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Abstract Comatose patients after cardiac arrest have a poor
prognosis. Approximately half never awakes as a result of
severe diffuse postanoxic encephalopathy. Several neuropro-
tective agents have been tested, however without significant
effect. In the present study, we used cultured neuronal net-
works as a model system to study the general synaptic damage
caused by temporary severe hypoxia and the possibility to
restrict it by ghrelin treatment. Briefly, we applied hypoxia
(pO2 lowered from 150 to 20 mmHg) during 6 h in 55 cul-
tures. Three hours after restoration of normoxia, half of the
cultures were treated with ghrelin for 24 h, while the other,
non-supplemented, were used as a control. All cultures were
processed immunocytochemically for detection of the synap-
tic marker synaptophysin. We observed that hypoxia led to
drastic decline of the number of synapses, followed by some
recovery after return to normoxia, but still below the
prehypoxic level. Additionally, synaptic vulnerability was se-
lective: large- and small-sized neurons were more susceptible
to synaptic damage than the medium-sized ones. Ghrelin treat-
ment significantly increased the synapse density, as compared
with the non-treated controls or with the prehypoxic period.

The effect was detected in all neuronal subtypes. In conclu-
sion, exogenous ghrelin has a robust impact on the recovery of
cortical synapses after hypoxia. It raises the possibility that
ghrelin or its analogs may have a therapeutic potential for
treatment of postanoxic encephalopathy.

Keywords Brain hypoxia . Postanoxic encephalopathy .

Synapse density . Ghrelin

Introduction

Comatose patients after cardiac arrest have a poor prognosis.
Approximately half never awakes as a result of severe diffuse
postanoxic encephalopathy [1]. Several neuroprotective
agents such as barbiturates [2], calcium channel blockers [3,
4], magnesium [5], and diazepam [6] have been tested, how-
ever without significant effect. The only treatment of proven
benefit is mild therapeutic hypothermia [7, 8], although the
gain of this treatment has become uncertain since the recent
Targeted Temperature Management (TTM) trial [9]. An im-
portant rationale behind all neuroprotective strategies, includ-
ing hypothermia, has been prevention of secondary damage
by inhibition of activation. This should preserve remaining
energy levels in order tomaintain membrane voltage and basic
cellular processes and prevent excitotoxicity [10]. In acute
ischemic stroke, where part of the same mechanisms play a
role, many modalities have been tested based on the same
argumentation [11]. Neither in postanoxic coma nor in ische-
mic stroke were any of these beneficial in clinical trials.

The initial encephalopathy after cardiac arrest results from
a global decrease of cerebral perfusion to a level that is insuf-
ficient to meet the brain’s high metabolic demands [12]. Clas-
sically, the resulting ATP depletion is associated with failure
of transmembrane ion pumps, depolarization, cell swelling,
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and cell death [13]. However, in imaging studies, sings of cell
swelling and necrosis were only moderately associated with
severity of encephalopathy and even absent in almost half of
patients, despite lasting severe encephalopathy and a poor
outcome [14]. Other pathophysiological mechanisms leading
to brain malfunctioning include local acidosis, free radical
formation, and nitric oxide production. Functional changes
are caused by damage to mitochondria, cytoskeleton, and glu-
tamate receptors [15, 16].

In animal models of acute ischemic stroke, synaptic failure
through impaired transmitter release was an early conse-
quence of ischemia and led to irreversible cerebral network
damage in the absence of cell swelling or necrosis [17]. Syn-
aptic transmission disturbances cause a lack of postsynaptic
activation and consequently decreased network activity [18].
Since long-term suppression of activity leads to permanent
damage [19, 20] and lack of brain activity during more than
24 h is strongly associated with absence of recovery from
postanoxic coma [21, 22], it is argued that mild excitation such
as caused by ghrelin, instead of inhibition, may be of benefit.

Previously, we have shown improvements of network con-
nectivity along with an increased number of synapses,
resulting from chronic stimulation of dissociated cortical neu-
rons with ghrelin [23, 24]. Ghrelin is multifunctional 28-
aminoacid hormone and a neuropeptide originally not only
found in the rat stomach [25], but also identified in the hypo-
thalamus, to a lesser extent in the hippocampus and brain
cortex [26–28], as well as in the adipose tissue [29]. Ghrelin
gene encodes a precursor which is cleaved to produce first
unacylated ghrelin (des-acyl ghrelin (DAG)) further trans-
formed into acyl ghrelin (AG, also referred to as ghrelin) by
esterification of the serine-3 residue with n-octanoic acid [30].

