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Abstract Stroke is the leading cause of severe disability, and
lacunar stroke is related to cognitive decline and hemiparesis.
There is no effective treatment for the majority of patients with
stroke. Thus, stem cell-based regenerative medicine has drawn a
growing body of attention due to the capabilities for trophic factor
expression and neurogenesis enhancement. Moreover, it was
shown in an experimental autoimmune encephalomyelitis
(EAE) model that even short-lived stem cells can be therapeutic,
and we have previously observed that phenomenon indirectly.
Here, in a rat model of lacunar stroke, we investigated the molec-
ular mechanisms underlying the positive therapeutic effects of
short-lived human umbilical cord-blood-derived neural stem cells
(HUCB-NSCs) through the distinct measurement of exogenous
human and endogenous rat trophic factors. We have also evalu-
ated neurogenesis and metalloproteinase activity as cellular com-
ponents of therapeutic activity. As expected, we observed an in-
creased proliferation and migration of progenitors, as well as me-
talloproteinase activity up to 14 days post transplantation. These
changes were most prominent at the 7-day time point when we
observed 30 % increases in the number of bromodeoxyuridine
(BrdU)-positive cells in HUCB-NSC transplanted animals. The
expression of human trophic factors was present until 7 days post
transplantation, which correlated well with the survival of the
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human graft. For these 7 days, the level of messenger RNA
(mRNA) in the analyzed trophic factors was from 300-fold for
CNTF to 10,000-fold for IGF, much higher compared to consti-
tutive expression in HUCB-NSCs in vitro. What is interesting is
that there was no increase in the expression of rat trophic factors
during the human graft survival, compared to that in non-
transplanted animals. However, there was a prolongation of a
period of increased trophic expression until 14 days post trans-
plantation, while, in non-transplanted animals, there was a signif-
icant drop in rat trophic expression at that time point. We conclude
that the positive therapeutic effect of short-lived stem cells may be
related to the net increase in the amount of trophic factors (rat+
human) until graft death and to the prolonged increase in rat
trophic factor expression subsequently.

Keywords Stem cells - Rat model - Lacunar stroke - Growth
factors

Introduction

Stroke poses a major clinical problem. There are several types of
strokes, and, with regard to the severity of tissue damage, there is
a continuum from a malignant to a lacunar stroke. Lacunar
stroke is caused by the occlusion of single penetrating small
arteries [1] and, very often, is associated with cognitive and
functional impairment [2—5]. While lacunar stroke constitutes
a significant portion of all strokes (over 25 %), it has not been
well studied. This is, in part, related to the paucity of small
animal models. Thus, our group developed a reproducible, reli-
able, and efficient method of ischemia-like injury in the deep-
brain structures of rodents that closely mimics the lacunar stroke
[6]. In the last few years, this model has been successfully used
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by other groups to study the safety and functionality of MSC
transplantation [7, 8].

There are virtually no treatment options for patients with
lacunar strokes; thus, attempts to restore damaged tissue have
been proposed. There is growing evidence that stem cell-based
therapy can be a viable option for stroke survivors [9—11]. It has
been shown that transplanted stem cells can survive and increase
neurogenesis in animal models of stroke [12]. However, multi-
ple reports, also from our group, show difficulties in maintaining
long-term graft survival in adult animals [13—17], despite the
heavy immunosuppression regime [18]. Yet, despite the absence
of transplanted human cells, we and other authors observed
positive behavioral effects on a rat model of stroke [19-21]. A
similar phenomenon has been observed in an experimental au-
toimmune encephalomyelitis (EAE) model by two separate
groups of investigators [22, 23], where short-lived glial-restrict-
ed precursors were shown to have immunomodulatory abilities.
Despite the lack of transplanted cell survival, positive effects
from umbilical cord-blood-isolated stem cell transplantation
were described in an ALS model [24], acute spinal cord injury
[25], and brain hypoxia-ischemia [26].

It has been shown that trophic factors, which have neuro-
trophic, neuroprotective, angiogenic, and anti-apoptotic prop-
erties, are important in the regulation of repair processes in
pathological conditions. Stimulation of the proliferation of
endogenous neural stem cells, as well as the enhancement of
the survival of newly generated neuroblasts, accompanied by
an increase in the expression of neurotrophic factors, has been
carlier described in a rat middle cerebral artery occlusion
(MCAO) model [27, 28]. The most commonly evaluated tro-
phic factors in experimental models of ischemia include
BDNF, GDNF, EGF, FGF-2, VEGF, and IGF-1 [29, 30].

