Skip to main content

Advertisement

Log in

Monoclonal antibodies AC-43 and AC-29 disrupt Plasmodium vivax development in the Indian malaria vector Anopheles culicifacies (Diptera: culicidae)

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A repertoire of monoclonal antibodies (mAbs) was generated against the midgut proteins of Anopheles culicifacies mosquitoes. The mAbs AC-43 and AC-29 significantly inhibited Plasmodium vivax development inside the mosquito midgut. The number of oocysts that developed was reduced by 78.6% when mosquitoes ingested a combination of these two mAbs along with the blood meal. AC-43 mAb binds to the epitope common in 97, 80 and 43 kDa polypeptides from the midgut protein extract, as indicated by western blot analysis. Similarly, the mAb AC-29 recognized 52, 44, 40 and 29 kDa polypeptides. These female midgut-specific polypeptides are shared between An. culicifacies and An. stephensi, two major vectors of malaria in India. Deglycosylation assays revealed that O-linked carbohydrates are the major components in epitopes corresponding to AC-43 and AC-29. Gold particle labelling revealed that both these mAbs preferentially bind to glycoproteins at the apical microvilli and the microvillus-associated network present inside transverse sections of the gut epithelium. These regions are particularly known to have receptors for ookinetes, which enable them to cross this epithelial barrier and provide them with certain necessary chemicals or components for further development into oocysts. Therefore, these glycoproteins appear to be potential candidates for a vector-directed transmission-blocking vaccine (TBV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

mAB:

monoclonal antibody

MMV:

midgut microvillar

PBS:

phosphate buffered saline

PMSF:

phenyl methyl sulphonyl fluoride

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

TBV:

transmission-blocking vaccine

References

  • Abraham E G and Jacobs-Lorena M 2004 Mosquito midgut barriers to malaria parasite development; Insect Biochem. Mol. Biol. 34 667–671

    Article  CAS  PubMed  Google Scholar 

  • Barik T K, Sahu B and Swain V 2009 A review on Anopheles culicifacies: from bionomics to control with special reference to Indian subcontinent; Acta Tropica 109 87–97

    Article  CAS  PubMed  Google Scholar 

  • Carter R 2001 Transmission blocking malaria vaccines; Vaccine 19 2309–2314

    Google Scholar 

  • Corfield A P and Shukla A K 2001 Mucins: vital components of the mucosal defensive barrier; Genom/Proteom. Technol. 3 20–23

    Google Scholar 

  • Dinglasan R R, Kalume D E, Kanzok S M, Ghosh A K, Muratova O, Pandey A and Jacobs-Lorena M 2007 Disruption of Plasmodium falciparum development by antibodies against conserved mosquito midgut antigen; Proc. Natl. Acad. Sci. USA 104 13461–13466

    Article  CAS  PubMed  Google Scholar 

  • Dinglasan R R, Valenzuela J G and Azad A F 2005 Sugar epitopes as potential disease transmission blocking targets; Insect Biochem. Mol. Biol. 35 1–10

    Article  CAS  PubMed  Google Scholar 

  • Dinglasan R R, Fields I, Shahabuddin M, Azad A F and Sacci J B Jr 2003 Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi; Infect. Immun. 71 6995–7001

    Article  CAS  PubMed  Google Scholar 

  • Duffy P E and Kaslow D C 1997 A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines; Infect. Immun. 65 1109–1113

    CAS  PubMed  Google Scholar 

  • Figueroa J V, Buening G M, Kinden D A and Green T J 1990 Identification of common surface antigens among Babesia bigemina isolates by using monoclonal antibodies; Parasitology 100 161–175

    Article  CAS  PubMed  Google Scholar 

  • Green C A and Miles S J 1980 Chromosomal evidence for sibling species of the malaria vector Anopheles (Celia) culicifacies Giles; J. Trop. Med. Hyg. 83 75–78

    CAS  PubMed  Google Scholar 

  • Gulia M, Suneja A and Gakhar S K 2002 Effects of anti-mosquito haemolymph antibodies on reproductive capacity and on infectivity of malaria parasite Plasmodium vivax to malaria vector An. stephensi; Jpn. J. Infect. Dis. 55 78–82

    PubMed  Google Scholar 

  • Hanisch F G 2001 O-glycosylation of the mucin type; Biol. Chem. 382 143–149

    Google Scholar 

  • Hisaeda H, Stowers A W, Tsuboi T, Collins W E, Sattabongkot J S and Suwanabun N 2000 Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes; Infect. Immun. 68 6618–6623

    Article  CAS  PubMed  Google Scholar 

  • Kar I, Subbarao S K, Eapen A, Ravindran J, Satyanarayana T S, Raghvendra K, Nanda N and Sharma V P 1999 Evidence of a new malaria vector species, species E, within the Anopheles culicifacies complex (Diptera: Culicidae); J. Med. Entomol. 36 596–600

    Google Scholar 

  • Kramerov A A, Mikhaleva E A, Rozovsky Y M, Pochechueva T V, Baikova N A, Arsenjeva E L and Gvozdev V A 1997 Insect mucin-type glycoprotein: immunodetection of the Oglycoyslated epitope in Drosophila melanogaster cells and tissues; Insect Biochem. Mol. Biol. 27 513–521

