a liposome system containing a-hemolysin pro-
tein pores generated through a microfluidic platform.
The pores allowed ATP from outside of the vesicle to
flow into the vesicle system, where it could come into
contact and complex with resident poly-L-lysine,
forming coacervate droplets directly within a vesicle
(figure 5). Other studies utilized chemical and envi-
ronmental changes, such as pH, to induce phase sepa-
ration of encapsulated components of LLPS droplets
within pre-assembled liposomes (Love et al. 2020; Last
et al. 2020). Finally, direct assembly of lipid membrane
constituents around pre-assembled phase-separated
droplets, akin to LLPS-scaffolded membranes, has also
been performed (Tang et al. 2014; Cakmak et al. 2021).
In particular, the latter two techniques would have been
quite relevant to primitive LLPS-in-vesicle systems, as
environmental oscillations could lead to pH or tem-
perature changes. Possible co-existence of precursors
of lipids and membraneless compartment components
such as nucleic acids and peptides have also been
proposed to be plausible on early Earth (Patel et al.
2015). As such, further studies regarding LLPS sys-
tems as or within artificial cells could inform future
studies of primitive compartment structure and function
and vice-versa.

5. LLPS applied to other engineering fields

In addition to their use in the specific applied fields
mentioned above, phase-separated systems also are
used widely in other engineering fields due to their
favorable characteristics. Some of these engineering
applications utilize characteristics similar to those
mentioned in above sections (i.e., encapsulation,
biodegradability, etc.), while other uses of LLPS
includes phase separation in biological systems to
directly affect the surroundings. Here, we discuss and
give examples from two specific engineering disci-
plines, pollution and waste control in environmental
engineering and flavor encapsulation in food engi-
neering, to further demonstrate the wide applicability
of LLPS in the modern day.

bFigure 4. An enzymatic cascade taking place within a
coacervate-in-ATPS system. GOx first oxidizes glucose
(originally in the PEG phase) within the dextran droplet to
form hydrogen peroxide (H2O2). The H2O2 then migrates
into the coacervate phase (ATP-Poly(diallyldimethylammo-
nium chloride)), and is used as an oxidating co-factor for
HRP to oxidize an inactive reporter dye (Amplex Red,
ABTS, oPD, or DAB) to its active fluorescent or coloro-
metric form. Figure reproduced with permission from
Kojima K and Takayama S 2018 Membraneless compart-
mentalization facilitates enzymatic cascade reactions and
reduces substrate inhibition. ACS Appl. Mater. Interfaces
10(38):32782–32791 (Kojima and Takayama 2018). Copy-
right American Chemical Society 2018.

Cross-disciplinary application of primitive phase separation Page 13 of 28    79 



Figure 5. Formation of a coacervate within a liposome. (a) ATP flows into a liposome through a-hemolysin pores,
interacting and complexing with poly-L-lysine (pLL), phase separating to form a coacervate within the liposome. (b)
Formation of the coacervate droplets (green) within a liposome over time. (c) Coalescence of two separate coacervate
droplets within a liposome over time. An enzymatic cascade taking place within a coacervate-in-ATPS system. GOx first
oxidizes glucose (originally in the PEG phase) within the dextran droplet to form hydrogen peroxide (H2O2). The H2O2 then
migrates into the coacervate phase (ATP-Poly(diallyldimethylammonium chloride)), and is used as an oxidating co-factor for
HRP to oxidize an inactive reporter dye, Amplex Red, to its active fluorescent form (Resolufin). Figure reproduced with
permission from Deshpande, S. 2019. ‘Spatiotemporal control of coacervate formation within liposomes.’ Nat. Commun.
10:1800 (Deshpande et al. 2019) under a Creative Commons License.
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5.1 Waste and pollution control

Chemical formulations of LLPS have been used
towards waste and pollution control in environmental
engineering, with increased recent interest. For exam-
ple, ATPS are often used to recover precious compo-
nents from industrial or biological waste due to their
ability to selectively partition certain molecules. ATPS
has been shown to assist in recovery of heavy metals
from wastewater (Akama and Sali 2002; de Lemos LR
et al. 2012; Hamta and Dehghani 2017) and proteins
from fermentation (Porto et al. 2008), food (Antov
et al. 2001), or industrial (Raja and Murty 2013) waste.
Coacervates have also contributed to the removal of
hazardous byproduct chemical dyes, plastics, and other
small molecule organics (Luque et al. 2007; Zhao et al.
2017; Zhang et al. 2019; Valley et al. 2019) from
industrial wastewater (figure 6). Such LLPS systems
are of interest to environmental engineers as they can
either be recycled or do not contribute to toxic waste
(Raghavarao et al. 2003). For example, coacervates for
use in chemical encapsulation have even been shown to
be able to form from proteins extracted from leather
waste (Ocak 2012).
In addition to chemically produced phase separation