We have previously shown an increase in neurogenesis in
stroke after the intracarotid delivery of human umbilical cord-
blood-derived neural stem cells (HUCB-NSCs) [19]. It has
been also postulated by other authors that human cord-blood-

Table 1 Number of animals used for all experimental groups

isolated stem cells can exert neuroprotective effects either
through inhibiting apoptosis or through the production of tro-
phic factors in amyloid-3-induced cognitively impaired mice
[31]. In the current study, we investigated whether this increase
in neurogenesis is also present after intracerebral transplanta-
tion of HUCB-NSCs, and whether it is facilitated by the extra-
cellular matrix changes induced by metalloproteinase activity
(MMP). Moreover, we focused on the mechanisms that might
mediate the phenomenon of persistent positive treatment ef-
fects from short-lived stem cells, through a separate measure-
ment of the expression of human and rat trophic factors.

Materials and Methods
Animals

The experiments were performed on adult male Wistar rats
weighing 250 g. A total of 120 animals were used for all the
experiments, with five animals per every analyzed group in a
single experiment (Table 1). Throughout the experiments, an-
imals were housed in plastic cages with a 12-h light-dark cycle
and free access to food and water. All procedures complied
with EU guidelines for the use of animals in research and were
approved by the Fourth Warsaw Local Ethics Committee.

Human Umbilical Cord-Blood-Derived Neural-Like Stem
Cell Line (HUCB-NSC) Culture

A neural stem cell line was derived from human umbilical cord
blood [32] and cultured in low serum (LS) medium containing
Dulbecco’s modified Eagle’s medium (DMEM) and F12
(Gibco) supplemented with 2 % fetal bovine serum (FBS;
Gibco), insulin, transferrin, and selenium (ITS, 1:100;
Gibco), and an antibiotic antimycotic solution (AAS, 1:100;
Sigma). Under these conditions, HUCB-NSCs grew as two

OUA+HUCB-NSC
experiment/ group intact OUA 1d 3d 7d 14d
BrdU test for proliferation 5 5 5 5 5 5
zymography for MMP 2/9 activity 5 5 5 5 5 5
Immunostainings 5 5 5 5 5 5
Real-Time PCR 5 5 5 5 5 5
total number 20 20 20 20 20 20 120
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subpopulations, floating and adherent cells. At 24 h before
transplantation, HUCB-NSCs were moved into a serum-free
Neurobasal (NB) medium with B27 to reduce serum levels and
the risk of a recipient immunological reaction. Only floating
HUCB-NSCs were taken for transplantation.

HUCB-NSCs Labeling with a CMFDA Cell Tracker

HUCB-NSCs preconditioned with NB medium and B27 for
24 h were collected and suspended in NB fresh medium, and
10 mM 5-chloromethyl-fluorescein-diacetate (CMFDA; 1 pl/
500 pl NB) cell tracker was added. The cells were incubated at
37 °C for 30 min, washed twice with serum-free NB medium,
and counted using a light microscope. Immediately before
transplantation, HUCB-NSCs were re-suspended in saline
and assessed with the trypan blue exclusion test for viability,
which was not lower than 95-98 % in all experiments.

Rat Model of Lacunar Stroke

Rats were anesthetized with ketamine (90 mg/kg) and xylazine
(10 mg/kg), given by i.p. injection, and immobilized in a stereo-
taxic apparatus (Stoelting). A small burr hole was drilled in the
cranium over the right hemisphere. The needle (length 15 mm,
gage 33), connected to a 10-pl syringe (Hamilton, Switzerland),
was lowered into the right striatum (coordinates A 0.5, L 3.8, D
4.7 mm). To minimize brain shift, there was a delay of 5 min
between the needle insertion and the injection of the active
substance. Then, 1 pl of 5 nmol ouabain (Sigma, Poland) was
injected into the brain at a rate of 0.5 ul/min using a
microinfusion pump (Stoelting, USA) mounted on a stereotaxic
apparatus (Stoelting), as previously described [6]. The needle
was then withdrawn and the skin was closed with a suture.

