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Abstract The PICALM rs541458 T allele has been recog-
nized as a risk factor for late-onset Alzheimer’s disease, and
age might modulate the effects that genetic factors have on
cognitive functions and brain. Thus, the current study
intended to examine whether the effects of rs541458 on cog-
nitive functions, brain structure, and function were modulated
by age in non-demented Chinese elderly. We enrolled 638
subjects aged 50 to 82 years and evaluated their cognitive
functions through a series of neuropsychological tests.
Seventy-eight of these participants also received T1-
weighted structural and resting state functional magnetic res-
onance imaging. Dividing subjects into groups <65 and
≥65 years old, results of neuropsychological tests showed that
interactive effects of rs541458 × age existed with regard to
executive function and processing speed after controlling for
gender, years of education and APOE ε4 status. In addition,
the effects of rs541458 on resting state functional connectivity
of left superior parietal gyrus within left frontal-parietal

network and on gray matter volume of left middle temporal
gyrus were modulated by age. Furthermore, reduction of func-
tional connectivity of left superior parietal gyrus was closely
related with better executive function in the T allele carriers
<65 years old. Further, greater volume of left middle temporal
gyrus was significantly related to better executive function in
both CC genotype <65 years old and CC genotype ≥65 years
old groups, separately. Pending further confirmation from ad-
ditional studies, our results support the hypothesis that the
modulation of age, with respect to the rs541458, has interac-
tional effects on cognitive performance, brain function, and
structural measurements.
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Introduction

Alzheimer’s disease (AD) is the most common type of demen-
tia. Due to the sharp increase in the number of patients [1] and
the highmortality rate [2], AD is currently an important global
health problem. Among many risk factors, increased age has
always been a pivotal risk factor for late-onset AD (LOAD)
[3]. In fact, the prevalence of AD increases with age [4], al-
most doubling every 5 years after the age of 60 [5].

In addition to age, several well-recognized genetic factors
augment the complexity of LOAD [6]. For instance, the apo-
lipoprotein E (APOE) ε4 allele is the best known genetic
LOAD risk factor, which is associated with increased inci-
dence and a decreased age of onset of LOAD [7]. It has been
suggested that the ε4 allele would likely account for approx-
imately 50% or more of the LOAD cases in the USA [8, 9].
Large-scale genome-wide association studies (GWAS) have
been carried out to locate additional susceptible loci to more
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fully understand the genetic etiology of LOAD. Among these
loci is the one encoding the -binding clathrin assembly protein
(PICALM) [10]. The 112 kb PICALM gene is located on
chromosome 11q14. In the central nervous system,
PICALM has primarily been identified in neurons, astrocytes,
and oligodendrocytes [11]. Evidence has shown that PICALM
plays a major role in clathrin-mediated endocytosis [12], in
which it recruits clathrin and adaptor protein 2 to the plasma
membrane and transports target proteins to be processed in
lysosomes or endosomes [12, 13]. Thus, PICALM would be
further associated with amyloid precursor protein (APP) me-
tabolism [14, 15], which is hypothesized to play a key role in
AD pathogenesis.

The SNP rs541458 is located 8 kb upstream of the
PICALM gene [16], with C as the minor allele and T as the
major allele. An early GWAS study of Europeans found the
rs541458 polymorphism to be a susceptible site for LOAD
[17]. Subsequently, Lambert et al. verified the risk of the T
allele of this SNP in a meta-analysis by examining three dif-
ferent European populations [18]. Other studies of Caucasians
also reported the association between the rs541458 T allele
and the LOAD risk [19, 20]. However, the LOAD risk asso-
ciated with the rs541458 polymorphism was not duplicated in
samples from the southern China region [21]. These results
suggest that the effects of the rs541458 polymorphism might
not be consistent among different ethnic groups.

Because of the crucial role of the brain in aging biology
[22], many groups have investigated the patterns of brain ag-
ing with respect to brain structure and function [23, 24].
Additionally, the effects of a specific gene such as PICALM
on the brain are not static but are dynamic and aging-related
[25], indicating that age would modulate the effects of genetic
factors in the brain. A previous study by Sweet et al. showed
that the rs541458 T allele was associated with an earlier age at
the midpoint of general cognitive function decline [26].
However, few studies have referred to the regulating effects
of age on the rs541458 SNP based on brain measures. Taking
65 years of age or older as the onset age of LOAD [27], we
divided the elderly into young (<65 years old) and old
(≥65 years old) groups to assess the age modulation effects.

