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Abstract Fast-transmitting vertebrate axons are electri-
cally insulated with multiple layers of nonconductive
plasma membrane of glial cell origin, termed myelin.
The myelin membrane is dominated by lipids, and its
protein composition has historically been viewed to be of
very low complexity. In this review, we discuss an
updated reference compendium of 342 proteins associat-
ed with central nervous system myelin that represents a
valuable resource for analyzing myelin biogenesis and
white matter homeostasis. Cataloging the myelin pro-
teome has been made possible by technical advances in
the separation and mass spectrometric detection of
proteins, also referred to as proteomics. This led to the
identification of a large number of novel myelin-
associated proteins, many of which represent low
abundant components involved in catalytic activities,

the cytoskeleton, vesicular trafficking, or cell adhesion.
By mass spectrometry-based quantification, proteolipid
protein and myelin basic protein constitute 17% and 8%
of total myelin protein, respectively, suggesting that their
abundance was previously overestimated. As the bio-
chemical profile of myelin-associated proteins is highly
reproducible, differential proteome analyses can be
applied to material isolated from patients or animal
models of myelin-related diseases such as multiple
sclerosis and leukodystrophies.
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Introduction

Neuronal signal propagation in vertebrates is sped up by
the electrical insulation of axons with an ensheathing,
specialized glial plasma membrane: myelin. Myelination
of axons reduces their transverse capacitance and
increases their transverse resistance [1]. Insulation is
achieved by the multilayered arrangement of the myelin
membrane (Fig. 1) and its special molecular composition,
mainly its very high lipid content. In myelinated axons,
action potentials are restricted to periodically spaced small
segments spared from coverage with myelin, termed the
nodes of Ranvier [2]. In the central nervous system (CNS),
any individual oligodendrocyte myelinates up to 50 axon
segments, termed internodes [3]. Oligodendrocyte precur-
sor cell division, migration, and regular alignment along
the axons have been recently visualized in vivo in
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zebrafish [4], which today complement rodents as an
important model organism for myelin research [5–8].
Myelin formation proceeds with outgrowth and retraction
of glial cell processes, target axon recognition, stabiliza-
tion of cellular contacts, rapid biosynthesis and trafficking
of lipid and protein constituents of the myelin membrane,
and its organization as a multilayered structure around the
axon [9, 10]. Once myelinated, axons become dependent
on glial support [11]. Some of the molecules involved in
myelin development and function are known but a detailed
molecular picture has not been gained yet.

That CNS myelin is important for normal sensation,
cognition, and motor function is obvious considering that
myelin-related disorders often affect humans lethally.

Besides the inflammatory demyelinating disease multiple
sclerosis [12], there are genetically inherited disorders that
affect CNS myelin, collectively termed leukodystrophies
[13]. This heterogeneous group of diseases is character-
ized by the loss of motoric, sensory, and mental capabil-
ities and the susceptibility to seizures. A detailed
knowledge of the molecular expression profiles of oligo-
dendrocytes and myelin will be crucial to understand the
pathomechanisms of white matter diseases. For example,
the mRNAs [14–16] and proteins expressed in cultivated
oligodendrocytes [17] and oligodendroglial exosomes [18]
have been recently examined. This review focuses on
systematic analyses of the molecular composition of
mammalian CNS myelin, while no such compendium of
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Fig. 1 CNS myelin. a Purified mouse brain myelin was one-
dimensionally separated in a 4–12% Bis–Tris gradient gel using a
morpholineethanesulfonic acid buffer system. Proteins were visualized
by colloidal Coomassie staining. Bands constituted by abundant
myelin proteins are annotated. b Schematic depiction of an oligoden-
drocyte myelinating an axon, cross-sections in the internodal and
paranodal segments, and subcellular localization of myelin proteins.
Structural proteins of compact myelin (middle), cytoskeletal and
vesicular proteins located in uncompacted regions (right), and

adhesion proteins mediating association with the axon (bottom) are
shown. CNP 2′,3′-cyclic nucleotide phosphodiesterase, Cntn contac-
tin, Caspr contactin-associated protein, Cx29 connexin 29 kDa, DM20
small splice isoform of PLP, ERM ezrin, radixin, moesin, IPL
intraperiod line, JAM3 junctional adhesion molecule 3, MAG
myelin-associated glycoprotein, MBP myelin basic protein, MDL
major dense line, Necl nectin-like protein, NF155 neurofascin
155 kDa, OSP oligodendrocyte-specific protein/claudin-11, PLP
proteolipid protein, Rab3 Ras-related protein Rab3, SIRT2 sirtuin 2
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peripheral nervous system (PNS) myelin proteins has been
published yet. Proteomics approaches to myelin provide a
valuable resource to understand its biogenesis, function,
and pathology. Although only a few comparative studies
have been reported to date, novel insights into the
molecular basis of myelin-related diseases are beginning
to emerge.

A Myelin-Enriched Fraction from the Central Nervous
System

A comparatively simple method is available for the
isolation of a myelin-enriched fraction from the CNS.
Biochemically, myelin is defined as the lightweight
membranous material accumulating at the interface
between 0.32 and 0.85 M sucrose after sequential
ultracentrifugation combined with osmotic shocks [19,
20]. The most commonly used protocol starts from brain
homogenate contained in 0.32 M sucrose as the top layer,
“spinning-down” myelin to accumulate at the interface
with the bottom 0.85 M sucrose layer. One valuable
modification is “floating-up” of myelin starting from brain
homogenate contained in a more concentrated sucrose
solution as the bottom layer (0.85, 1.2, 1.44, or 2 M).
During ultracentrifugation, myelin also accumulates at the
interface between the upper 0.85 and 0.32 M sucrose
layers, while other fractions of interest assemble at higher
sucrose concentrations. This method allows the simulta-
neous isolation of other brain fractions such as rough
microsomes [21] or axogliosomes [22, 23]. The light-
weight fraction from the interphase between 0.32 and
0.85 M sucrose is the most frequently used one for
biochemical and proteomic experiments. This fraction is
enriched in the most abundant proteins of compact myelin,
proteolipid protein (PLP), and myelin basic protein
(MBP), and as revealed by electron microscopy, mainly
contains multilamellar membranes with a periodicity
comparable to that of myelin in native or perfused brains
[24, 25]. However, we suggest to term this fraction
“myelin-enriched” rather than “compact myelin”, as it
also contains proteins from the noncompacted cytosolic
channels in myelin (i.e., adaxonal and paranodal myelin)
and proteins associated with the axonal membrane. Myelin
purification is very reproducible across different laborato-
ries, even when applied to different species (e.g., mouse–
rat) or to mutant mice with altered myelin protein or lipid
composition, such as CnpCre/+*Fdftflox/flox [26], Ugt3a1null

[27], Arsanull [28], and Plpnull [29] (see below). Thus, the
method has proven to be very robust, explaining why the
original protocol from the early 1970s is still in common
use. It is generally assumed that myelin purification relies
on its special lipid content and composition.