HUCB-NSC Transplantation

Three days after ouabain injection, rats were anesthetized with
ketamine (90 mg/kg) and xylazine (10 mg/kg), given by i.p. in-
jection, and immobilized in a stereotactic apparatus (Stoelting).
Then, an incision was made through the skin overlying the sagittal
suture, and a small burr hole was drilled in the cranium over the
right hemisphere. The needle (length 15 mm, gage 33), connected
to a 5-pul Hamilton syringe, was lowered into the corpus callosum
(coordinates A 0.0, L 4.0, V 3.0 mm where the bregma was
adjusted to the same horizontal plane, and the ventral coordinates
were calculated from the dura), and 2 pl of HUCB-NSCs labeled
with CMFDA (2% 10°) was injected at a rate of 0.5 pl/min via a
microinfusion pump (Stoelting) mounted on stereotactic appara-
tus. After injection, the needle was left in situ for 5 min to avoid
the leakage of injected cells through the needle tract. Then, the
needle was withdrawn and the skin closed with a suture.

qRT-PCR Analysis

Total RNA from 1x10°> HUCB-NSCs or rat brain tissue was
extracted using TRIzol (Invitrogen) reagent; contaminating ge-
nomic DNA was further eliminated by DNase (Qiagen) diges-
tion according to the manufacturer’s instructions. This RNA
(1 ng) sample was used for complementary DNA (cDNA) prep-
aration, using a High Capacity RNA-to-cDNA kit (Applied
Biosystems). RT-PCR reactions were carried out using template
cDNA in the presence of specific rat or human primers for
neuromorphogens and trophic factors. To analyze messenger
RNA (mRNA) level, real-time PCR was performed with the
7500 Real-Time PCR system (Applied Biosystems). As a refer-
ence gene, the glyceraldehyde-3-phosphate dehydrogenase
housekeeping gene (GAPDH) was used. Results are shown as
a relative quantification, which determines the changes in
steady-state mRNA levels of a gene across multiple samples
and expresses it relative to the levels of an internal control RNA.

R=2" [ ACT sample—ACT control]

Bromodeoxyuridine Injection

Endogenous cell proliferation was determined by
bromodeoxyuridine (BrdU) cell-incorporation administered i.p.
(50 mg/kg, Sigma-Aldrich), 24 h before rats were anesthetized
terminally. 5-Bromo-2-deoxyuridine (BrdU; Sigma-Aldrich)
dissolved in physiological saline was administered i.p. (50 mg/kg
per injection, in sterile 0.9 % NaCl plus 0.007 N NaOH).
Animals received a single dose of BrdU and were sacrificed
24 h after the injection. This procedure was used to determine
the number of cells that incorporated BrdU during a 24-h period
at a specific time point after ischemia. For BrdU immunostain-
ing, DNA was first denaturated in 2 N hydrochloric acid at 37 °C
for 60 min. Then, tissue sections were incubated in 0.1 M sodi-
um tetraborate (pH 8.5) for 15 min, blocked with 10 % normal
goat serum in PBS containing 0.25 % Triton X-100 for 60 min,
and incubated with anti-BrdU overnight at 4 °C. Following the
washing procedure, the primary antibodies were revealed by
appropriate secondary anti-rat [gG2a FITC-conjugated antibod-
ies for 60 min at RT and in the dark.

Brain Tissue Preparation and Fixation

Rats were deeply anesthetized with ketamine (90 mg/kg) and
xylazine (10 mg/kg), administered i.p., at 1, 3, 7, and 14 days
after HUCB-NSC transplantation. The brains were removed,
immediately frozen with dry ice, and stored at —70 °C. Before
sectioning, the brains were kept at —20 °C overnight. Coronal
tissue sections, 20-um thick, were cut in a cryostat and
mounted on super-frost microscope slides, and then stored at
=70 °C until immunohistochemistry was performed. For the
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immunohistochemical evaluation and in situ zymography, the
subventricular zone (SVZ) and subgranular zone (SGZ) re-
gions were analyzed. For gene expression analysis, the brain
tissue samples, with a diameter of 3 mm that contained a
fragment of the damaged striatum and white matter with
transplanted cells, were collected with a biopsy instrument.