Indeed, cognitive deficits are often thought to be associated
with brain functional and/or structural impairments [28, 29],
which can be measured by using volumetric or functional
magnetic resonance imaging (MRI) neuroimaging techniques.
For example, resting state blood-oxygen-level dependent
(BOLD) MRI allowed the delineation of the human neural
functional architecture into multinetworks, such as the default
mode network (DMN) and frontal-parietal network (FPN)
[30]. Some studies have highlighted a number of functional
networks showing significant age-related changes, including
in the DMN and left FPN [31, 32]. The APOE disrupted the
brain network connectivity, including the connectivity of both
the posterior [33, 34] and anterior [35] DMNs as well as the

left FPN [36]. Additionally, the risk allele (i.e., G allele) of the
PICALM rs3851179 polymorphism was associated with
weaker negative functional connectivity between the left hip-
pocampus and the right precuneus and between the right hip-
pocampus and the left superior frontal gyrus [37]. By using
T1-weighted volumetric MRI to assess brain structures, a pre-
vious study suggested that atrophy was primarily located in
the temporal and parietal regions in normal aging [38]. A
recent study demonstrated that rs3851179 had a nominally
significant main effect on hippocampal volume in healthy,
young subjects [37], although negative findings have been
reported in the elderly [39]. This may suggest that age would
modulate the association between heredity and the human
brain.

For the rs541458 SNP, we feel that relatively little is known
about its effects on the resting state functional connectivity
and whole brain gray matter volumes as well as neuropsycho-
logical performance (see the study by Sweet et al. [26]) and,
more importantly, whether age could modulate such effects.
Although it is weak, the existing evidence for PICALM itself
and for genetic risk factors motivated us to make the following
hypothesis: the effects of the PICALM rs541458 polymor-
phism on cognitive function, functional networks, and gray
matter volumes are modulated by age. In the present study,
we first examined such an age moderation effect on neuropsy-
chological performance in a larger sample of non-demented
Chinese elderly. Second, we investigated this modulated effect
of age on functional connectivity and gray matter volumes in
an imaging sub-cohort.

Materials and Methods

Participants

The subjects were from the Beijing Aging Brain Rejuvenation
Initiative (BABRI) Study Group, which is an ongoing longi-
tudinal study examining the brain and cognitive decline in an
elderly, community-dwelling population [40]. All enrolled
participants were Han Chinese. Participants were qualified
for our study if they met the following criteria: right-handed
and native Chinese speakers, no less than 50 years old, at least
6 years of education, no history of neurological or psychiatric
disorders, and could provide a successful blood sample for the
genotyping analysis. For this PICALM investigation, we only
included individuals who were Bclinically non-demented,^ as
determined by using the DSM IV, Petersen’s dementia criteria,
and Clinical Dementia Rating (score = 0). Accordingly, a total
of 638 subjects (aged 50–82 years) were included in the pres-
ent study. To investigate the age modulation effects, the sub-
jects were divided into young (<65 years old) and old
(≥65 years old) groups. The demographic information for each
group is presented in Table 1. The study was approved by the
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Institutional Review Board of the Beijing Normal University
Imaging Center for Brain Research. Written informed consent
was obtained from each participant.

Neuropsychological Testing

All the participants were subjected to a battery of neuropsycho-
logical tests that assessed several cognitive domains. As men-
tioned previously, the comprehensive neuropsychological bat-
tery comprised the following six cognition domains (the tests
used to assess each domain are in parentheses): 1, general men-
tal status (the Mini-Mental Status Examination—Chinese ver-
sion (MMSE) [41]); 2, memory function (the Auditory Verbal
Learning Test (AVLT) [42], the Rey-Osterrieth Complex
Figure test (ROCF) (recall) [43], and the Digit Span test, which
was a sub-test of the Wechsler Adult Intelligence Scale—
Chinese revision); 3, spatial processing (ROCF-copy [43] and
the Clock-Drawing Test (CDT) [44]); 4, language (the
Category Verbal Fluency Test (CVFT) and the Boston
Naming Test (BNT) [45]); 5, processing speed (the Trail
Making Test (TMT) A [46] and the Symbol Digit Modalities
Test (SDMT) [47]); and 6, executive function (the TMT-B [46]
and the Stroop Color and Word Test C (SCWT) [48]).