Myelin Lipids

The molecular composition of myelin differs from other
plasma membranes in that it contains 70–75% of its dry
weight as lipid, unusually high compared to other eukary-
otic plasma membranes. Also, its molar ratio of lipids with
approximately 2:2:1:1 for cholesterol/phospholipid/galacto-
lipid/plasmalogen [30, 31] distinguishes myelin from other
cellular membranes. The abundance of cholesterol within a
membrane affects its biophysical properties, including
fluidity and curving [32]. Cholesterol has earlier been
identified as unusually enriched in myelin and constitutes
24–28% of the total myelin lipids [19]. That the cellular
cholesterol supply is rate-limiting for myelin membrane
biogenesis has been shown in mice lacking squalene
synthase (also termed farnesyl diphosphate farnesyl trans-
ferase [FDFT]) exclusively in myelinating glia [26]. FDFT
mediates a crucial step of cholesterol biosynthesis. CNS
myelination is severely delayed in CnpCre/+*Fdft1flox/flox

mice, and that any myelin made in these mice is likely due
to compensatory cholesterol uptake from other cells [26].

The biophysical properties of myelin are also influenced
by its unusually high concentration of the galactolipids
galactosylceramide (GalC), its sulfated form 3-O-
sulfogalactosylceramide (SGalC), and their hydroxylated
forms GalC-OH and SGalC-OH. Together, they add up to
20–26% of total myelin lipids. Myelination is moderately
delayed in mice lacking UDP-galactose:ceramide galacto-
syltransferase (Ugt3a1), an enzyme required for galactolipid
synthesis. Additionally, impaired glia–axonal interactions at
the paranodes were observed [27, 33, 34]. Paranodal
disruption was at least partly due to the lack of SGalC
and hydroxylated galactolipids, since the long-term integ-
rity of the sodium channel domain of the nodes of Ranvier
was also impaired in mice lacking galactosylceramide-3-O-
sulfotransferase (Gal3st1), the enzyme converting GalC
into SGalC [35–37], and late onset myelin degeneration
was also reported for mice lacking fatty acid 2-hydroxylase
(Fa2h), the enzyme hydroxylating GalC and SGalC [38].
Absence of functional arylsulfatase A (ARSA), the enzyme
degrading SGalC, causes metachromatic leukodystrophy
(MLD), illustrating that a regulated galactolipid metabolism
is required for long-term integrity of the white matter.
SGalC accumulation and many pathological features of
MLD are modeled in Arsanull mice and in transgenic mice
overexpressing Ugt3a1 or Gal3st1 in neurons or oligoden-
drocytes [28, 39, 40]. Sulfatide metabolism with respect to
myelin and MLD pathology was recently reviewed [41].

Also, the plasmalogen class of phospholipids is associ-
ated with white matter disease. Plasmalogens are ether-
linked (as opposed to ester-linked) phospholipids, the main
species being ethanolamine–plasmalogen. They are ubiqui-
tous structural components of mammalian cell membranes
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and amount to 12–15% of total myelin lipid [19] and, when
processed by plasmalogen-selective phospholipase A2, give
rise to the second messengers arachidonic acid and
eicosanoids [42]. At low concentrations, these metabolites
have trophic effects, but at high levels, they are cytotoxic
and may induce inflammation [43]. The reactivity of the
alkenyl ether bond makes plasmalogens more susceptible to
oxidative reactions than their fatty acid ester analogs. Thus,
myelin plasmalogens may act as endogenous antioxidants
protecting cells from oxidative stress [44]. Disrupted
activity of peroxisomal plasmalogen synthesizing enzymes
results in peroxisomal biogenesis disorders such as rhizo-
melic chondrodysplasia punctata (RCDP) in which hypo-
myelination of the optic nerve has been observed.
Decreased plasmalogen levels [45, 46] and increased levels
of reactive oxygen species [47, 48] may also contribute to
the demyelination in X-linked adrenoleukodystrophy
caused by the mutated peroxisomal transporter ABCD1,
suggesting that a normal plasmalogen metabolism may
prevent peroxisomal- and myelin-related disease. Mice lack-
ing dihydroxyacetonephosphate acyltransferase (DAPAT)
model several aspects of the RCDP pathology, including
optic nerve hypoplasia [49]. Interestingly, the association of
flotillin-1 and contactin with plasmalogen-deficient brain
membrane microdomains was diminished in DAPATnull

mice [49], suggesting that the local concentration of
membrane lipids dictates the association of particular
proteins.

Association of Myelin Lipids and Proteins

Cholesterol assembles with galactolipids and plasmalogens
within the plane of the membrane, but how they are
enriched to the levels found in myelin is unknown. It has
been suggested that lipids are targeted to future myelin
membrane by their association with myelin-bound proteins
[9]. SGalC appears to be an example to the contrary. SGalC
is associated with myelin and lymphocyte protein (MAL)
[50]. Lack of SGalC and lack of MAL lead to similar
paranodal malformation [35, 51]. The subcellular traffick-
ing of MAL, as well as its abundance in myelin, is
determined by SgalC [28], whereas SGalC abundance is
not altered in Malnull myelin [51]. It is likely that other
myelin proteins are also incorporated into the sheath by
attachment with future myelin membrane because of its
special lipid composition. Thus, whether myelin proteins
dictate the fate of lipids or vice versa may not be
generalized. It appears likely that the association of both
molecule classes results in each other’s control of abun-
dance and trafficking.

That myelin lipids and proteins are closely associated
was suggested earlier after the characterization of two types

of protein fractions isolated from the white matter based on
their resistance to aqueous or organic solvents or to
enzymatic proteolysis. One fraction behaved as a lipid with
regard to its solubility and was termed PLP [52, 53]. PLP
was later identified to be the most abundant protein of
mammalian CNS myelin. It has a high affinity to
phospholipids and cholesterol [54–56], and impaired
interactions of mutant PLP with membrane lipids are a
likely key step in the molecular pathogenesis of the
leukodystrophy Pelizaeus–Merzbacher disease [57]. The
other fraction, termed trypsin-resistant protein residue, was
insoluble in organic solvent and attached to the membrane
lipid phosphatidylinositol phosphate [58, 59]. The applica-
tion of extraction methods by Folch became commonly
used to categorize myelin proteins according to their
biophysical properties.