systems for waste and pollution control in environ-
mental engineering, biological phase separation
mechanisms are also used in waste and pollution con-
trol. As mentioned previously, membraneless droplets
exist in most extant life. For example, bacteria and
algae harbour intracellular phase-separated granules
assembled from inorganic polyphosphate or different
forms of polyhydroxyalkanoate (PHA) derivatives.
These granules serve either as energy stock for long-
term latency (Singh et al. 2013) or as virulence factors
during the invasion of their hosts (Thewes et al. 2019);
in Corynebacterium glutamicum, intracellular phos-
phate can accumulate to up to 0.6 M (Lindner et al.
2007)! In order to take advantage of the propensity of
some microbes to incorporate external phosphates into
internal phase-separated organelles, environmental
scientists have employed such microbes to remove
phosphorus from wastewater (Lindner et al. 2007;
Bunce et al. 2018). After cell disruption, the
polyphosphate-rich granules could then be separated
from the aqueous phase using centrifugation in hot,
basic water (1 M NaOH) (Eixler et al. 2005). Another
similar case is the use of Enterobacter aerogenes to
convert organics in domestic wastewater into intracel-
lular polyhydroxybutyrate granules, a biodegradable
plastic material (Afify et al. 2017).

In particular, both polyphosphates and PHAs are of
interest to OoL researchers. Polyphosphates have been
proposed to be prebiotic chaperones (Gray et al. 2014)
as well as primitive bioenergy sources (Müller et al.
2019). However, there is still some uncertainty as to
potential mechanisms by which inorganic phosphates
such as polyphosphates could have plausibly been
synthesized on early Earth (Keefe and Miller 1995),
although some studies suggest volcanic production as a
plausible mechanism (Yamagata et al. 1991). PHAs are
biotically generated polyesters, and polyesters gener-
ated from a- hydroxyacids have been shown to form
primitive compartments (Jia et al. 2019). Furthermore,
combining and polyesters generated from b-hydroxy-
acids with polyphosphates resulted in the assembly of
simple membrane pores (Das et al. 1997), suggesting a
combination of PHAs and polyP in the future may
yield structures of interest both to OoL researchers and
to engineers of a variety of fields.

5.2 LLPS in food industry

Phase separation is a common characteristic of many
natural and processed foods and beverages, and
encompasses combinations of coexisting gas, liquid,
and solid states of matter. Gas and solid or liquid states
coexist in whipped cream, culinary foams, and bread;
milk and coffee feature particles suspended in a liquid;
and butter and chocolate are solid-solid separated sys-
tems (Tolstoguzov 2000). For the purposes of this
review, we concentrate on water/water (W/W) emul-
sions in food items associated with polymer incom-
patibility and biopolymer-driven coacervation. The
thermodynamic incompatibility of biopolymers was
first observed and documented over a hundred years
ago, when Beijerinck discovered the immiscibility of
aqueous solutions of gelatin and agar (Beijerinck
1910). Upon mixing, the two solutions formed W/W
emulsions in which the gelatin solution became sus-
pended in the continuous agar solution phase, or vice
versa. The thermodynamic incompatibility of
biopolymers is one mechanism to drive phase separa-
tion in food systems. Alternatively, LLPS in food-re-
lated systems can also occur in aqueous solution of
oppositely charged biopolymers, such as proteins and
polysaccharides. As a result of LLPS, the polyion
mixture splits into two distinct phases: a dense coac-
ervate phase, which is relatively concentrated in the
polyions, and a dilute equilibrium phase (Burgess
1990).
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The microstructure of food has been shown to impact
the sensory and textural properties of food and its
digestion. Utilization of various processing methods,

combinations of macronutrients, and ingredients allow
for the design of foods with different microstructures
associated with novel sensory and functional properties