Analysis of Genotyping

PICALM rs541458 was genotyped using TaqMan allele-
specific assays on the 7900HT Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). Another two
SNPs, rs429358 and rs7412, which collectively form the
APOE ε2 (with the haplotype of rs429358-rs7412: T/T),
APOE ε3 (G/T), and APOE ε4 alleles (G/G), were also geno-
typed. The sample success rate for all three SNPs were 100%
(i.e., no failures across the participants to Bcall^ the polymor-
phisms), and the reproducibility of all of the genotyping was
100% according to a duplicate analysis of 10% of the geno-
types. Given the risk of harboring the T allele, we combined
the CT and TT genotypes into T allele carriers. Thus, accord-
ing to the rs541458 genotyping, all participants were divided
into two groups: 151 CC and 487 T allele carriers.

MRI Data Acquisition

To investigate the interactive effects between age and
PICALM genotypes on brain structure and function, we also
acquired MRI data from a sub-cohort (n = 78) of the study
participants using a SIEMENS TRIO 3T scanner in the
Imaging Center for Brain Research, Beijing Normal
University. The participants were placed in a supine position,
with their head snugly fixed by straps and foam pads to min-
imize head movement. Resting state data were collected using
a gradient echo EPI sequence [TE = 30ms, TR = 2000ms, flip
angle = 90°, 33 slices, slice thickness = 4 mm, in-plane

matrix = 64 × 64, field of view = 256 × 256 mm2]. During
the single-run resting acquisition, the subjects were instructed
to remain awake, relaxed, and with their eyes closed and to
remain as motionless as possible. The resting acquisition
lasted for 8 min, and 240 image volumes were obtained. T1-
weighted structural images were acquired using 3D magneti-
zation prepared rapid gradient echo (MP-RAGE) sequences
[176 sagittal slices, TE = 3.44 ms, TR = 1900 ms, flip an-
gle=9°, slice thickness=1mm,acquisitionmatrix=256×256,
field of view = 256 × 256 mm2]. Table 2 provides further
details of the imaging sub-sample.

Data Processing and Analysis

Resting state image preprocessing and analysis

For each participant, the first 10 volumes were discarded to
allow the participants to adapt to the magnetic field.
Functional data were preprocessed using SPM and DPARSF
(http://rfmri.org/DPARSF), and the processing included slice
timing, within-subject inter-scan realignment to correct for pos-
sible movement, spatial normalization to a standard brain tem-
plate in the Montreal Neurological Institute (MNI) coordinate
space, resampling to 3 × 3 × 3 mm3, and smoothing with an
8 mm full-width half-maximum Gaussian kernel. Three sub-
jects were excluded because of unacceptable head movement
(translation >3 mm or rotation >3°) during the fMRI scanning.

We then performed the independent component analysis
(ICA) using the group ICA toolbox (GIFT version 2.0e;
http://mialab.mrn.org/software/gift/). Twenty-five components
were estimated for each subject. Three main stages were used
when applying the ICA to all participants: (i) principal compo-
nent analysis was performed for each subject for data reduction,
(ii) application of the ICA algorithm, and (iii) back-
reconstruction for each individual subject. After back-recon-
struction, the mean spatial maps of each group at every time
point were converted to z-scores for display. We focused on the
DMN, left frontal-parietal network (FPN), and right FPN in the
current study. The best-fit components for the three resting state
networks were identified by visual inspection. For each net-
work, a full factorial analysis of covariance (ANCOVA)
(2 × 2) was conducted with PICALM rs541458 (T carriers ver-
sus CC genotype) and age (<65 years old versus ≥65 years old)
as independent factors in SPM 8 (Statistical Parametric
Mapping, www.fil.ion.ucl.ac.uk/spm) with gender, years of
education, and APOE ε4 status included as covariates
(p < 0.05, AlphaSim-corrected). Additionally, further analysis
of the correlation of imagingmeasures with neuropsychological
tests was performed on any significant clusters resulting from
the voxel-wise comparisons. For each significant cluster, the
connectivity values were extracted by averaging the intensities
over all voxels within the cluster from every participant’s com-
ponent map.
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Structural Image Analysis