More recently, the myelin-enriched brain fraction has
been chemically subfractionated by differential detergent
extraction at low temperatures, resulting in distinct non-
identical but overlapping assemblies of myelin-associated
proteins and lipids that were suggested to represent myelin
subcompartments [60, 61]. Cholesterol- and galactolipid-
rich membrane microdomains (also referred to as “lipid
rafts”) have been suggested to deliver myelin proteins to the
plasma membrane [62–64]. The relevance of applying the
analysis of biochemical characteristics established for
membrane microdomains to such a large structure as myelin
has remained debated. However, it is widely accepted now
that lipid-associated cell signaling molecules, such as the
protein tyrosine kinase fyn, have central roles in myelina-
tion [65, 66].

In oligodendroglial processes, fyn is activated by axonal
signals via integrin alpha6beta1 [67]. Among other fyn
substrates [68, 69], the protein translation repressor hetero-
geneous nuclear ribonucleoprotein (hnRNP) A2 upon
phosphorylation is released from its binding site in the 3′
UTR of mRNA encoding MBP [70], the second-most
abundant myelin protein. hnRNP A2 binding represses
translation during the translocation of MBP mRNA to distal
sites of the cell [71] where newly translated MBP is directly
incorporated into the extending oligodendroglial process
[21, 72]. It is generally assumed that MBP mediates the
adhesion of the cytoplasmic surfaces between the individual
layers of compact myelin [73] via binding of its many basic
residues with the negatively charged headgroups of
membrane lipids. Indeed, membrane association of MBP
is controlled by the membrane lipid phosphatidylinositol-
(4,5)-bisphosphate [74–76]. For over 30 years, it has been
known that MBP is highly heterogeneous due to alternative
splicing and multiple post-translational modifications
(PTMs) [77]. More recently, modern mass spectrometric
techniques have been used to compare the PTMs of MBP
from normal and multiple sclerosis brains with respect to
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methylation, phosphorylation, and arginine deimination
[78]. PTM alterations affect charge, conformation, and
hydrogen bonding of MBP, which may modulate its affinity
to the myelin membrane and play a role in myelin
compaction and in the pathogenesis of demyelinating
diseases. MBP is the only myelin protein that has been
shown to be essential for myelin formation, as became
obvious with the analysis of the natural mouse mutant
shiverer and the rat mutant long evans shaker [79, 80],
which are severely hypomyelinated. Interestingly, mice
lacking fyn are also hypomyelinated [81, 82], likely due
to affected translational regulation of MBP expression [70,
83]. Together, a multitude of factors affects mRNA
transcription and transport, translation at axonal contact
sites, or membrane binding of MBP, and we speculate that
several myelin proteins with yet unidentified roles affect
MBP abundance and function.

Systematic Analysis of the CNS Myelin Protein
Composition

The relative abundance of myelin proteins has previously
been calculated based on their binding to Buffalo black
[84], Fast green [85], or Coomassie blue [86] after
separation in one-dimensional (1D) sodium dodecyl sulfate
(SDS)–polyacrylamide gel electrophoresis (PAGE). In these
measurements, a small number of proteins was determined
to be extraordinarily abundant in CNS myelin. PLP and its
smaller splice isoform DM20 accounted for 30–45% of
total myelin protein, two of the four MBP splice isoforms
for 22–35%, 2′,3′-cyclic nucleotide 3′-phosphodiesterase
(CNP) for 4–15%, and all remaining proteins for 5–25%
[19, 85, 87, 88]. Similarly, PNS myelin is also dominated
by two proteins, myelin protein zero (MPZ, P0) and MBP,
which have been estimated to account for 50–70% and
15%, respectively [89]. In comparison, the most abundant
proteins in a brain fraction enriched for synaptic vesicles
are synaptobrevin 2 and synaptophysin, which constitute
8% and 10% of the total synaptic vesicle proteins,
respectively, as revealed by quantitative immunoblotting
[90]. How and why myelin proteins are enriched to their
unusual relative abundance is unclear, considering that PLP
and CNP are not essential for the formation of normal
amounts of CNS myelin [29, 91, 92].

Various proteomic techniques have been applied towards
the systematic protein composition analysis of the myelin-
enriched fraction. Traditionally, first insights into proteomes
of subcellular structures often come from two-dimensional
(2D) protein maps generated by utilizing isoelectric
focusing (IEF) with immobilized pH gradients in the first
and SDS-PAGE in the second dimension (2D-IEF/SDS-
PAGE) (Fig. 2a). Proteins of interest are then excised from

the gel, proteolytically digested in situ, and finally,
identified by mass spectrometry (MS) [93]. Due to its high
resolving power, 2D-IEF/SDS-PAGE can be routinely
applied for profiling of proteins from complex mixtures
and, as protein integrity is retained, also leads to informa-
tion on protein abundance and processing [94]. However,
major shortcomings of 2D-IEF/SDS-PAGE concern a
limited dynamic range, the display of basic and hydrophobic
proteins, and—most importantly—the under-representation
of membrane proteins. As myelin is dominated by MBP (a
highly basic protein) and PLP (a hydrophobic tetraspan
protein), incremental improvements in 2D-IEF/SDS-PAGE
technology were required before the first 2D mapping of
myelin was presented [95]. By using the zwitterionic
detergent amidosulfobetaine-14 (ASB-14) instead of the
most commonly used 3-[(3-cholamidopropyl)-dimethylam-
monio]-1-propanesulfonate (CHAPS) [96], it was possible
to solubilize myelin proteins much more effectively and to
identify 98 proteins (91 by MS and seven by immunoblot-
ting) in the myelin-enriched fraction from mouse CNS [95].
This crucial effect of the solubilization conditions is further
underscored by two more recent 2D-IEF/SDS-PAGE
mapping studies of similar input material. Thirty-eight
myelin-associated proteins were identified in one study
after CHAPS solubilization [97], but 131 proteins were
identified in another study with ASB-14 [25]. Thus, at least
in the presence of appropriate detergents, myelin can now
be considered as well accessible by 2D-IEF/SDS-PAGE,
which not only facilitates protein cataloging but also paves
the way for differential myelin proteomics on the basis of
the 2D differential fluorescence intensity gel electrophoresis
technology (2D-DIGE, see below). It is important to note
that all conventional 2D mapping approaches mentioned
above failed to appropriately display relatively abundant
transmembrane myelin marker proteins such as PLP,
myelin-associated glycoprotein (MAG) [98], myelin oligo-
dendrocyte glycoprotein (MOG) [99], tetraspanin 2 [100],
M6B [101], or oligodendrocyte-specific protein (OSP/
claudin-11) [102–104]. A potential remedy is to perform
the first dimension separation as nonequilibrium pH
gradient electrophoresis for the 2D mapping of myelin
proteins [105]. However, although this method appeared
promising particularly for displaying highly basic proteins,
it did not get as popular as 2D-IEF/SDS-PAGE with
immobilized pH gradients, mainly due to limitations in
reproducibility and resolution.