Figure 6. Sequestration of fluorescein dye within a bipyridinium-functionalized poly-lipoic ester (BPLE) coacervate through
sonication. (a) Fluorescein in solution, as visible by the yellow hue. (b) BPLE coacervate droplets in solution (bottom left
micrograph). (c)After combining the coacervates andfluorescein, sonication results influorescein becoming sequesteredwithin the
droplets (bottom rightmicrograph). (d) Addition of acetic acid to the fluorescein-loaded coacervates results in release of fluorescein
back into solution, as visible by the off-yellowhue. (e) Coacervates exposed to pH14conditions results in rapid formation of radical
cationswithin the droplets, as observed by the coacervates changing to a violet color over time. Figure reproducedwith permission
fromZhangZet al. 2019Poly-lipoic ester-based coacervates for the efficient removal of organic pollutants fromwater and increased
point-of-use versatility. Chem. Mater. 31(12):4405–4417 (Zhang et al. 2019). Copyright American Chemical Society 2019.
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(Norton et al. 2015). One of the main applications of
LLPS is to achieve desired textures in food products.
LLPS results in the formation of W/W emulsions with
biopolymers disproportionately distributed between
separated liquid phases. The difference in biopolymer
hydrophilicity and molecular weights results in water
redistribution between the coexisting phases that results
in the gelation of one or more phases, affecting the
emulsion’s rheological properties (Tolstoguzov 2006).
The texture of the W/W emulsion can be further
manipulated by shear treatments, e.g., mixing, stirring,
homogenization, or extrusion (Tolstoguzov 1993; Jut-
tulapa et al. 2017). The dispersed phase of the W/W
emulsion undergoes deformation and coalescence to
take the form of liquid fibrils or lamellae associated
with firmer texture (Tolstoguzov 1987). Texturization
can be further achieved by altering the physical state of
water. For example, freezing has been long utilized in
producing a firm variety of tofu termed koya-dofu. A
uniform fibrous protein structure is formed during
freezing of the tofu prompted by concentration and
gelation of the protein phase between ice crystals
(Tanaka 2012).
Additionally, driven by health and nutrition con-

cerns, the modern food industry also strives to invent
healthier products or to redesign existing products to
maximize their nutritional value. The challenge
becomes putting forward healthier food items that
contain reduced amounts of fat, carbohydrates, and salt,
are fortified with essential vitamins and minerals, and
formulated to improve digestion and suppress appetite,
all while without sacrificing the flavor or texture (Wu
et al. 2014). In particular, phase separation and the
properties of the compartments generated (e.g.,
encapsulation or exclusion of specific molecules such
as fats, salts, or vitamins) is one mechanism by which
some of these challenges can be met. Carbohydrate or
protein-based LLPS is commonly used to encapsulate
active ingredients within the dispersed phase. The
encapsulation accomplishes multiple functions in food
products including masking unpleasant flavors, stabi-
lizing reactive ingredients, and controlling the release
of active compounds. Multiple encapsulations by
coacervation systems are either already in use or under
investigation (Eghbal and Choudhary 2018). For
example, encapsulation provides a means of introduc-
ing polyphenols into food products without sacrificing
taste. Nutritional polyphenols have multiple health
benefits but are associated with a bitter taste and an
astringent mouthfeel (Jöbstl et al. 2004). Encapsulation
of (-)-epigallocatechin-3-gallate (ECCG) in b-Lac-
toglobulin particles dramatically suppressed the

astringency and bitterness of polyphenol compounds
(Shpigelman et al. 2012). Ufeduba and Akoh (Ifeduba
and Akoh 2015) also demonstrated that encapsulation
of stearidonic acid soybean oil in gelatin/gum arabic
coacervates modified by the Maillard reaction achieved
high oxidative stability in fortified yogurt formulations.
Finally, similar to drug delivery systems mentioned
above, phase separated gels and coacervates are under
consideration for the manufacturing of control release
systems in food engineering. The release of encapsu-
lated agents is triggered by the change in pH, temper-
ature, or response to enzymatic degradation (Chen
et al. 2006). Rutz et al. (2017) recently demonstrated
the formation of stable encapsulation of palm oil in
chitosan/pectin and chitosan/xanthan gum particles; the
release of the palm oil was then readily achieved in
simulated gastrointestinal fluid.
In summary, LLPS employing biopolymers, such as

proteins and polysaccharides in water solutions, pro-
vides a versatile set of tools for the formulation of
foods with a variety of textures, flavors, and nutritional
values in addition to providing nutraceutical delivery
platforms. These properties of food are met partially
due to various LLPS properties, some of which mirror
properties relevant to the other applications mentioned
in this paper and the OoL field as well. For example,
preferential encapsulation in and timed release of
specific components of LLPS droplets can be readily
applied to drug delivery as well as to evolving protocell
models. Additionally, similar mechanisms to modulate
texture and rheology by LLPS in food science could be
also relevant to modulation of primitive compartment
rheologies. A gel-like state could be undesirable for a
primitive compartment due to the resulting potential
changes in analyte solubility and diffusion rate upon
gelation (Mamajanov 2019). However, in other cases, a
gel-like state could actually be desirable due to
potential confinement/exclusion properties and its
existence as an alternative medium (Trevors and Pol-
lack 2005; Dass et al. 2018).