We used a voxel-based morphometry (VBM) analysis to com-
pare the whole-brain gray matter volume of all subjects using
the VBM8 software package (http://dbm.neuro.uni-jena.
de/vbm/). The preprocessing of structural images used
default parameters, except for the estimation using BICBM
space template—East Asian brains^ and extended options
using Bthorough cleanup.^ The images were bias-corrected,
tissue classified, and normalized to Montreal Neurological
Institute space using affine and non-linear transformations to
compare the absolute amounts of tissue [49]. One subject with
excessive head motion was identified and excluded. The im-
ages of the remaining 77 subjects were free of such problems.
The modulated gray matter images were smoothed with a
Gaussian kernel of 8 mm full width at half maximum
(FWHM). We utilized the mean gray matter map (thresh-
old = 0.3) of all subjects to obtain a group-based brain mask
and used it for subsequent analysis. A full factorial ANCOVA
(2 × 2) was calculated using SPM8withPICALM rs541458 (T
carriers versus CC genotype) and age (<65 years old versus
≥65 years old) as independent factors with gender, years of
education, APOE ε4 status, and total intracranial volume in-
cluded as covariates (p < 0.001, AlphaSim-corrected). The
significant areas for the interaction of rs541458 × age in the
VBM analysis were extracted as regions of interest (ROI)
using REST v1.8 (http://www.restfmri.net).

Statistical Analysis

The Hardy-Weinberg test was completed using the PLINK
software [50]. For the demographic factors of gender and
years of education and the APOE ε4 status, the multivariable
analysis of variance orWald chi-square test was used to assess
the PICALM rs541458 polymorphism and age effects. For the
neuropsychological assessments, a multivariable analysis of
covariance was conducted, with gender, years of education,
and APOE ε4 status as covariates. In addition, for the func-
tional connectivity, gray matter volume, and cognitive perfor-
mance showing the significant interactive effects of rs541458
× age, we further calculated the correlation between them
using Pearson partial correlation analyses, after controlling
for the influences of gender, years of education, and APOE
ε4 status in the four genotype and age groups, separately.

Results

Demographic and Neuropsychological Results

The rs541458 SNP did not show any deviations from Hardy-
Weinberg equilibrium in all participants (P > 0.05). For all
participants, the differences between the rs541458 groups

and the rs541458 by age interactions were not significant for
demographic factors or APOE ε4 status (Table 1). These re-
sults were the same in the imaging sub-sample (Table 2). All
subsequent analyses were adjusted for gender, years of educa-
tion, and APOE ε4 status.

For the neuropsychological tests, the interactions of
rs541458 × age were significant for executive function
(SCWT-C, P = 0.008, TMTb, P = 0.008, and TMTb-a,
P = 0.029) and processing speed (TMTa, P = 0.028) in all
participants. The effects of age, but not rs541458, were sig-
nificant for all neuropsychological tests in all participants
(Table 1). We found similar results in the imaging sub-sample,
as the interactions of rs541458 × age were significant for
executive function (SCWT C-B, P = 0.034, SCWT-C,
P = 0.024, TMTb, P = 0.003, and TMTb-a, P = 0.011), pro-
cessing speed (SDMT, P = 0.011), and general mental status
(MMSE, P = 0.013). The age effects were significant for ex-
ecutive function (TMTb, P = 0.002, and TMTb-a, P = 0.001)
and memory function (ROCF-delay, P = 0.038). The
rs541458 effects were significant for general mental status
(MMSE, P = 0.040) (Table 2, Fig. S1).

Interactive Effect of rs541458 × age on Resting State
Networks

For the resting state networks, the DMN, left FPN, and right
FPN were identified from the results of the group ICA
(Fig. 1a). The full factorial analysis of covariance
(ANCOVA) (2 × 2) revealed a significant interaction effect
of rs541458 × age on the brain region connectivity of the left
superior parietal gyrus (SPG.L) (x = −18 mm, y = −75 mm,
z = 54 mm; voxel size = 73, P < 0.05, AlphaSim-corrected,
Fig. 1b) within the left FPN. The simple effects of rs541458
and age were further analyzed (Fig. 1c). The functional con-
nectivity of the SPG.L in the T allele carriers <65 years old
group was significantly lower than that in the CC genotype
<65 years old group (F = 8.56, P = 0.005). Further, the func-
tional connectivity of the SPG.L in the CC genotype ≥65 years
old groupwas significantly lower than that in the CC genotype
<65 years old group (F = 9.35, P = 0.003).