More complete proteome coverage while retaining the
benefits of displaying intact proteins can be reached by
the additional use of alternative 2D gel systems. Here, the
charge-dependent separation in the first dimension (i.e.,
the IEF) is replaced by a size-dependent separation in the
presence of cationic detergents such as 16-benzyldimethyl-
n-hexadecylammonium chloride (16-BAC; Fig. 2b) [106]
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or cetyltrimethylammonium bromide (CTAB; Fig. 2c)
[107]. Due to the similar separation principle in both
dimensions, proteins are typically dispersed along a
diagonal rather than distributed over the entire gel area.
Accordingly, these gel systems have a lower resolution
compared to 2D-IEF/SDS-PAGE, but can resolve highly
basic and even membrane-spanning proteins [108]. Appli-
cation of 2D-16-BAC/SDS-PAGE to mouse CNS myelin
resulted in the identification of 62 proteins and readily
enabled displaying of the transmembrane myelin proteins
PLP, MAG, MOG, and OSP/claudin-11 [25]. Thus, the
combination of 2D-IEF/SDS-PAGE and 2D-16-BAC/SDS-
PAGE has, so far, yielded the most comprehensive gel-
based proteome compendium of mouse CNS myelin,
consisting of 162 nonredundant proteins [25]. Further
technical refinements of the method were established in a
recent systematic evaluation of five different cationic
detergents for the 2D gel electrophoresis of myelin proteins.
Here, 16-BAC was the most effective agent for the
separation of myelin proteins in the first dimension, while
CTAB was most effective for their solubilization [109,
110]. As resolution improves, 2D gel electrophoresis with
cationic detergents may be combined with the DIGE
technology as a future tool for monitoring abundance
changes of highly basic and membrane-spanning myelin
proteins [111].

To overcome the limitations of gel-based proteomic
methods, in particular those of 2D-IEF/SDS-PAGE, gel-free
techniques, commonly referred to as shotgun approaches,
have emerged in recent years [93, 112]. Here, separation at
the level of intact proteins is omitted and the protein
preparation is proteolytically digested at the expense of
information related to protein integrity, such as protein size
and charge. Separation takes place at the level of proteolytic

�Fig. 2 Gel-based myelin proteome maps. Purified mouse brain
myelin was two-dimensionally separated in different gel systems.
Proteins were visualized by colloidal Coomassie staining, and spots
constituted by selected myelin proteins are indicated. a 2D-IEF/SDS-
PAGE with IEF in a nonlinear pH gradient (pH 3–10) as the first and
gradient SDS-PAGE (8–16% acrylamide) as the second dimension. To
improve resolution, myelin was delipidated and precipitated by a
methanol/chloroform treatment prior to IEF [25]. b 2D-16-BAC/SDS-
PAGE with separation in a 16-BAC gel (10% acrylamide) as the first
and gradient SDS-PAGE (8–16% acrylamide) as the second dimen-
sion. c 2D-CTAB/SDS-PAGE with separation in a CTAB gel (10%
acrylamide) as the first and gradient SDS-PAGE (8–16% acrylamide)
as the second dimension. To deplete soluble and membrane-associated
proteins, myelin was subjected to a multistep wash procedure before
separation [25]. 16-BAC and CTAB resulted in similar spot patterns.
2D-IEF/SDS-PAGE provides good resolution but basic, hydrophobic,
and transmembrane proteins are under-represented. 2D-16-BAC/
SDS-PAGE and 2D-CTAB/SDS-PAGE lead to efficient representa-
tion of basic, hydrophobic, and transmembrane proteins but have a
lower resolution since separation occurs by protein size in both
dimensions
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peptides before interfacing with MS. The tremendous
complexity of such peptide mixtures requires a high
resolving power and is, therefore, often addressed by the
application of 2D liquid chromatography (2D-LC), usually
consisting of strong cation exchange in the first and
reversed-phase chromatography in the second dimension.
In the first application of shotgun proteomics to the myelin-
enriched fraction from the mouse CNS [97], 93 proteins
were identified resulting—by combination with 2D-IEF/
SDS-PAGE (see above)—in a myelin proteome compendi-
um consisting of 103 proteins. The application of a
similar shotgun approach to a myelin-enriched fraction
from rat CNS led to the identification of 97 myelin
proteins [23]. Both shotgun approaches yielded quite a
high overlap of approximately 50% with the so far most
comprehensive gel-based library [25] and contained trans-
membrane myelin proteins such as PLP, MAG, and MOG.

Relative Abundance of Myelin Proteins

To understand myelin biogenesis and pathology, a compre-
hensive knowledge of the proteins associated with myelin is
a prerequisite. We have confirmed and expanded the
previous myelin protein compendia by applying nanoscale
1D ultra performance liquid chromatography (1D-UP-LC)
separation coupled to detection with a quadrupole time-of-
flight (QTOF) mass spectrometer (Tenzer et al., unpub-
lished). Data were acquired by LC-MS using an alternating
low (MS) and elevated (MSE) collision energy mode of
acquisition (LC-MSE), which allows simultaneous identifi-
cation and label-free relative quantification of the proteins
in the sample [113–115]. The identified peptides were
annotated to a total of 294 myelin-associated proteins
(Table 1) based on a minimum of two peptides per protein
with an effective false-positive rate of <0.2%. They showed
a very good overlap of 141 proteins that were also detected
in previous myelin proteome analyses and included several
established myelin markers (Table 1 and Fig. 3). We have
calculated the relative abundance of the myelin-associated
proteins based on the average intensity of the three most
abundant peptides per protein. In the few cases where only
two peptides were identified, their average intensity was
used. Strikingly, PLP, MBP, and CNP constituted only
17%, 8%, and 4% of the total myelin-associated proteins,
respectively (Fig. 4). All previously known myelin proteins
together constituted 35%, while newly identified myelin-
associated proteins accounted for 65%. These quantifica-
tions take into question previous estimates based on
conventional techniques (Fig. 4b and see above). We
suggest that the complexity of myelin protein composition
has been overlooked because low abundant proteins did not
constitute significant bands on gels when compared to the

highly abundant PLP and MBP due to limitations
concerning gel separation and/or protein staining.

We conclude that modern LC-MS-based approaches—
though technically more demanding than gel-based studies—
appear to be appropriate for tackling the myelin proteome
as they cover several orders of magnitude of protein
abundance and detect highly basic, hydrophobic, and
membrane-spanning proteins. This tackles the bias towards
certain protein classes, which is the major shortcoming
particularly of 2D-IEF/SDS-PAGE (Fig. 4c). Moreover,
LC-MS-based approaches enable the gel- and label-free
quantification of proteins from complex mixtures, which
allowed for the systematic reassignment of protein abun-
dance in CNS myelin (see above). Finally, they require only
low amounts of sample, which is of special relevance for
the proteome analysis of myelin purified from hypomyeli-
nated model animals or human brain autopsy material.