Immunohistochemistry and Confocal Microscopy
Analysis

For immunofluorescence analysis, rat brain sections were air-
dried at room temperature for 30 min and fixed with freshly
prepared 4 % PFA in PBS (pH 7.4) for 15 min. Before incu-
bation with primary antibodies, non-specific binding was
blocked with normal goat serum or bovine serum albumin
(1:10, diluted with 0.1 % Triton X-100) for 60 min. Then,
the primary antibodies were applied and the brain slices were
incubated overnight at 4 °C. To identify the migrating
neuroblasts, anti-DCX (cell signaling, 1:200) was used.
After rinsing in PBS, the rat brain sections were exposed to
goat anti-rabbit (Alexa Fluor 594, red) secondary antibody, for
60 min at RT in the dark. In addition, cell nuclei were stained
with 5 uM Hoechst 33258. The adjacent sections were used as
negative controls. All procedures for negative controls were
processed in the same manner except the primary antibodies
were omitted. A confocal laser-scanning microscope (Zeiss
LSM 510) was used to obtain detailed images of the positively
stained cells. A helium—neon laser (543 nm) was used for
excitation of Alexa Fluor 594. An argon laser (488 nm) was
used for the excitation of CMFDA, and diode 405 nm was
used for the excitation of Hoechst. Following acquisition, im-
ages were processed using the software package ZEN 2008.

The contribution of specific populations in the rat brain was
evaluated using a single, specific antibody stain. The tissue
brain sections were analyzed with a confocal microscope and
photographed, and then, the 12 photos that were taken at the
same magnification were reviewed, and the positive cells were
counted. At the same time, all the brain cell nuclei were
stained with Hoechst and also counted. These results are
shown in the graphs as a percentage of a particular phenotype
of cells relative to all the cells of the tissue.

In Situ Zymography

In order to localize the activity of metalloproteinases (MMP-2
and MMP-9) belonging to the gelatinase family in the rat
brain, in situ zymography was performed. Thawed, non-
fixed coronal brain sections (25-pum thick) were incubated
for 3 h at 37 °C in a humid dark chamber in a reaction buffer
containing 50 mg/ml of FITC-labeled DQ-gelatin (Invitrogen
Molecular Probes, Eugene, OR), which was quenched intra-
molecularly. Gelatin-FITC cleavage by tissue metalloprotein-
ase releases peptides whose fluorescence is representative of
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proteolytic activity. The sections were rinsed in PBS and fixed
in cold 4 % PFA for 20 min, and then mounted in fluorescent
mounting medium (Dako) and observed using fluorescence
microscopy. To confirm that the proteolytic activity was at-
tributable to MMPs, some sections in each experiment were
incubated in the above conditions with a broad-spectrum in-
hibitor of metalloproteinase, 1 mM 1,10-O-phenanthroline.

Analysis of Pixel Intensity

For quantification of changes in the number of DCX-positive
cells and MMP 2/9 activity, confocal pictures at the same FOV
size, as well as the same laser intensity and pinhole set up,
were made. Every picture was analyzed by measurement of
mean pixel intensity, using ImageJ software. Results are pre-
sented as an average of five animals’ measurements +/— SD.

Statistical Analysis

The results are presented as mean+SD. The number of repeti-
tions is indicated in the descriptions of the figures. In order to test
the statistical significance of differences between mean values,
the one-way ANOVA and the Bonferroni test were performed.
All calculations used the program Prism 3.0. A significance level
of less than 0.05 was considered statistically significant.

Results

Occurrence of Neurogenesis in the SVZ and SGZ
of OUA-Damaged Rat Brain After HUCB-NSC
Transplantation