Interactive Effect of rs541458 × age on Gray Matter
Volumes

We found a significant interaction effect of rs541458 × age on
the gray matter volume of the left middle temporal gyrus
(MTG.L) (x = −50 mm, y = −51 mm, z = 4 mm; voxel
size = 3032, P < 0.001, AlphaSim-corrected, Fig. 2a). The
simple effects of rs541458 and age were further analyzed
(Fig. 2b). The graymatter volume of theMTG.L in the Tallele
carriers <65 years old group was significantly higher than that
in the T allele carriers ≥65 years old group (F = 11.70,
P = 0.001). And the gray matter volume of the MTG.L in
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the CC genotype ≥65 years old group was significantly higher
than that in the T allele carriers ≥65 years old group (F = 8.69,
P = 0.004).

Correlations Among Functional Connectivity, Gray
Matter Volume, and Cognitive Performance

To assess whether the functional network and gray matter
volume differences could explain the cognitive performance
differences, we correlated the connectivity of the SPG.L with-
in the left FPN and the graymatter volume of theMTG.L each
with the cognitive test score, which also showed significant
rs541458 × age interactive effects. For the functional network,
the T allele carriers <65 years old group showed a significant
correlation between TMTb-a and SPG.L connectivity
(r = 0.460, P = 0.047) (Fig. 3). For the gray matter volume,
the TMTb was negatively associated with MTG.L volume in
the CC genotype <65 years old group (r = −0.588, P = 0.017),
and SCWTwas negatively associated with MTG.L volume in
the CC genotype ≥65 years old group (SCWT C-B,

r = −0.607, P = 0.028, SCWT-C, r = −0.635, P = 0.020)
(Fig. 3). No significant correlations were found in the other
groups or for the other cognitive performance measures.
Furthermore, the CC genotype ≥65 years old group showed
a negative correlation between SPG.L connectivity and
MTG.L volume (r = −0.652, P = 0.022) (Fig. 3). Notably,
there were no correlation results that survived (P < 0.05) after
FDR correction for multiple comparisons.

Discussion

The findings from the present study showed that age modu-
lated the effects of PICALM on cognitive performance, which
were mainly manifested in the executive function and process-
ing speed, that is, the risk allele T was associated with better
cognitive performance in the <65 years old group, but the
opposite was found in the ≥65 years old group. The effects
of PICALM on resting state functional networks were also
modulated by age. We found that the risk allele T was

Fig. 1 a The spatial maps show the DMN, left FPN, and right FPN of the
four genotype and age groups, separately. b The brain map represents
voxel-wise interactive effect of rs541458 × age on the left FPN (SPG.L
x = −18 mm, y = −75 mm, z = 54 mm; voxel size = 73, P < 0.05,
AlphaSim-corrected). The x, y, z coordinates of the primary peak in

MNI space. c The bar graph shows the ROI analysis on the significant
regions from voxel-wise comparisons. Error bars denote the standard
error of the mean. *Significant at P < 0.05. DMN default mode
network, FPN frontal-parietal network, SPG.L left superior parietal
gyrus, ROI region of interest

Mol Neurobiol (2018) 55:1271–1283 1277



associated with decreased functional connectivity of the
SPG.Lwithin the left FPN in the <65 years old group, whereas
the T allele was associated with increased connectivity in the
≥65 years old group. Age also showed a modulatory effect on
the association between PICALM and the gray matter volume
of the MTG.L. In further correlation analyses, the functional
connectivity of the SPG.L was positively correlated with
TMTb-a time in the T allele carriers <65 years old group,
which indicated that lower functional connectivity was linked
to better executive function. Both CC genotype groups
showed that an increased volume of the MTG.L was signifi-
cantly related to better executive function.