Technical Limitations

How pure is the myelin-enriched fraction? Myelin-
associated proteins are defined as proteins in the myelin-
enriched fraction since all studies have operationally
defined the term “myelin protein” without systematic
experimental verification. Although the identification of
new myelin proteins by more than one study and the
detection of established myelin markers increase confi-
dence, some of these proteins may only have copurified
with myelin. The high dynamic range of LC-MSE leads to
the new identification of proteins as myelin-associated, but
also to the false-positive identification of contaminants.
These mainly stem from copurifying mitochondria and
synaptic vesicles. In reverse, proteomic compendia of
mammalian brain mitochondria [116] or synaptic vesicles
[90] include classical myelin proteins such as PLP, MBP,
MOBP, and MAG. Notwithstanding that some of these
proteins may have a dual localization, cross-contamination
occurs likely due to similar floatation properties in sucrose
or Percoll gradients and can only be excluded once
improved separation protocols become available. Proteins
of the axonal plasma membrane, such as potassium
channels or Na+/K+-ATPases, have also been detected in
the myelin fraction, which can be explained by the tight
linkage of the membranes via adhesion proteins, sometimes
referred to as the myelin–axolemma complex [24]. Indeed,
some adhesion complexes are present in the myelin-
enriched fraction, such as the glial neurofascin (NF155)
and contactin and their axonal partner contactin associated
protein 1 (Caspr) [117–120] and the glial nectin-like protein
Necl4 and its axonal counterpart Necl1 [121–124]. Impor-
tantly, myelin proteome analysis also revealed novel
candidate proteins to mediate intracellular or intercellular
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Table 1 The CNS myelin proteome

Protein name ID Gene Reference

A: Known myelin proteins

CD81 P35762 Cd81 E

CD9 P40240 Cd9 ND

Claudin 11, OSP Q60771 Cldn11 B,S,T,E

CNP P16330 Cnp W,B,S,R,T,E

Contactin 1 P12960 Cntn1 B,S,R,T,E

Ermin Q5EBJ4 Ermn E

Ezrin P26040 Ezr W,T,E

Glycoprotein M6B P35803 Gpm6b E

Myelin and lymphocyte protein O09198 Mal ND, T (blot)

Myelin-associated glycoprotein P20917 Mag B,S,R,E

Myelin basic protein P04370 Mbp W,B,S,V,R,E

Myelin oligodendrocyte
glycoprotein

Q61885 Mog B,S,R,E

Myelin protein zero, P0 P27573 Mpz R

Myelin proteolipid protein P60202 Plp1 B,S,R,T,E

Myelin/oligodendrocyte basic
protein

Q9D2P8 Mobp E

Necl1, Ig superfamily member 4b Q99N28 Cadm3 S

Necl4, Ig superfamily member 4c Q8R464 Cadm4 S,E

Neural cell adhesion molecule 1 P13595 Ncam1 W,S,R,T,E

Neurofascin Q810U3 Nfasc B,R,E

Oligodendrocyte myelin
glycoprotein

Q63912 Omg ND

Opalin, TMP10 Q7M750 Opalin R,E

Plasmolipin Q9DCU2 Pllp E

Ras-related protein Rab 3A P63011 Rab3a E

Ras-related protein Rab 3C P62823 Rab3c E

Sirtuin 2 Q8VDQ8 Sirt2 W,S,V,R,T,E

Tetraspanin 2 Q922J6 Tspan2 E

B: Newly identified myelin-associated proteins

14-3-3 protein beta Q9CQV8 Ywhab E

14-3-3 protein epsilon P62259 Ywhae S,R,E

14-3-3 protein eta P68510 Ywhah E

14-3-3 protein gamma P61982 Ywhag W,V,R,T,E

14-3-3 protein sigma, stratifin O70456 Sfn E

14-3-3 protein theta P68254 Ywhaq E

14-3-3 protein zeta delta P63101 Ywhaz S,R,E

Actin α cardiac muscle 1 P68033 Actc1 E

Actin α1 P68134 Acta1 E

Actin α P62737 Acta2 R,E

Actin β P60710 Actb W,S,V,R,T,E

Actin γ1 P63260 Actg1 B,E

Actin γ2 P63268 Actg2 E

Acyl-CoA thioesterase 7 Q91V12 Acot7 R,E

ADAM 23 Q9R1V7 Adam23 E

Adenylate cyclase associated 1 P40124 Cap1 T

ADP ribosylation factor 1 P84078 Arf1 S,T,E

ADP ribosylation factor 2 Q8BSL7 Arf2 E

ADP ribosylation factor 3 P61205 Arf3 E

Table 1 (continued)

Protein name ID Gene Reference

ADP ribosylation factor 4 P61750 Arf4 E

ADP ribosylation factor 5 P84084 Arf5 E

ADP ribosylation factor 6 P62331 Arf6 W,E

Aldehyde dehydrogenase 1A1 P24549 Aldh1a1 E

Aldolase A, fructose-
bisphosphate

P05064 Aldoa W,S,V,R,T,E

Aldolase C, fructose
bisphosphate

P05063 Aldoc R,T,E

Amphiphysin 2, bridging
integrator 1

O08539 Bin1 E

Anillin Q8K298 Anln R,E

Annexin A2 P07356 Anxa2 E

Annexin A6 P14824 Anxa6 R,T

Argininosuccinate synthase 1 P16460 Ass1 B,E

α-Synuclein O55042 Snca E

Band 4.1 like protein 3 Q9WV92 Epb4.1l3 E

Brain acid soluble protein 1,
NAP22

Q91XV3 Basp1 S,E

Breast carcinoma amplified seq 1 Q80YN3 Bcas1 S,E

β-Synuclein Q91ZZ3 Sncb E

Ca++ ATPase 1 Q3TSK3 Atp2b1 E

Ca++ ATPase 2 Q9R0K7 Atp2b2 E

Ca++ ATPase 3 Q0VF55 Atp2b3 E

Ca++ ATPase 4 Q6Q476 Atp2b4 E

Calmodulin CaM P62204 Calm3 S,V,E

Calnexin P35564 Canx B,R

Calpain 5 O08688 Capn5 T

CaM kinase IIα P11798 Camk2a E

CaM kinase IIβ P28652 Camk2b E

CaM kinase IIδ Q6PHZ2 Camk2d E

CaM kinase IIγ Q923T9 Camk2g E

Cannabinoid receptor interacting 1 Q5M8N0 Cnrip1 W,E

Carbonic anhydrase 2 P00920 Car2 W,S,T,E

CD47, integrin signal transducer Q61735 Cd47 E

CD82 P40237 Cd82 E

CDGSH iron sulfur domain 1 Q91WS0 Cisd1 E

Cell cycle exit and neuronal diff. Q9JKC6 Cend1 E

Cell division control protein 42 P60766 Cdc42 W,E

Centractin α P61164 Actr1a W

Choline transporter CD92 Q6X893 Slc44a1 E

Clathrin heavy chain Q68FD5 Cltc B,R,E

Cofilin 1 P18760 Cfl1 S,V,T,E

Cofilin 2 P45591 Cfl2 E

Contactin associated protein 1 O54991 Cntnap1 B,E

Coronin 1C Q9WUM4 Coro1c E

Creatine kinase brain Q04447 Ckb W,S,V,R,T,E

Crystallin α2 P23927 Cryab W,S,T,E

Cyclophilin A P17742 Ppia W,S,V,E

Cysteine and glycine rich protein 1 P97315 Csrp1 E

Cytokeratin 1 P04104 Krt1 E

Cytokeratin 1B Q6IFZ6 Krt77 E
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Table 1 (continued)