OUA-induced brain lesions resulted in increased proliferation
(BrdU") and migration (DCX*) of newborn cells in the
subventricular zone (SVZ) and subgranular zone (SGZ) of the
dentate gyrus, compared to intact rats. Transplantation of
HUCB-NSCs led to an increase in the number of BrdU™ cells
compared to ischemic animals. The area covered by BrdU-
stained cells delineating the edge of the SVZ and SGZ was
markedly augmented the first day after HUCB-NSC transplan-
tation and persisted until the 14th day of the experiment. For the
SVZ, at the 1st day after transplantation, the number of BrdU™
cells increased from 40 in ouabain-injured animals to 60 per
analyzed picture in the ipsilateral hemisphere. The maximum
number of proliferating cells was observed at the 7th day, with
an increase from 63 in ouabain-injured animals to 107 in ani-
mals after transplantation of HUCB-NSC. In the SGZ region, at
the Ist day after transplantation, the mean number of cells per
analyzed picture was four for injured animals and six in animals
after HUCB-NSC transplantation in the ipsilateral hemisphere.
In this neurogenic zone, the highest proliferation was observed
at day 3 after transplantation, with nine and 16 cells per analyzed
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Fig. 1 Number of BrdU-posmve cells in the SVZ (a) and SGZ (b) in the rat brain after ouabain injury and HUCB-NSC transplantatlon. n=>5, *p<0.05;

**p<0.01; *#¥p<0.001

picture in ouabain-injured and transplanted animals, respective-
ly. An elevated level of proliferation was observed in both the
ipsilateral and contralateral hemispheres; however, the changes
in the undamaged side of the brain were about 20 % less pro-
nounced. The increase in the number of proliferating cells was
visible in both neurogenic zones, but, in the subventricular zone,
it was much higher compared to the area of the SGZ (Fig. 1).
The increase in the number of BrdU™ cells in both the neu-
rogenic analyzed rat brain areas after the administration of
ouabain and subsequent HUCB-NSC transplantation was ac-
companied by an increase in the number of cells showing the
presence of a marker characteristic of migratory neuroblasts,
doublecortin (DCX). The number of DCX* cells increased
significantly in the ipsilateral SVZ and SGZ as rapidly as one
day after HUCB-NSC grafting. At the 7th day after HUCB-
NSC transplantation, an intense migration of DCX™ cells from
the SVZ toward the ischemic boundary regions of the striatum
was observed. After 14 days, the number of migrating
neuroblasts began to drop, which corresponded to a reduced
proliferation in the SVZ region on that day (Figs. 2 and 3).

Activity of Metalloproteinases in the OUA-Damaged Rat
Brain After HUCB-NSC Transplantation

The activity of matrix metalloproteinases 2 and 9 (MMP 2/9)
in neurogenic areas of the brain was assessed by in situ

zymography. These studies showed an increase in the activity
of MMP 2/9 in animals with ouabain striatal damage and in
rats after the administration of ouabain and subsequent trans-
plantation of HUCB-NSCs, compared to control animals. The
activity of MMP 2/9 in the experimental group of rats with
induced striatal damage and transplantation of HUCB-NSCs
varied for each day of the experiment. The gradual increase in
the activity of MMPs, examined between the 1st and the 7th
day after HUCB-NSC transplantation, was particularly appar-
ent in the SVZ area. Over the next few days of observation, the
activity of MMP 2/9 decreased and, after 2 weeks, was
comparable to that observed in control animals (Figs. 4, 5,
and 6).

Double labeling demonstrated the co-localization of MMPs
with BrdU* or DCX" cells observed in the SVZ and SGZ. The
proteolytic activity of MMPs observed in newborn cells in the
SVZ appeared to be associated with the cell nuclei and cyto-
plasm; however, the presence of MMPs in BrdU" or DCX™ cells
found in the SGZ was restricted to only the nuclei. High MMP
activity was clearly marked in neuroblasts migrating from the
SVZ (DCX™) within the rostral migration stream (RMS) into the
olfactory bulb, and also in cells migrating in the direction of
damaged tissue. In the migrating cells, the high activity of
MMP 2/9 was visible in the cytoplasm and cell protrusions. In
addition, metalloproteinase activity was observed in the extra-
cellular space around the DCX-positive cells, which is likely
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Fig.2 Immunostaining of migrating DCX-positive cells (red) in the SVZ and SGZ in the rat brain after ouabain injury and HUCB-NSC transplantation.

Nuclei counterstained with Hoechst. Scale bar indicates 50 pm. n=5

involved in the loosening of the extracellular matrix that helps
cells to migrate through the brain parenchyma (Figs. 4 and 5).