6. Conclusions and future directions

Here, we have presented an overview of compartment
research in the field of origins of life, briefly high-
lighting primitive compartments generated from phase
separation including coacervates and ATPS. These
primitive LLPS systems also exhibit certain functions
that could have promoted the function or evolution of
primitive compartments. Although these functions may
seem simplistic compared to those of highly engineered
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LLPS systems used in modern-day applications, there
is still some potential for OoL research focusing on
primitive LLPS to inform engineering research of
applied LLPS technologies and vice-versa. As such, we
presented a survey of some LLPS systems applied to
various applied or engineering fields, including bio-
engineering, synthetic biology, environmental engi-
neering, and food science, as a means to start
discussions between researchers in applied LLPS
research and fundamental LLPS research in particular
origins of life researchers. However, this review con-
tained only a brief overview of the large expanse of
applied LLPS systems, and we encourage OoL
researchers to further explore functions of other applied
LLPS systems as a way to consider additional prebi-
otically relevant functions that could have been present
on early Earth. Similarly, we encourage researchers
studying LLPS systems in the context of engineering
applications to look further into research on primitive
LLPS system functions to potentially be inspired to
incorporate such simple yet essential functions into
modern LLPS systems used in various engineering
fields. In particular, we note that the artificial cell field
may be a perfect place to start for both origins of life
and engineering fields due to its interdisciplinarity, as
artificial cell research has roots in both primitive
compartment/protocell research as well as in synthetic
biology.
There are also a number of other LLPS systems not

covered in depth in this review (i.e., non-ATPS and
non-coacervate systems) used in engineering that can
be applied to origins of life research. We have men-
tioned briefly the prevalence of polyester droplets used
in drug delivery (Husmann et al. 2002; Mohamed and
Van der Walle 2008). These droplets can be applied
towards studying primitive membraneless polyester-
based protocells (Jia et al. 2019, 2021a; Chandru et al.
2020b). Additionally, water-in-oil or oil-in-water
emulsions are often used in food science to generate
new textures (similar to the W/W emulsions mentioned
above) (Muschiolik and Dickinson 2017; Zhu et al.
2019; Zembyla et al. 2020), as well as in emulsion
polymerase chain reaction, which is a technique for
amplification of small amounts of nucleic acids for
sequencing (Shao et al. 2011; Kanagal-Shamanna
2016). Such oil-in-water or water-in-oil droplet systems
have been used in OoL research to study primitive
replication and evolution in protocell systems (Gutier-
rez et al. 2014; Bansho et al. 2016; Mizuuchi and
Ichihashi 2018, 2021; Furubayashi et al. 2020).
Supercritical fluids, such as supercritical carbon diox-
ide, are also used in chemical separation and

purification (Lucien et al. 1993; Dı́az-Reinoso et al.
2006; Manjare and Dhingra 2019), and the existence of
a supercritical carbon dioxide phase at the bottom of
ocean ridges (high pressure zones) has been studied in
the context of primitive compartment formation (Mayer
et al. 2015), biomolecular selection (Mayer et al.
2017), and alternative solvents for prebiotic reactions
(Budisa and Schulze-Makuch 2014). Thus, based on
the clear connections between origins of life research
and applied fields presented herein, we hope that new
and fruitful collaborations between researchers study-
ing all facets of LLPS can then be seeded going
forward.
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Lagassé HAD, Alexaki A, Simhadri VL, Katagiri NH,
Jankowski W, Sauna ZE and Kimchi-Sarfaty C 2017
Recent advances in (therapeutic protein) drug develop-
ment. F1000Res 6 113

Lai JC-Y, Pearce BKD, Pudritz RE and Lee D 2019
Meteoritic abundances of fatty acids and potential reac-
tion pathways in planetesimals. Icarus 319 685–700

Lanham UN 1952 Oparin’s hypothesis and the evolution of
nucleoproteins. Am. Nat. 86 213–218

Last MGF, Deshpande S and Dekker C 2020 pH-Controlled
coacervate-membrane interactions within liposomes. ACS
Nano 14 4487–4498

Lavickova B, Laohakunakorn N and Maerkl SJ 2020 A
partially self-regenerating synthetic cell. Nat. Commun.
11 6340

Lazcano A 2010 Historical development of origins research.
Cold Spring Harb. Perspect. Biol. 2 a002089