First, we found that the age difference could affect the
relations between the rs541458 T allele and both executive
function and processing speed. With the exception observed
in the study by Chen et al. [21] for Asian ethnic groups, sev-
eral previous studies reported the Tallele of rs541458 as a risk
factor for LOAD in westerners [18–20]. However, few studies
have directly investigated the association between rs541458
and cognitive functions, and none have been conducted on the
rs541458 and age interaction. Indirectly, limited evidence has
demonstrated that the rs541458 T allele would accelerate the
decreases of general cognitive functions, thus suggesting the
influence of age on the association between rs541458 and
cognitive functions [26]. Implicitly, this was similar to our
results, which indicated that age would modulate the effects
of rs541458 on cognition. Interestingly, the risk G allele of
another PICALM polymorphism, rs3851179, was associated

Fig. 3 Correlations between the functional connectivity of SPG.L, the
gray matter volume of MTG.L, and the neuropsychological tests in the
four genotype and age groups, separately. The significant correlation
showed between the connectivity of SPG.L and the TMTb-a time in T
allele carriers <65 years old group, between the volume of MTG.L and
the TMTb time in CC genotype <65 years old group, between the volume

of MTG.L and the SCWT C-B and SCWT-C time in the CC genotype
≥65 years old group, and between the connectivity of SPG.L and the
volume of MTG.L in the CC genotype ≥65 years old group. SPG.L left
superior parietal gyrus, MTG.L left middle temporal gyrus, TMT Trail
Making Test, SCWT Stroop Color and Word Test

Fig. 2 a The brain map represents voxel-wise interactive effect of
rs541458 × age on the gray matter volumes (MTG.L x = −50 mm,
y = −51 mm, z = 4 mm; voxel size = 3032, P < 0.001, AlphaSim-
corrected). The x, y, z coordinates of the primary peak in MNI space. b
The bar graph shows the ROI analysis on the significant regions from
voxel-wise comparisons. Error bars denote the standard error of the
mean. *Significant at P < 0.05. MTG.L left middle temporal gyrus, ROI
region of interest
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with general cognition impairments in >70-year-old
Parkinson’s disease patients but not in ≤70-year-old patients
[51]. Further, the protective A allele of rs3851179 was asso-
ciated with better cognitive composite scores only in men of
the oldest elderly group [52]. These results together suggested
that when the PICALM polymorphism is acting on cognition,
other factors such as age would play regulatory effects. To
further investigate the PICALM by age interaction, we further
evaluated both the brain functional networks and its structure.

Ample data suggest that the FPN is sensitive to damage
in mild cognitive impairment (MCI), which is a precursor
phase of AD [53, 54]. A previous study of the APOE geno-
type found an intrinsic effect of APOE on the functional
architecture of FPN [36]. In our study, the association be-
tween rs541458 and the functional connectivity of the left
FPN was affected by age, and the pattern was contrary to
that found for cognitive functions. One possible explanation
for this difference is a compensation mechanism of function-
al networks. It is noteworthy that the FPN is essential for
higher cognitive behaviors and that the decreases of effec-
tive connectivity in frontal-parietal circuits made for impair-
ments in top-down attention control [55]. Recent studies
have revealed the PICALM rs3851179 and clusterin/
apolipoprotein J protein gene (CLU) interactions on func-
tional connectivity, verified both in Caucasian and Chinese
subjects [37, 56]. Nevertheless, the effects of rs541458 on
functional networks and the role of age are still poorly un-
derstood. Pooling those previous studies and our current
results would suggest, to some extent, that the effects of
PICALM on brain functions are influenced not only by other
genetic factors but also by age. Further, Wang et al. reported
a decreased functional connectivity between the superior
parietal cortex and thalamus in MCI patients [57], which
may suggest the sensitivity of connectivity in the SPG for
cognitive impairments.

Consistent with our brain connection findings, we also
found that the effects of rs541458 on gray matter volume of
the MTG.L were modulated by age. TheMTGwas among the
first regions to show structural changes in amnestic MCI [58]
and AD patients [59]. Compared with non-converters, MCI
converters showed greater gray matter losses in the MTG area
[60]. This may result from elevated tau pathology and neuro-
nal loss [61]. In an elderly European group, the risk G allele of
rs3851179 was related to a smaller gray matter volume of the
inferior frontal gyrus compared to the protective A allele in
APOE ε4 allele carriers, but this was not observed in non-
carriers [39]. Similarly, CLU could affect the association be-
tween rs3851179 and hippocampal volume; that is, reversed
patterns were shown in the CLU risk and protective groups
[56]. This was consistent with our results, which showed that
the risk allele T was associated with a higher gray matter
volume of the MTG.L in the <65 years old group and with a
lower volume in the ≥65 years old group.