    Article  CAS  PubMed  Google Scholar 

  • Kramerov A A, Arbatsky N P, Rozovsky Y A, Mikhaleva E A, Polesskaya O O, Gvozdev V A and Shibaev V N 1996 Mucintype glycoprotein from Drosophila melanogaster embryonic cells: characterization of the carbohydrate component; FEBS Lett. 378 213–218

    Article  CAS  PubMed  Google Scholar 

  • Lal A A, Patterson P S, Sacci J B, Vaughan J A, Paul C, Collins W E, Wirtz R A and Azad A F 2001 Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship; Proc. Natl. Acad. Sci. USA 98 5228–5233

    Article  CAS  PubMed  Google Scholar 

  • Lal A A, Schriefer M E, Sacci J B, Goldman I F, Louis-Wileman V, Collins W E and Azad A F 1994 Inhibition of malaria parasite development in mosquitoes by anti-mosquito midgut antibodies; Infect. Immun. 62 316–318

    CAS  PubMed  Google Scholar 

  • Lavazec C, Boudin C, Larcouix R, Bonnet S, Diop A, Thiberge S, Boisson B, Tahar R and Bourgouin C 2007 Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission blocking vaccine; Infect. Immun. 75 1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Ponnundrai T, Van Genert G J, Bensink T, Loss A W H and Merrwissm J H E T 1987 Transmission blockade of P. falciparum: its variability with gametocyte number and concentration of antibody; Trans. R. Soc. Trop. Med. Hyg. 81 491–493

    Article  Google Scholar 

  • Raghvendra K, Subbarao S K, Vasantha K, Pillai M K K and Sharma V P 1992 Differential selection of malathion resistance in Anopheles culicifacies A and B (Diptera-Culicidae) in Haryana state; Indian J. Med. Entomol. 29 183–187

    Google Scholar 

  • Seppo A and Tiemeyer M 2000 Function and structure of Drosophila glycans; Glycobiology 10 751–760

    Article  CAS  PubMed  Google Scholar 

  • Shahabuddin M and Costero A 2001 Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes; Insect Biochem. Mol. Biol. 31 231–240

    Article  CAS  PubMed  Google Scholar 

  • Shahabuddin M, Lemos F J A, Kaslow D C and Jacobs-Lorena M 1996 Antibody mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum; Infect. Immun. 64 739–743

    CAS  PubMed  Google Scholar 

  • Snow R W, Guerra C A, Myint H Y and Hay S I 2005 The global distribution of clinical episodes of Plasmodium falciparum malaria; Nature (London) 434 214–217

    Article  CAS  Google Scholar 

  • Subbarao S K, Vasantha K, Adak T and Sharma V P 1983 Anopheles culicifacies complex: evidence of new sibling species, species C; Ann. Entomol. Soc. Am. 76 985–990

    Google Scholar 

  • Subbarao S K, Adak T, Vasantha K, Joshi H, Raghvendra K, Cochrane A H, Nussenzweig R S and Sharma V P 1988 Susceptibility of Anopheles culicifacies species A and B to Plasmodium vivax and Plasmodium falciparum as determined by immuno radio-metric assay; Trans. R. Soc. Trop. Med. Hyg. 82 394–397

    Article  CAS  PubMed  Google Scholar 

  • Suneja A, Gulia M and Gakhar S K 2003 Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae); Arch. Insect. Biochem. Physiol. 55 63–70

    Article  Google Scholar 

  • Takeuchi H, Kato K, Dendai-Nagai K, Hanisch F G, Lausen H and Irimura T 2002 The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialyl2-3 galactosyl1-3 N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat; J. Immunol. Methods 270 199–209

    CAS  PubMed  Google Scholar 

  • Vasantha K, Subbarao S K and Sharma V P 1991 Anopheles culicifacies complex: population cytogenetic evidence for species D (Diptera: Culicidae); Ann. Entomol. Soc. Am. 84 531–536

    Google Scholar 

  • Wang P, Conrad J T and Shahabuddin M 2001 Localization of midgut specific protein antigens from Aedes aegypti (Diptera: Culicidae) using monoclonal antibodies; J. Med. Entomol. 2 223–230

    Google Scholar 

  • Wilkins S and Billingsley P F 2001 Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston; Insect Biochem. Mol. Biol. 31 937–948

    Article  CAS  PubMed  Google Scholar 

  • Willadsen P and Billingsley P F 1996 Immune intervention against blood feeding insects; in Biology of insect midgut (eds) M J Lehane and P F Billingsley (London: Chapman and Hall) pp 323–340

    Google Scholar 

  • Woodward M P, Young W W Jr and Bloodgood R A 1985 Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation; J. Immunol. Methods 78 143–153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Chugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugh, M., Gulati, B.R. & Gakhar, S.K. Monoclonal antibodies AC-43 and AC-29 disrupt Plasmodium vivax development in the Indian malaria vector Anopheles culicifacies (Diptera: culicidae). J Biosci 35, 87–94 (2010). https://doi.org/10.1007/s12038-010-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0011-9

Keywords

Navigation