Lazcano A and Miller SL 1996 The origin and early
evolution of life: prebiotic chemistry, the pre-RNAworld,
and time. Cell 85 793–798

Lee YS, Lim K and Minteer SD 2021 Advances in
electrochemical cofactor regeneration: enzymatic and
non-enzymatic approaches. Annu. Rev. Phys. Chem. 72
467–488

Licatalosi DD, et al. 2008 HITS-CLIP yields genome-wide
insights into brain alternative RNA processing. Nature
456 464–469

Li Y, Lipowsky R and Dimova R 2008 Transition from
complete to partial wetting within membrane compart-
ments. J. Am. Chem. Soc. 130 12252–12253

Lindner SN, Vidaurre D, Willbold S, Schoberth SM and
Wendisch VF 2007 NCgl2620 encodes a class II
polyphosphate kinase in Corynebacterium glutamicum.
Appl. Environ. Microbiol. 73 5026–5033

Lin Y, Jing H, Liu Z, Chen J and Liang D 2020 Dynamic
behavior of complex coacervates with internal lipid

Cross-disciplinary application of primitive phase separation Page 23 of 28    79 



vesicles under nonequilibrium conditions. Langmuir 36
1709–1717

Lin Y, Mori E, Kato M, Xiang S, Wu L, Kwon I and
McKnight SL 2016 Toxic PR poly-dipeptides encoded by
the C9orf72 repeat expansion target LC domain polymers.
Cell 167 789-802.e12

Liu Y, Lipowsky R and Dimova R 2019 Giant vesicles
encapsulating aqueous two-phase systems: from phase
diagrams to membrane shape transformations. Front
Chem 7 213

Long MS, Jones CD, Helfrich MR, Mangeney-Slavin LK
and Keating CD 2005 Dynamic microcompartmentation
in synthetic cells. Proc. Natl. Acad. Sci. USA 102
5920–5925

Lopes LM, de Moraes MA and Beppu MM 2020 Phase
diagram and estimation of Flory-Huggins parameter of
interaction of silk fibroin/sodium alginate blends. Front.
Bioeng. Biotechnol. 8 973

Love C, Steinkühler J, Gonzales DT, Yandrapalli N,
Robinson T, Dimova R and Tang T-YD 2020 Reversible
pH-responsive coacervate formation in lipid vesicles
activates dormant enzymatic reactions. Angew. Chem.
Int. Ed. Engl. 59 5950–5957

Lu Y 2017 Cell-free synthetic biology: engineering in an
open world. Synth. Syst. Biotechnol. 2 23–27

Lucien FP, Liong KK, Cotton NJ, Macnaughton SJ and
Foster NR 1993 Separation of biomolecules using
supercritical fluid extraction. Australas. Biotechnol. 3
143–147

Luisi PL, Walde P and Oberholzer T 1999 Lipid vesicles as
possible intermediates in the origin of life. Curr. Opin.
Colloid Interface Sci. 4 33–39
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Zakrzewski W, Dobrzyński M, Szymonowicz M and Rybak
Z 2019 Stem cells: past, present, and future. Stem Cell
Res. Ther. 10 68

Zembyla M, Murray BS and Sarkar A 2020 Water-in-oil
emulsions stabilized by surfactants, biopolymers and/or
particles: a review. Trends Food Sci. Technol. 104 49–
59

Zhang Y and Fernie AR 2021 Metabolons, enzyme–enzyme
assemblies that mediate substrate channeling, and their
roles in plant metabolism. Plant Commun. 2 100081

Zhang Z, Liu Q, Sun Z, Phillips BK, Wang Z, Al-Hashimi
M, Fang L and Olson MA 2019 Poly-lipoic ester-based
coacervates for the efficient removal of organic pollutants
from water and increased point-of-use versatility. Chem.
Mater. 31 4405–4417

Zhao J, et al. 2010 Genome-wide identification of poly-
comb-associated RNAs by RIP-seq. Mol. Cell 40
939–953

Zhao W, Fan Y, Wang H and Wang Y 2017 Coacervate of
polyacrylamide and cationic gemini surfactant for the
extraction of methyl orange from aqueous solution.
Langmuir 33 6846–6856

Zhao M and Zacharia NS 2018 Protein encapsulation via
polyelectrolyte complex coacervation: protection against
protein denaturation. J. Chem. Phys. 149 163
326

Zhu Q, Pan Y, Jia X, Li J, Zhang M and Yin L 2019 Review
on the stability mechanism and application of water-in-oil
emulsions encapsulating various additives. Compr. Rev.
Food Sci. Food Saf. 18 1660–1675
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