Interestingly, the interactive effects of rs541458 × age on
resting state functional networks and graymatter volume were
both located on the left hemisphere, probably suggesting that
lateralization were associated with aging and dementia. A re-
cent research showed that age is strongly related to lateraliza-
tion in multiple regions within the frontal network, attentional
network, sensorimotor network, and visual network [62].
Early research has suggested that some neurodegenerative
disease like dementia exhibited injury primarily in the left
rather than the right hemisphere, and hypometabolism is more
susceptible to neurodegeneration in the left hemisphere [63].
Some studies also demonstrated that brain asymmetry can be
observed at biochemical level like hippocampal nitric oxide
mediator system [64].

A growing body of research has demonstrated that partic-
ular cognitive impairments are closely related to the discon-
nection of brain networks. This has been verified in several
neurodegenerative diseases, including AD [65] and
frontotemporal dementia [66]. TMT is a frequently used neu-
ropsychological test for executive function [46]. The execu-
tive function depended on disrupted regions to collaborate,
mainly including the left SPG and lateral prefrontal cortex
[67]. In MCI patients, the white matter hyperintensities in
the FPN were associated with decreased executive function
[68]. Our study found that the functional connectivity of the
SPG.L was positively related with TMTb-a time scores in T
allele carriers <65 years old, which probably suggests that
better executive function performance did not need higher
connectivity for support. Similarly, recent results have shown
that increased connectivity between the left parietal and mid-
dle temporal cortices was associated with decreased global
cognitive status in cognitively normal elderly [69]. The con-
nectivity between the left inferior parietal and medial prefron-
tal cortex was related to episodic memory performance, which
has also been found in cognitively normal older adults [70].
Furthermore, we found that the increased volume of the
MTG.L was related to better executive function in both CC
genotype groups. In the APOE ε4 carriers, the apparent diffu-
sion coefficient of the temporal lobe could predict executive
function [71]. In probable AD patients, decreased metabolism
in the temporal cortex was correlated with poor performance
on executive functions [72]. Additionally, a previous study
indicated strong correlations between medial temporal lobe
atrophy and executive functions in non-demented elderly
[73]. As corollaries, some brain function- and structure-
related measures, such as the functional connectivity of resting
state networks and gray matter volumes, could be biomarkers
for predicting variants in cognitive functions.

As mentioned above, abnormal PICALM expression
would disturb APP metabolism [74] due to the crucial role
of PICALM in clathrin-mediated endocytosis [12]. PICALM
would promote the transportation of APP-cleaved C-terminal
fragment (APP-CTF) from the plasma membrane
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intracellularly to allow fusion with autophagosomes and
endosomes, thus increasing the degradation of APP-CTF
and decreasing the production of amyloid-β (Aβ) [75].
Meanwhile, the PICALM rs541458 T allele is associated with
decreased cerebrospinal fluid Aβ42 [76]. Considering its high
expression in endothelial cells [77], this finding may imply
that PICALM plays a major role in removing Aβ from the
brain through the blood-brain barrier, supported by a close
relationship between high levels of PICALM and increased
Aβ clearance [78]. Moreover, the expression of PICALMwas
reduced and co-localized with hyperphosphorylated tau in AD
patients [79], possibly indicating a role of PICALM in
tauopathy [80]. Thus, one might speculate that an abnormal
level of PICALM would contribute to the dysfunction of en-
docytosis and a series of relevant pathological changes related
to AD. However, the exact mechanisms by which rs541458
contributes to AD etiology are yet to be confirmed in animal
and human studies.

The present study had some limitations. First, the effects of
different social class or level of educational achievement
should be noted that they may have different effects on cog-
nitive function and brain. Second, it is very important to val-
idate the present results by other Chinese cohort and some
longitudinal studies. Third, the significant correlations be-
tween neuroimaging measurements and cognitive perfor-
mances reported in the present study should be regarded as
exploratory in nature due to no correlation survived (P < 0.05)
after FDR correction for multiple comparisons. Thus, they
need to be confirmed in future additional studies. Overall,
the findings of this study should be interpreted with these
limitations in mind.

In summary, the present study suggested the modulation of
age on the association of the PICALM rs541458 polymor-
phism with executive function, on its association with the left
FPN and the MTG.L volume, and on the associations between
neuropsychological performance and brain connection/
structure in non-demented Chinese elderly. This finding high-
lights the importance of combining age and genetic polymor-
phisms when examining candidate genes that affect cognitive
function. Further studies with a larger sample size and longi-
tudinal design are needed to confirm our results.
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