AG binds to the growth hormone secretagogue receptor 1a
isoform (GHSR1) [25], which is expressed in the cerebral
cortex in vivo [27], as well as in dissociated cortical neurons
[23], and is responsible for some of the central and peripheral
effects of ghrelin [31]. As recently reported, ghrelin enhances
synaptic plasticity [26], memory consolidation [32], and adult
neurogenesis [33, 34]. Here, we show that ghrelin improves
synaptic recovery in an in vitro model of postanoxic enceph-
alopathy consisting of cultured neuronal networks exposed to
severe hypoxia.

Material and Methods

We used an in vitro model of postanoxic encephalopathy
consisting of cultured neuronal networks exposed to severe
hypoxia for 6 h, followed by a recovery period with normoxia
during 3 h. Thereafter, half of the cultures were supplemented
with ghrelin for 24 h, while the other half were not manipu-
lated pharmacologically and used as a control. Before induc-
tion of hypoxia and after each experimental phase, part of the
neuronal cultures were fixed and processed for detection and
quantitative evaluation of the synaptic marker synaptophysin
(SPh). The study design is illustrated in Fig. 1.

Dissociated Cell Cultures

Cell cultures were obtained from Wistar rat pups, from eight
plating procedures, five pups (from the same mother) per plat-
ing. The animals were anesthetized with isoflurane and decap-
itated. The brains were removed and placed in RPMI medium
(developed at Roswell Park Memorial Institute, hence the

Fig. 1 Scheme of the
experimental steps: dissociation
of cortical neurons and cell
culturing; maturation of the
networks for 3–4 weeks;
experimental hypoxia for 6 h,
followed by 3 h of recovery at
normal oxygen supply, thereafter
ghrelin treatment for 24 h.
Control cultures were kept for
24 h in plane medium, not
supplemented with ghrelin;
immunostaining for detection of
synaptophysin at the end of each
experimental phase

Mol Neurobiol (2016) 53:6136–6143 6137



acronym RPMI). After removal of the meninges, cortical cells
were dissociated and collected in chemically defined R12 cul-
ture medium [35] with trypsin for chemical dissociation.
Thereafter, 150 μl of soybean trypsin inhibitor and 125 μl of
DNAse I (20,000 units, Life Technology) were added, follow-
ed by trituration for mechanical dissociation of the neurons.
The suspension was centrifuged at 1200 rpm for 5 min. Cells
were plated on glass coverslips at a density of approximately
3000 cells/mm2. The glass coverslips were precoated with
20 mg/ml polyethyleneimine (Fluka, Buchs, Switzerland) to
enhance cell adhesion. Cells were allowed to attach for 2 h at
37 °C and 5 % CO2 in air and thereafter kept in R12 medium,
optimized with 50 ng/ml nerve growth factor (Invitrogen,
Carlsbad, CA). The medium was serum-free to suppress glial
cell proliferation, keeping their concentration lower than 5 %
[35]. Themediumwas renewed every 2–3 days. Cultures were
stored in an incubator under standard conditions of 36 °C,
100 % humidity, and 5 % CO2 for a period of 3–4 weeks, till
the neurons established mature synaptic contacts. All animal
experiments were conducted according to Dutch law (as stated
in the BWet op de dierproeven^) and approved by the Utrecht
Animal Use Committee (DEC).

Induction of Hypoxia and Pharmacological Manipulation

For induction of hypoxia, the well plates with neuronal cul-
tures were placed under a Plexiglass hood (volume ~5 L).
Temperature, humidity, and CO2 level of the environment
were maintained as in the incubator. Two mass flow control-
lers were used to mix air and N2 and to produce a total flow of
4.7 L/min under the hood. Under physiological conditions, the
gas mixture consisted of ambient air with 5 % CO2. For in-
duction of hypoxia, 90 % of the air was replaced by N2 during
6 h, lowering the partial oxygen pressure (pO2) in the bath
from ≈150 to ≈20 mm Hg. Restoration of normoxia followed
thereafter. To obtain an estimate of the course of the oxygen
concentration in the culture medium, pO2 was measured using
an optical oxygen sensor (PHOSPOR, Ocean Optics), which
was inserted into the wells, near the neurons.

Three hours after restoration of normoxia, half of the re-
maining cultures were supplemented with ghrelin (Abcam,
Cambridge, UK) for 24 h, at a final concentration of 1 μM,
as described elsewhere [24, 26, 27, 36, 37]. The other half of
the cultures were kept in a plain medium, also for 24 h, and
used as control.