Protein name ID Gene Reference

Cytokeratin 5 Q922U2 Krt5 E

Cytokeratin 6A P50446 Krt6a E

Cytokeratin 6G Q9R0H5 Krt71 E

Cytokeratin 10 P02535 Krt10 R,E

Cytokeratin 16 Q9Z2K1 Krt16 E

Desmin P31001 Des E

Destrin Q9R0P5 Dstn E

Dihydropyrimidinase-like 1,
CRMP1

P97427 Crmp1 E

Dihydropyrimidinase-like 2,
CRMP2

O08553 Dpysl2 W,B,S,V,R,T,E

Dihydropyrimidinase-like 3,
CRMP4

Q62188 Dpysl3 E

Dihydropyrimidinase-like 4,
CRMP3

O35098 Dpysl4 E

Dipeptidylpeptidase 6 Q9Z218 Dpp6 T

Down syndrome cell adhesion
like 1

Q8R4B4 Dscaml1 E

Dynactin 2 Q99KJ8 Dctn2 V

Dynamin 1 P39053 Dnm1 W,B,R,T,E

Dynamin 2 P39054 Dnm2 E

Dynamin 3 Q8BZ98 Dnm3 R

Dynein heavy chain Q9JHU4 Dync1h1 R

Ectonucleotide pyrophosphatase 6 Q8BGN3 Enpp6 E

EH domain containing protein 1 Q9WVK4 Ehd1 B,S,T,E

EH domain containing protein 3 Q9QXY6 Ehd3 B,E

EH domain containing protein 4 Q9EQP2 Ehd4 E

Elongation factor 1α1 P10126 Eef1a1 W,B,S,R,E

Elongation factor 1α2 P62631 Eef1a2 W,B,E

Elongation factor 1β O70251 Eef1b2 T

Elongation factor 2 P58252 Eef2 T

Endonuclease domain
containing 1

Q8C522 Endod1 E

Enolase 1, non-neuronal P17182 Eno1 W,B,S,V,T,E

Enolase 2, neuronal P17183 Eno2 W,S,V,T,E

Enolase 3, muscle P21550 Eno3 E

Fascin Q61553 Fscn1 W,E

Fatty acid synthase P19096 Fasn R

FK506 binding protein 1a P26883 Fkbp1a S,E

Flotillin 1 O08917 Flot1 ND, T (blot)

G protein α transducing 1 P20612 Gnat1 E

G protein α transducing 2 P50149 Gnat2 E

G protein α transducing 3 Q3V3I2 Gnat3 E

G protein α11 P21278 Gna11 E

G protein α14 P30677 Gna14 E

G protein αI1 B2RSH2 Gnai1 E

G protein αI2 P08752 Gnai2 E

G protein αI3 Q9DC51 Gnai3 E

G protein αO1 P18872 Gnao1 S,T,E

G protein αO2 P18873 Gna0 B,T,E

G protein αq P21279 Gnaq T,E

Table 1 (continued)

Protein name ID Gene Reference

G protein αS P63094 Gnas S,E

G protein αS olfactory Q8CGK7 Gnal E

G protein β1 P62874 Gnb1 W,S,V,T,E

G protein β2 P62880 Gnb2 W,V,R,E

G protein β3 Q61011 Gnb3 E

G protein β4 P29387 Gnb4 W,E

G protein β5 P62881 Gnb5 W

G protein γ12 Q9DAS9 Gng12 E

GAPDH P16858 Gapdh W,S,V,T,E

GAPDH sperm Q64467 Gapdhs E

Gelsolin P13020 Gsn V,R,T

Glial fibrillary acidic protein P03995 Gfap W,B

Glucose-6-phosphate isomerase P06745 Gpi1 B,R,E

Glutamate oxaloacetate
transaminase

P05201 Got1 E

Glutamate transporter GLAST P56564 Slc1a3 E

Glutamate transporter GLT1 P43006 Slc1a2 R,E

Glutamine synthetase P15105 Glul W,S,V,T,E

Glutathione S transferase micros. 3 Q9CPU4 Mgst3 E

Glutathione S transferase Mu1 P10649 Gstm1 W,E

Glutathione S transferase Mu2 P15626 Gstm2 E

Glutathione S transferase Mu6 O35660 Gstm6 E

Glutathione S transferase P1 P19157 Gstp1 S,V,E

Glutathione S transferase P2 P46425 Gstp2 T

Growth associated protein 43 P06837 Gap43 T

GTPase Ran P62827 Ran E

H+/K+ ATPase α1 Q64436 Atp4a E

H+/K+ ATPase α2 Q9Z1W8 Atp12a E

Heat shock 70 kDa protein 1A Q61696 Hspa1a E

Heat shock 70 kDa protein 1B P17879 Hspa1b R,E

Heat shock 70 kDa protein 1L P16627 Hspa1l E

Heat shock 70 kDa protein 2 P17156 Hspa2 W,B,E

Heat shock 70 kDa protein 4 Q61316 Hspa4 T

Heat shock 70 kDa protein 5 P20029 Hspa5 W,T,E

Heat shock 70 kDa protein 8 P63017 Hspa8 W,B,S,V,R,T,E

Heat shock 70 kDa protein 12A Q8K0U4 Hspa12a E

Heat shock protein
90 kDa αA1

P07901 Hsp90aa1 B,E

Heat shock protein
90 kDa αB1

P11499 Hsp90ab1 T,E

Hexokinase 1 P17710 Hk1 T,E

Hexokinase 2 O08528 Hk2 E

Ig superfamily member 8,
EWI-2

Q8R366 Igsf8 B,S,R,E

Internexin α, Neurofilament
66 kDa

P46660 Ina W,B,V,R,T,E

Junctional adhesion molecule C Q9D8B7 Jam3 S,E

K+ channel A1 P16388 Kcna1 E

K+ channel A2 P63141 Kcna2 E

K+ channel A3 P16390 Kcna3 E

K+ channel B2 P62482 Kcnab2 E
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Table 1 (continued)