Lacunar Stroke-Induced mRNA Expression
of Endogenous Trophic Factors

We first determined the expression of different trophic factors in
the normal and ischemic rat brain. To explore the changes in
gene expression, the real-time reverse transcription-PCR (qRT-
PCR) method was used to detect mRNA levels of trophic factors
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(BDNF, GDNF, NT-3, CNTF, SEM, IGF-1, HGF, PRS). As
shown in Fig. 7, the administration of ouabain significantly up-
regulated the endogenous factors in the lesion area, 24 h after
brain injury. The calculated ratio of the mRNA level of all factors
measured in ischemic and control rat brain exceeded a few hun-
dred-fold. A time course analysis revealed the highest mRNA
expression of all molecules except CNTF during the early recov-
ery stage (1-7 days after the insult), which dropped at day 14.
The expression of CNTF increased with time after injury and
reached the maximum level at the 14th day of the experiment.
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Fig. 3 Quantification of pixel intensity representing the number of DCX-positive cells in the SVZ (a) and SGZ (b")
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Fig. 4 Immunostaining for proliferating BrdU-positive cells (red) and in situ zymography for MMP 2/9 activity (green) in the SVZ and SGZ in the rat
brain in intact animals, as well as after ouabain injury and HUCB-NSC transplantation. Scale bar indicates 50 um. n=5
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Fig.5 Immunostaining for migrating DCX-positive cells (red) and in situ zymography for MMP 2/9 activity (green) in the SVZ and SGZ in the rat brain
after ouabain injury and HUCB-NSC transplantation. Scale bar indicates 50 um. n=5
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Fig. 6 Quantification of pixel intensity representing the activity of MMP 2/9 in the SVZ (a) and SGZ (b) in the ipsilateral hemisphere

Expression of Human-Origin Trophic Factors
in OUA-Damaged Rat Brain After HUCB-NSC
Transplantation

The analysis of the rat brain after ouabain-induced infarction,
followed by HUCB-NSC infusion, revealed the presence of
trophic factors of human origin. The level of mRNA expres-
sion of different factors in the ischemic brain of cell recipients
was significantly higher than that of constitutively expressed
in HUCB-NSCs cultured in vitro. The calculated ratio of
mRNA expression of human-origin trophic factors in the rat
brain after HUCB-NSC transplantation to cells themselves in
culture, estimated by qRT-PCR, was 300 for CNTF, over 500
for SEM, NT3, BDNF, PRS, and HGF, and the highest in-
crease exceeded 3000 for GDNF and 10,000 for IGF
(Fig. 8). The presence of human-origin molecules was ob-
served up to 7 days after the HUCB-NSC graft, probably
due to the short time survival of donor cells in the ouabain-

Fig. 7 Real-time RT-PCR 2000
relative expression of rat trophic
factors in ouabain-injured rat
brains compared to intact animals.
n=5, *p<0.05; **p<0.01;
*a4p<0.001 1500

1000

Ratio
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damaged rat brain (Fig. 9). There was no significant difference
in the mRNA expression of these factors between days 1, 3,
and 7 after the implantation of HUCB-NSCs.

HUCB-NSC Transplantation Prolongs the Increased
Expression of Endogenous Trophic Factors Induced
by Focal Stroke in the Rat Brain

The transplantation of HUCB-NSCs into the brain of animals
with striatal lesions does not change the expression level of rat
trophic factors until day 7, compared to ischemic animals with-
out cell implantation. However, the prolongation of increased
levels of most rat trophic factors was observed; thus, HUCB-
NSCs prevented the drop in trophic factors at a later time point
(14 days), except for CNTF (Fig. 10). Only the expression of
CNTF was highest at the third day after HUCB-NSC transplan-
tation, and decreased over time. The mRNA level for SEM did

BDNF GDNF CNTF
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not change during the time of observation after HUCB-NSC
transplantation, compared to un-transplanted animals.

Discussion

During the past several years, many studies have shown the
positive effects of transplantation of stem cells for the treat-
ment of neurological diseases. The enhancement of endoge-
nous cell proliferation after NSC transplantation has already
been demonstrated in a variety of rodent models of brain is-
chemia [33-36]. In our study, the implantation of HUCB-
NSCs into the corpus callosum also increased the number of
BrdU-labeled cells in the SVZ and SGZ of rats subjected to a
brain insult. In addition, consistent with the proliferation of rat
progenitor cells after ischemia, there was migration of newly
formed cells to the damaged area. Based on a comparison
between the densities of young neuroblasts (DCX™) in the
rat brain grafted with HUCB-NSCs, the number of newly
generated neural precursors was significantly higher after cell

