Skip to main content
Log in

Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent a promising tool for stem cell-based therapies. However, the majority of MSCs fail to reach the injury site and have only minimal therapeutic effect. In this study, we assessed whether hypoxia/reoxygenation (H/R) preconditioning of human BM-MSCs could increase their functional capacity and beneficial effect on ischemic rat cortical neurons. Human BM-MSCs were cultured under hypoxia (1 % O2) and with long-term reoxygenation for various times to identify the optimal conditions for increasing their viability and proliferation. The effects of H/R preconditioning on the BM-MSCs were assessed by analyzing the expression of prosurvival genes, trophic factors, and cell migration assays. The functionally improved BM-MSCs were cocultured with ischemic rat cortical neurons to compare with normoxic cultured BM-MSCs. Although the cell viability and proliferation of BM-MSCs were reduced after 1 day of hypoxic culture (1 % O2), when this was followed by 5-day reoxygenation, the BM-MSCs recovered and multiplied extensively. The immunophenotype and trilineage differentiation of BM-MSCs were also maintained under this H/R preconditioning. In addition, the preconditioning enhanced the expression of prosurvival genes, the messenger RNA (mRNA) levels of various trophic factors and migration capacity. Finally, coculture with the H/R-preconditioned BM-MSCs promoted the survival of ischemic rat cortical neurons. H/R preconditioning of BM-MSCs increases prosurvival signals, trophic factor release, and cell migration and appears to increase their ability to rescue ischemic cortical neurons. This optimized H/R preconditioning procedure could provide the basis for a new strategy for stem cell therapy in ischemic stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  2. Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S (2013) Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsiao ST, Dilley RJ, Dusting GJ, Lim SY (2014) Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 142:141–153

    Article  CAS  PubMed  Google Scholar 

  5. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Scientific World Journal 2013:632972

  6. Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC (2012) Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2:148–159

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison JS, Rameshwar P, Chang V, Bandari P (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99:394

    Article  CAS  PubMed  Google Scholar 

  8. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953

    Article  CAS  PubMed  Google Scholar 

  9. Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gully C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757

    Article  CAS  PubMed  Google Scholar 

  10. Ren H, Cao Y, Zhao Q, Li J, Zhou C, Liao L, Jia M, Cai H, Han ZC, Yang R, Chen G, Zhao RC (2006) Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347:12–21

    Article  CAS  PubMed  Google Scholar 

  11. D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    Article  PubMed  Google Scholar 

  12. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–355

    Article  CAS  PubMed  Google Scholar 

  13. Estrada JC, Albo C, Benguria A, Dopazo A, Lopez-Romero P, Carrera-Quintanar L, Roche E, Clemente EP, Enriquez JA, Bernad A, Samper E (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755

    Article  CAS  PubMed  Google Scholar 

  14. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459–469

    Article  CAS  PubMed  Google Scholar 

  15. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, Prockop DJ (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2:e416

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299:C1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA (2009) The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol 25:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang JA, Yu SP (2011) Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol 301:C362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284:33161–33168

    Article  PubMed  Google Scholar 

  21. Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, Luo X (2012) The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 7:e34608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H, Ding X, Tian P, Tian X (2010) Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401:509–515

    Article  CAS  PubMed  Google Scholar 

  23. Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peterson KM, Aly A, Lerman A, Lerman LO, Rodriguez-Porcel M (2011) Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci 88:65–73

    Article  CAS  PubMed  Google Scholar 

  25. Wang JA, Chen TL, Jiang J, Shi H, Gui C, Luo RH, Xie XJ, Xiang MX, Zhang X (2008) Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 29:74–82

    Article  PubMed  Google Scholar 

  26. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP (2012) Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 46:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, Wei L (2013) Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant 22:977–991

    Article  PubMed  Google Scholar 

  28. Koh SH, Baik W, Noh MY, Cho GW, Kim HY, Kim KS, Kim SH (2012) The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 233:472–480

    Article  CAS  PubMed  Google Scholar 

  29. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  30. Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108:1116–1125

    Article  CAS  PubMed  Google Scholar 

  31. Choi H, Park HH, Lee KY, Choi NY, Yu HJ, Lee YJ, Park J, Huh YM, Lee SH, Koh SH (2013) Coenzyme Q10 restores amyloid beta-inhibited proliferation of neural stem cells by activating the PI3K pathway. Stem Cells Dev 22:2112–2120

    Article  CAS  PubMed  Google Scholar 

  32. Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH (2013) Neuroprotective effects of donepezil against Abeta42-induced neuronal toxicity are mediated through not only enhancing PP2A activity, but also regulating GSK-3beta and nAChRs activity. J Neurochem 127:562–574

    Article  CAS  PubMed  Google Scholar 

  33. Kim YS, Noh MY, Kim JY, Yu HJ, Kim KS, Kim SH, Koh SH (2013) Direct GSK-3beta inhibition enhances mesenchymal stromal cell migration by increasing expression of beta-PIX and CXCR4. Mol Neurobiol 47:811–820

    Article  CAS  PubMed  Google Scholar 

  34. Noh MY, Kim YS, Lee KY, Lee YJ, Kim SH, Yu HJ, Koh SH (2013) The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD(+). Mol Neurobiol 47:757–769

    Article  CAS  PubMed  Google Scholar 

  35. Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 32:567–576

    Article  CAS  PubMed  Google Scholar 

  36. Hall PA, Watt FM (1989) Stem cells: the generation and maintenance of cellular diversity. Development 106:619–633

    CAS  PubMed  Google Scholar 

  37. Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3:248–269

    PubMed  PubMed Central  Google Scholar 

  38. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  39. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106

    Article  PubMed  Google Scholar 

  40. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72:32–40

    Article  PubMed  Google Scholar 

  41. Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, Noh MY, Kim KS, Kim SH (2014) Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis; an investigator-initiated trial and in vivo study. Stem Cells 32:2724–2731

    Article  CAS  PubMed  Google Scholar 

  42. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  PubMed  Google Scholar 

  43. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  44. Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W (2013) Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 33:1322–1334

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13

    Article  PubMed  Google Scholar 

  46. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030:19–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A101712).

The funding organization had no role in the design, execution, analysis, or preparation of this research.

Conflict of Interest

The authors have no potential conflicts of interest to report concerning this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong-Ho Koh or Seung Hyun Kim.

Additional information

Young Seo Kim, Min Young Noh, and Kyung Ah Cho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.S., Noh, M.Y., Cho, K.A. et al. Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release. Mol Neurobiol 52, 792–803 (2015). https://doi.org/10.1007/s12035-014-8912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8912-5

Keywords

Navigation