Protein name ID Gene Reference

Lactate dehydrogenase A P06151 Ldha T,E

Lactate dehydrogenase B P16125 Ldhb W,T,E

Lactate dehydrogenase C P00342 Ldhc E

Leucine rich repeat containing 57 Q9D1G5 Lrrc57 E

Leucine rich repeat LGI 3 Q8K406 Lgi3 E

Limbic system associated
membrane

Q8BLK3 Lsamp S,E

Lymphocyte antigen 6H Q9WUC3 Ly6h E

Macrophage migration
inhibitory factor

P34884 Mif W,S,E

Malate dehydrogenase P14152 Mdh1 W,S,V,T,E

MARCKS related protein P28667 Marcksl1 S

Microtubule associated protein 1B P14873 Mtap1b E

Microtubule associated protein 6 Q7TSJ2 Mtap6 E

Microtubule associated protein tau P10637 Mapt E

Mitogen activated protein kinase 1 P63085 Mapk1 E

Moesin P26041 Msn W,E

Munc 18, syntaxin binding
protein 1

O08599 Stxbp1 B,R,T,E

Myosin Id Q5SYD0 Myo1d B,R,E

Na+/K+ ATPase α1 Q8VDN2 Atp1a1 B,S,R,E

Na+/K+ ATPase α2 Q6PIE5 Atp1a2 B,R,E

Na+/K+ ATPase α3 Q6PIC6 Atp1a3 B,R,E

Na+/K+ ATPase α4 Q9WV27 Atp1a4 E

Na+/K+ ATPase β1 P14094 Atp1b1 B,S,R,E

Na+/K+ ATPase β3 P97370 Atp1b3 E

Na+/K+/Cl− cotransporter P55012 Slc12a2 E

N-ethylmaleimide sensitive fusion P46460 Nsf W,B,R,T,E

Neurocalcin δ Q91X97 Ncald S

Neurofilament H P19246 Nefh W,B,E

Neurofilament L P08551 Nefl W,B,V,R,E

Neurofilament M P08553 Nefm B,R,E

Neuroligin 1 Q99K10 Nlgn1 T

Neurotrimin Q99PJ0 Hnt E

N-myc downstream regulated Q62433 Ndrg1 W,S,V,T,E

Nucleoside diphosphate
kinase A

P15532 Nme1 W,S,T,E

Nucleoside diphosphate
kinase B

Q01768 Nme2 W,S,T,E

Parkinson disease protein 7 Q99LX0 Park7 E

Peroxiredoxin 1 P35700 Prdx1 W,V,R,T,E

Peroxiredoxin 2 Q61171 Prdx2 W,V,E

Peroxiredoxin 5 P99029 Prdx5 S,E

Phosphatidylethanolamine
binding 1

P70296 Pebp1 W,V,E

Phosphatidylinositol transfer α P53810 Pitpna W

Phosphofructokinase 1 P47857 Pfkm E

Phosphoglycerate
dehydrogenase

Q61753 Phgdh W

Phosphoglycerate kinase 1 P09411 Pgk1 S,V,T,E

Phosphoglycerate kinase 2 P09041 Pgk2 E

Phosphoglycerate mutase 1 Q9DBJ1 Pgam1 W,S,T,E

Table 1 (continued)

Protein name ID Gene Reference

Phospholipase Cβ1 Q9Z1B3 Plcb1 W,T,E

Phosphoserine aminotransferase Q99K85 Psat1 R

Prion protein P04925 Prnp E

Prion protein dublet Q9QYT9 Prnd E

Programmed cell death
6 interacting

Q9WU78 Pdcd6ip W

Prohibitin P67778 Phb W,B,E

Prohibitin 2 O35129 Phb2 E

Protein arginine deiminase 2 Q08642 Padi2 E

Protein disulfide isomerase A3 P27773 Pdia3 W,T

Protein kinase Cγ P63318 Prkcc E

Pyruvate kinase isozyme M2 P52480 Pkm2 W,S,V,T,E

Quinoid dihydropteridine
reductase

Q8BVI4 Qdpr E

Rab 1A P62821 Rab1 E

Rab 1B Q9D1G1 Rab1b E

Rab 2A P53994 Rab2a R,E

Rab 2B P59279 Rab2b E

Rab 3B Q9CZT8 Rab3b E

Rab 3D P35276 Rab3d E

Rab 4A P56371 Rab4a E

Rab 4B Q91ZR1 Rab4b E

Rab 5C P35278 Rab5c E

Rab 7A P51150 Rab7 R

Rab 8A P55258 Rab8a E

Rab 8B P61028 Rab8b E

Rab 10 P61027 Rab10 S,E

Rab 12 P35283 Rab12 E

Rab 13 Q9DD03 Rab13 E

Rab 14 Q91V41 Rab14 E

Rab 15 Q8K386 Rab15 E

Rab 18 P35293 Rab18 E

Rab 26 Q504M8 Rab26 E

Rab 30 Q923S9 Rab30 E

Rab 35 Q6PHN9 Rab35 E

Rab 37 Q9JKM7 Rab37 E

Rab 39B Q8BHC1 Rab39b E

Rab 43 Q8CG50 Rab43 E

Rab GDP dissociation inhibitor α P50396 Gdi1 W,S,R,T,E

Rab GDP dissociation inhibitor β Q61598 Gdi2 W,T,E

Rac1 P63001 Rac1 S,R,E

Rac2 Q05144 Rac2 E

Rac3 P60764 Rac3 E

Radixin P26043 Rdx W,E

Ras-related protein Ral A P63321 Rala B,E

Ras-related protein Ral B Q9JIW9 Ralb E

Ras-related protein Rap 1A P62835 Rap1a W,S,R,T,E

Ras-related protein Rap 1B Q99JI6 Rap1b E

Ras-related protein Rap 2a Q80ZJ1 Rap2a R

Reticulon 3 Q9ES97 Rtn3 R
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adhesion, such as the immunoglobulin domain superfamily
protein Igsf8, also termed EWI-2 [23]. Igsf8 is associated
with the myelin tetraspanins CD9 and CD81 and regulates
integrin function, at least in vitro [125, 126], but its
function in vivo remains to be shown. The experimental
validation or falsification of newly identified myelin-
associated proteins will be a matter of the systematic
application of histological techniques, provided that reliable
antibodies are available.