15t day 3 day

transplantation. Among the migrating pool of cells, few co-
labeled with the proliferating markers (DCX*/BrdU") were
found. Similar data has been reported by others [37-39].
With the increase in the number of DCX-positive cells, we
also determined whether there were any changes in the migra-
tion abilities of newly formed neuroblasts. The mechanism of
migration of neural progenitors in pathological conditions of
the CNS is not fully understood. There are many factors re-
sponsible for this process, including chemoattractant (pro-
inflammatory cytokines and chemokines) and matrix metallo-
proteinases activity (MMPs). The data reported by Barkho
et al. (2008) supported the contribution of MMPs to endoge-
nous neurogenesis [40]. The regulatory effect of MMPs on the
process of cell migration from the SVZ to the lesion area has
been suggested by a number of studies [41-43]. In our exper-
iments, the increased activity of gelatinases (MMP-2 and
MMP-9) in cells expressing markers characteristic of young
migratory neuroblasts (DCX™), compared to the other cells in
the brain tissue, seemed to confirm the observations described
above. Notably, there was a different localization of MMP-2

7t day 14t day

Fig. 9 Survival of HUCB-NSC after transplantation into the ouabain-injured rat brain, demonstrated by immunohistochemistry staining (CMFDA cell
tracer (green), nuclei counterstained with Hoechst (blue)) and the presence of human-origin mRNA for GAPDH by RT-PCR

@ Springer



6422

Mol Neurobiol (2016) 53:6413-6425
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and MMP-9 activity between migrating (DCX™) and prolifer-
ating (BrdU") cells. In our studies, BrdU-positive cells re-
vealed the presence of MMPs only in cell nuclei, which is
consistent with these other reports [44—46]. Such localization
may indicate that MMPs participate in the regulation of the
cell cycle. Our previous results, which showed a decrease in
proliferation of the human neural stem cells cultured in vitro in
the presence of SB-3CT-mediated inhibition of MMPs activ-
ity, support this hypothesis [47, 48]. Unlike BrdU-positive
cells, the immune reactivity of MMPs observed in DCX-
labeled cells was also confined to the cytoplasm, cell process-
es, and extracellular space around neuroblasts. The higher
activity of MMPs observed in the ischemic rat brain after
HUCB-NSC transplantation may facilitate newly formed pre-
cursor relocation from neurogenic regions to the site of injury
by proteolytic remodeling of the extracellular matrix (ECM).
Our immunohistochemical data suggest that MMP-2/9 plays a
role in this phenomenon. In vitro studies have shown that the
changes in the structure and composition of the ECM affect
not only the physical process of cell migration but also signal
transmission, through the conversion of inactive forms of tro-
phic factors entrapped in the ECM into their biologically ac-
tive forms [49, 50].

Although many reports show a positive outcome after stem
cell transplantation, the question about the mechanism driving
this effect remains unresolved. There is some evidence show-
ing that the presence of donor cells in the brain is not neces-
sary for their positive effect to be exerted on the neurogenesis
process. It has been shown that, even after the rapid elimina-
tion of transplanted cells [23], or after intravenous transplan-
tation when no donor cells were observed in the host brain
[19], the decrease in lesion size and the improvement in be-
havior were still observed. It seems that transplanted cells
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work indirectly in the host tissue. Trophic factor secretion is
postulated as the primary or supplementary mechanism of
action for many transplanted cells; however, there is little di-
rect evidence to support trophin production by transplanted
cells in situ. In our studies, the damage of the striatum with
ouabain caused an increase in the expression of factors such as
BDNF, GDNF, NT-3, CNTF, EGF, HGF, and IGF-1, and in
the number of BrdU* cells in the SVZ and the SGZ, compared
to the expression in the brain of control animals. Similarly,
increased expression has also been observed by other authors.
In the studies with animal models of stroke, an increase in the
expression of BDNF [51], GDNF [52], HGF, EGF, FGF-2
[53], and IGF-1 [54, 55], as rapidly as 12 h after the insult
and lasting until 5 days after stroke, has been described. After
transplantation of HUCB-NSCs, the expression of human tro-
phic factors can be detected. The short expression of human
trophic factors corresponds well with the short lifespan of
HUCB-NSCs previously reported [18]. Interestingly, the hu-
man trophic factors only minimally increase the amount of
endogenous trophic factors within the first few days, when
their expression is high. But, the animals treated with
HUCB-NSCs present a prolonged, increased expression of
endogenous factors until at least 2 weeks, when untreated
animals experience a rapid decrease. These changes in the
mRNA levels were also observed by other authors and were
independent of the route of cell administration. Increased
levels of BDNF, NT-3, and VEGF were found 7-14 days after
brain injury and transplantation of the human umbilical cord-
blood cells in rodents, but no distinction between human and
rat trophic factors was performed in those studies [56, 57].
Borlongan and colleagues have shown that 3 days after intra-
venous administration of human umbilical cord-blood cells,
there was an increased expression of BDNF, GDNF, and NGF
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in the rat brain after ischemia, compared to control animals.
But, later time points were not investigated [58]. Also,
intraparenchymal transplantation of human adipose-derived
stem cells promotes the expression of the total amount of
trophic factors in the rat after cerebral ischemia-reperfusion
injury until 28 days after cell delivery [59].