Immunohistochemistry

SPh staining was done on 55 cultures, equally distributed over
the experimental phases (baseline, 6-h hypoxia, 3-h normoxia,
24 h Ghr, or 24 h Ctrl). Cultures were fixed in 4 % parafor-
maldehyde in 0.1 M PBS, pH 7.4, and processed immunocy-
tochemically with the avidin-biotin-horseradish peroxidase

(ABC) method [38] to detect the synaptic marker. Briefly,
hydrogen peroxide (0.3 % in absolute methanol for 30 min)
was used to inactivate endogenous peroxidase. Appropriate
washes in PBS followed this and subsequent treatments. In-
cubation in primary antibody mouse anti-SPh IgG (Abcam,
Cambridge, UK, dilution 1:1000) lasted for 20 h at room tem-
perature, followed by 2 h in biotinilated donkey anti-mouse
IgG (1:500; Jackson ImmunoResearch, West) and 1 h in ABC
(1:500; Vector Labs, Burlingame, CA, USA). Following rins-
ing, peroxidase activity was visualized with 2.4 % SG sub-
strate kit for peroxidase (Vector) in PBS for 5 min, at room
temperature. Finally, the cultures were dehydrated in a graded
series of alcohols, cleared in xylene, and coverslipped with
Entellan (Merck, Darmstadt, Germany).

The immunoreactivity was readily discernible at the light
microscopic level by the presence of dark-gray granules of
immunoreactive (IR) product. Neuronal structures were con-
sidered to be immunopositive when their staining was clearly
stronger than that in the background. Negative controls includ-
ed incubation after antigen-antibody preabsorption with the
native antigen, at 4 °C for 24 h, or replacement of the primary
antibody with non-immune serum at the same concentration.

Photomicrograph Production and Data Analysis

After staining, micrographs were generated at ×60 using a
Nikon DS-Fi1 digital camera linked to a Nikon Eclipse 50i
microscope. All digital images were matched for brightness in
Adobe Photoshop 7.0. For quantification of the synaptic
marker expression, we counted the number of granules of
reaction product after SPh staining. Counting was done
blinded to treatment allocation. We obtained estimates of the
neuronal size, the number of SPh-IR granules, and the size of
the area in which they were counted by means of Nikon NIS-
Elements software. To avoid bias due to the small diameter of
the neurites and differences in the cell density across the cul-
tures, we restricted this analysis to the area of the perikarya
and the initial part of the arborizations.

To guarantee inclusion of neurons of various sizes in our
analysis, we defined small-sized (surface of the perikaryon
<100 μm2), medium-sized (cell 100–200 μm2), and large-
sized neurons (cells >200 μm2) [39–41]. Additionally, we
qualitatively graded the overall density of immunostaining
of neurons into two categories, high and low, following the
procedure described by Ljungdahl et al. [42]. Ten neurons
from each category (low and high IR) were examined in each
neuronal group (large, medium, or small sized) under each
condition (baseline, 6-h hypoxia, 3-h normoxia, 24 h Ghr, or
24 h Ctrl). Thus, 60 neurons per condition were evaluated,
obtained from 9 to 12 cultures per condition. SPh-IR granule
density was calculated and presented as mean±standard devi-
ation (SD). Student’s t tests and a non-parametric Kruskal-
Wallis test with post hoc Tukey HSD were applied to assess
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statistical significance of differences in SPh expression be-
tween the various groups of neurons and conditions. P values
<0.05 were considered statistically significant.

Results

Granules of SPh-IR product were localized on the neuronal
somata and along the neurites. Their density varied according
to experimental condition and according to neuronal size.
Typical examples of SPh-IR neurons from each condition
group are shown in Fig. 2.

SPh Density According to Experimental Condition

Hypoxia significantly reduced SPh density (0.28±0.06 gran-
ules/μm2) compared with baseline (0.34±0.1 granules/μm2,
p=0.0002). The posthypoxic values did not return to the base-
line levels, neither 3 h after restoration of normoxia (0.27±
0.07 granules/μm2) nor 24 h later (0.28±0.15 granules/μm2).
However, after ghrelin treatment at 3 h, SPh density at 24 h
(0.48±0.1 granules/μm2) was statistically significant higher
than in the control group (0.28±0.15 granules/μm2, p≪
0.001) and at baseline (0.34±0.1 granules/μm2, p≪0.001).
The quantitative data are presented in Table 1.

SPh Density According to Neuronal Size

Synapse density varied according to neuronal size. At base-
line, densities were 0.38±0.08, 0.30±0.06, and 0.40±0.12
granules/μm2 for large-, medium-, and small-sized neurons.
Hypoxia significantly downregulated the number of synaptic
contacts of the large neurons (0.29±0.07 granules/μm2, p=
0.0004). This was irreversible: the density continued to de-
crease after restoration of normoxia (0.24±0.07 granules/
μm2 after 3 h and 0.23±0.14 granules/μm2 24 h later). Unlike
in the large neurons, once reduced by hypoxia, SPh density of
small neurons (0.28±0.06 granule/μm2) remained unchanged
during the posthypoxic periods (0.27±0.05 granules/μm2 (3-h
restoration) and 24 h later (0.31±0.16 granules/μm2 in 24 h
Ctrl). Synapse density of medium-sized neurons did not show
sensitivity to hypoxia. It did not change by exposure to hyp-
oxia (0.27±0.06 granules/μm2) and remained unchanged after
normoxia restoration (0.31±0.05 granules/μm2 at 3 h and
0.28±0.09 granules/μm2 24 h later). Ghrelin significantly in-
creased SPh density in the three neuronal subtypes. Treatment
effect was largest in the small-sized neurons (Table 2).

Discussion

In an in vitro model of postanoxic encephalopathy consisting
of cultured neurons exposed to temporary severe hypoxia, we

Fig. 2 Microphotographs illustrating SPh-IR in different neuronal
subtypes under each experimental condition. a Baseline, large (L)- and
small-sized neurons with different SPh density. The long arrow is
pointing at a large neuron with high density of IR granules. b Neurons
with low SPh density after 6 h of hypoxia. c Neurons of different sizes
after 3-h restoration of oxygen supply. L indicates large-sized neuron. d

Control culture after 24-h recovery in plain medium. eMultiple medium-
sized neurons after 24-h recovery in culture supplemented with ghrelin.
Most of them show high SPh density. Thin arrow points at a small-sized
neuron with low SPh density. f Twenty-four-hour ghrelin treatment, giant
pyramidal neuron expressing high SPh density. Scale bars (a–f) 20 μm
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show a significant reduction of synaptic density (from 0.34 to
0.28 granules/μm2, p=0.0002). Additionally, we demonstrate
that treatment with ghrelin initiates recovery (from 0.28 to
0.48 granules/μm2, p≪0.001) and leads to complete restora-
tion of the synaptic density in all subtypes of neurons accord-
ing to their size, with most prominent effect on the medium-
sized ones (from 0.28 to 0.48 granules/μm2, p≪0.001).

Our results are in line with previous in vitro and in vivo
studies, showing that hypoxia or ischemia affects synaptic
transmission before disruption of ion gradients across the plas-
ma membrane [43–46]. Several causes for presynaptic and
postsynaptic ischemic failure have been proposed [17]. The
initial disturbances are probably located presynaptically rather
than postsynaptically, with impaired transmitter release [17],
decreased presynaptic dense projections [47], and isolated loss
of presynaptic buttons [48]. Failure of synaptic transmission
has been proposed to account for electric silence in the pen-
umbra of a brain infarct [49] and has been associated with
lasting network damage in the absence of depolarization in a
rat model of cerebral infarction [45]. In addition, perinatal
exposure to hypoxia caused early degenerative processes in
existing synapses, decline in synaptogenesis, and a more than
twofold reduction of synaptic density in all cortical layers of
the rat, as shown by SPh immunodetection [50]. Cerebral
ischemia induces interaction of the postsynaptic density
(PSD-95) with neuronal nitric oxide synthase (nNOS), there-
by leading to nitric oxide (NO) overproduction and neural
injury [51]. Disruption of this coupling enhances neurite
growth and dendritic spine formation and thus improves
stroke outcome by promoting regenerative processes [52].

Further research on the effect of hypoxia on postsynaptic den-
sity and dendritic spine distribution would be clinically
relevant.