In contrast to the above studies, we compared the time
course of expression of human and endogenous factors. In
our study, the expression of all analyzed factors, except
CNTF, was increased at the 7th or 14th day after transplanta-
tion, at a time when, in stroke animals without transplantation,
a decrease in the amount of mRNA was observed. This higher
and longer expression in the OUA+HUCB-NSC group of
animals correlates with a significantly greater number of pro-
liferating cells in the neurogenic zones, compared to OUA-
injured rats. A similar effect on proliferation was observed
after human bone morrow MSC transplantation into animals
after MCAO. Bao and co-workers described an increase in the
number of BrdU" cells and in the expression of BDNF, NT3,
and VEGEF in the animals after MCAO and stem cell trans-
plantation [56]. However, the mechanism of action of exoge-
nous cells after their transplantation into the CNS is not fully
understood. As mentioned earlier, there is still not enough
evidence for the expression of trophic factors by transplanted
human cells in the host tissue. In the literature, there are just a
few examples showing that, after transplantation, cells retain
their ability to secrete trophic factors. With immunohisto-
chemistry, it has been shown that human MSCs can produce
BDNF after their transplantation into a rat model of stroke.
Hawryluk and co-workers showed that re-isolated neural pre-
cursor cells after transplantation into the damaged spinal cord
express a greater amount of several analyzed neurotrophic
factors, including CNTF, EGF, and FGF [60]. Wakabayashi
et al. also described the expression of human IGF-1 in the rat
brain 3 days after MCAO and human MSC intravenous trans-
plantation [61]. In our study, we were able to detect the ex-
pression of all analyzed human-origin trophic factors. This
expression was observed until the 7th day after transplanta-
tion, the day when live donor cells were observed in the rat
brain. The level of mRNA for human-origin factors was sig-
nificantly greater than that in the HUCB-NSC under standard
culture conditions, which suggests auto- and paracrine effects
of trophic factors on their own expression, or an increase of
expression due to conditions of stress—the transplanted dying
cells may be subjected to the same mechanisms of trophic
factor increase as dying rat cells. The early boost in human
trophic factors may prolong the endogenous expression of
trophic factors. However, there is also the possibility that other
mechanisms, directly related to the death of transplanted cells,
such as exosomes [62] or apoptotic bodies, may increase the
expression of endogenous trophic factors and provide a posi-
tive outcome, as frequently reported in the literature. Actually,
the death of transplanted cells may increase the reparative

mechanisms, analogously to the endogenous reparative mech-
anisms that are induced by focal brain injury.

In conclusion, the stimulation of a neurogenic response
following a HUCB-NSC graft far exceeds the initial genera-
tion of endogenous cells evoked by brain ischemia. The ther-
apeutic benefit of human stem cell transplantation relies on the
ability to potentiate neurogenesis and the upregulation of a
plethora of trophic factors in graft recipients. It is not known
which trophic actions that human factors released by donor
cells can reveal to endogenous neural stem/progenitor cells,
but we know that they can stimulate higher and longer expres-
sion of endogenous trophic factors. The relation of
neurogenesis and trophic factor expression is still not clear,
since both processes occur at the same time. Thus, further
studies are needed to link these processes.
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