Previously demonstrated selective ischemic damage affect-
ed striatum, hippocampal pyramidal neurons, cerebellar
Purkinje cells, and the neocortical pyramidal cells [53–55]
with relatively strong downregulation of synapse density
[48]. In the cortex, we also observed selective vulnerability:
large- and small-sized neurons were more susceptible to syn-
aptic damage than medium-sized neurons. In general, neuro-
nal morphology correlates with certain neuronal functions,
and as the fundamental work of McConnell indicated, the
large-sized neurons convey afferent sensory signals from sub-
cortical regions and efferent signaling to subcortical areas,
while the small-sized neurons are involved in efferent
intracortical transmission [56]. Therefore, we could speculate
that the primary sensory and motor systems are more vulner-
able to ischemic damage. Such morphological evidence for
selective vulnerability of the primary sensory and motor sys-
tem was demonstrated in a model of asphyxic cardiac arrest in
newborn piglets [57] and confirmed electrophysiologically in
rodents [58]. Causes of selective vulnerability are still unclear;
however, it is possible to be related to specific oxidative me-
tabolism [57].

Previously, we reported that AG accelerates synaptogene-
sis and synaptic activity under healthy conditions [23, 24].
Supposed working mechanisms for stimulating synapse
growth or recovery include activation of several signaling
pathways. By activating GHSR1, ghrelin increases Ca+2 in-
flux [59, 60] and intracellular Ca+2 mobilization [61] which

Table 1 Density of SPh granules under different experimental conditions

Condition Number of cultures evaluated Number of neurons evaluated SPh density (granules/μm2) SD

Baseline 11 60 0.34 ±0.10

6-h hypoxia 9 60 0.28 (**p=0.0002) ±0.06

3-h Normoxia 12 60 0.27 (**p=6.5.10−5) ±0.07

24 h Control 11 60 0.28 (*p=0.0134) ±0.15

24 h Ghr 12 60 0.48 (**p=2.10−13) ±0.10

Asterisks indicate significant change from baseline: *p<0.05; **p<0.001

Table 2 SPh density in different neuronal types under all experimental conditions

Neuronal subtype Mean SPh density (granules/μm2)±SD

Baseline 6-h hypoxia 3-h normoxia 24 h Ctrl 24 h Ghr

Large 0.38±0.08 0.29±0.07 (**p=4.10−4) 0.24±0.07 (**p=1.3.10−6) 0.23±0.14 (**p=2.8.10−4) 0.45±0.08 (*p=0.01)

Medium 0.30±0.06 0.27±0.06 0.31±0.05 0.28±0.09 0.48±0.09 (**p=1.1.10−8)

Small 0.40±0.12 0.28±0.06 (**p=3.8.10−4) 0.27±0.05 (**p=1.4.10−4) 0.31±0.16 (*p=0.04) 0.52±0.12 (*p=0.003)

Asterisks indicate significant change from baseline: *p<0.05; **p<0.001
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results in synaptic gene nuclear factor expression [62]. Fur-
thermore, as an excitatory neurotransmitter, ghrelin stimulates
synaptic activity, which triggers additional synthesis and ag-
gregation of neurotransmitter receptors [63] and other types of
synaptic signaling molecules like agrin [64]. In the cerebral
cortex, agrin is associated with excitatory but not inhibitory
synapses [65]. It stimulates formation and stabilization of den-
dritic filopodia and consequently promotes synaptogenesis
[66]. Additionally, agrin induces a switch from gap junction-
mediated communication to synaptic transmission [67]. Con-
sidering that gap junctions respond to hypoxia-ischemia by
excessive channel opening which spreads the injury [68, 69],
it is reasonable to hypothesize a role for ghrelin in the restric-
tion of ischemic injury and upregulation of the synaptic as-
sembly via agrin-mediated mechanism.

Beneficial effects of ghrelin have been observed in
animal models of acute ischemic stroke. In a rat model,
administration of ghrelin reduces infarct volume and cell
death [70] by preventing apoptosis and improving mito-
chondrial function [71]. Thus, in addition to the stimu-
lating effect on the synaptic survival, ghrelin further
ameliorates cellular respiration and network recovery
from severe hypoxia.

We used cultured neuronal networks as a model system to
study the effects of temporary severe hypoxia. An important
advantage of this model system is that, unlike acute brain
slices, cultures can stay alive for several days up to months.
In addition, many neurons and synapses in a network can be
studied simultaneously. A possible limitation is the lack of
normal brain architecture, as present in acute brain slices.
However, the focus of this study was on general synaptic
damage and recovery, which does not require a specific
brain structure. The system has been used before, but with
a focus on anoxia-induced neuronal death instead of synap-
tic function [72].

In conclusion, the present observations support the
hypothesis that exogenous ghrelin has a robust impact
on the recovery of cortical synapses after hypoxia. It
raises the possibility that ghrelin or its analogs may
have a therapeutic potential for treatment of postanoxic
encephalopathy.
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