How many proteins can be considered true myelin
proteins? Though proteomic compendia aim at complete-
ness, the number can only be guessed at this time. As the
dynamic range of current MS-based protein identification
schemes is in the range of three to five orders of magnitude,
detection of infrequent proteins remains a challenge.
Additionally, some technical impediments remain. The
myelin proteins CD9 [127, 128], oligodendrocyte myelin

Table 1 (continued)

Protein name ID Gene Reference

Rho GDP dissociation inhibitor 1 Q99PT1 Arhgdia V,T

RhoA Q9QUI0 Rhoa E

RhoB P62746 Rhob T,E

RhoC Q62159 Rhoc E

RhoG P84096 Rhog E

S-100β P50114 S100b R

Septin 2 P42208 Sept2 W,B,S,T,E

Septin 4 P28661 Sept4 W,E

Septin 7 O55131 Sept7 W,B,S,R,T,E

Septin 8 Q8CHH9 Sept8 W,B,S,V,R,T,E

Septin 11 Q8C1B7 Sept11 E

Sideroflexin 3 Q91V61 Sfxn3 E

Soluble NSF attachment protein α Q9DB05 Napa W

Soluble NSF attachment protein β P28663 Napb W,E

Soluble NSF attachment protein γ Q9CWZ7 Napg W

Spectrin α2 P16546 Spna2 B,T,E

Spectrin β2 Q62261 Spnb2 R,E

Stress induced phosphoprotein 1 Q60864 Stip1 W,T

Superoxide dismutase P08228 Sod1 W,S

Synapsin 1 O88935 Syn1 W,E

Synapsin 2 Q64332 Syn2 W,E

Synaptic vesicle membrane
protein

Q62465 Vat1 R,T

Synaptobrevin 2 P63044 Vamp2 E

Synaptobrevin 3 P63024 Vamp3 E

Synaptophysin Q62277 Syp E

Synaptosomal associated
protein 23

O09044 Snap23 E

Synaptosomal associated
protein 25

P60879 Snap25 W,S,V,R,E

Synaptotagmin 1 P46096 Syt1 E

Synaptotagmin 5 Q9R0N5 Syt5 E

Syndapin 1 Q61644 Pacsin1 W,E

Syntaxin 1A O35526 Stx1a E

Syntaxin 1B P61264 Stx1b S,R,E

T-complex 1α P11983 Tcp1 W

T-complex 1β P80314 Cct2 W

T-complex 1δ P80315 Cct4 R

T-complex 1ε P80316 Cct5 W

T-complex 1γ P80318 Cct3 W

Thy 1 membrane glycoprotein P01831 Thy1 W,S,R,E

Transgelin 3 Q9R1Q8 Tagln3 W,E

Transitional ER ATPase Q01853 Vcp W,T,E

Transketolase P40142 Tkt W,B,S,T,E

Triosephosphate isomerase P17751 Tpi1 S,E

Tubulin α1A P68369 Tuba1a W,B,R,E

Tubulin α1B P05213 Tuba1b W,S,V,T,E

Tubulin α1C P68373 Tuba1c E

Tubulin α3A P05214 Tuba3a E

Tubulin α4A P68368 Tuba4a E

Table 1 (continued)

Protein name ID Gene Reference

Tubulin α8 Q9JJZ2 Tuba8 E

Tubulin β2A Q7TMM9 Tubb2a T,E

Tubulin β2B Q9CWF2 Tubb2b E

Tubulin β2C P68372 Tubb2c W,B,S,R,E

Tubulin β3 Q9ERD7 Tubb3 E

Tubulin β4 Q9D6F9 Tubb4 W,B,S,V,R,E

Tubulin β5 P99024 Tubb5 E

Tubulin β6 Q922F4 Tubb6 R,E

Tubulin polymerization
promoting

Q7TQD2 Tppp W,E

Tubulin polymerization
promoting 3

Q9CRB6 Tppp3 S,E

Ubiquitin P62991 Ub W,S,E

Ubiquitin activating enzyme E1 Q02053 Uba1 T

Ubiquitin C-terminal
hydrolase L1

Q9R0P9 Uchl1 W,T,E

Vacuolar ATP synthase A P50516 Atp6v1a W,E

Vacuolar ATP synthase B, brain P62814 Atp6v1b2 W,E

Vacuolar ATP synthase C Q9Z1G3 Atp6v1c1 T,E

Vacuolar ATP synthase E1 P50518 Atp6v1e1 T,E

Vimentin P20152 Vim E

Visinin like protein 1 P62761 Vsnl1 S,R,E

Visinin like protein 3 P62748 Hpcal1 S

WD repeat protein 1 O88342 Wdr1 W

Proteins identified in purified CNS myelin by MS

ID Swissprot or Trembl accession, Gene official NCBI Entrez gene
name, Reference and method of detection, T 2D-IEF/SDS-PAGE or
immunoblotting [95], V 2D-IEF/SDS-PAGE [97], W 2D-IEF/SDS-
PAGE [25], B 2D-16-BAC/SDS-PAGE [25], R shotgun [23], S
shotgun [97], E LC-MSE (Tenzer et al., unpublished), ND not
detected by MS
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glycoprotein [22, 129], and MAL [51] have not yet been
detected by proteomic approaches, and the appearance of
MAL in one catalog [95] is due to the additional use of
immunoblotting. Its nondetectability illustrates the limita-
tions of proteome analysis. MAL is a very hydrophobic
protein with four transmembrane domains and very small
cytoplasmic and extracellular domains and is, therefore,
hardly accessible by MS-based identification. Apart from
the membrane-spanning peptides not visible in proteomic
approaches, complete tryptic digest of MAL results in only
four theoretically detectable peptides: one of 120 amino
acids (which is too long for identification by MS), two of
two amino acids each (too short to provide useful sequence
information), and one of 29 amino acids, which is, in
principle, appropriate for identification. However, to obtain
a reasonable level of confidence for protein identification,
the detection of two peptides per protein is usually set as a
prerequisite in the algorithms. This suggests that all
proteome approaches requiring protease cleavage have an
inherent bias against very small polypeptides or proteins
with an unusual cleavage site pattern. In future experi-
ments, the lack of suitable trypsin cleavage sites may be
circumvented by the use of endopeptidases with different
specificities (e.g., GluC or AspN), although they create
proteolytic peptides lacking a basic C-terminal amino acid
and are difficult to sequence [130]. This suggests that the
detection of more myelin-associated proteins is not just a
matter of higher resolving power but also of other technical
refinements.

Newly Identified Myelin-Associated Proteins

The compendium of proteins identified in the myelin-
enriched brain fraction represents a valuable reference for
myelin research. The proteins are candidates for performing
important functions in myelin biogenesis and integrity,
molecular interactions between myelinating glia and neigh-
boring cells, and white matter homeostasis. By gene ontology
terms (http://david.abcc.ncifcrf.gov), many myelin-
associated proteins are implicated in catalytic activities
(48%), the cytoskeleton (20%), protein transport (21%),
vesicular trafficking (6.8%), cell adhesion (6.3%), phospho-
lipid binding (4.2%), or glycolysis/gluconeogenesis (5.1%).
Among the recently identified myelin proteins, some were
first and others subsequently detected using proteomic
approaches. They include proteins of quite various antici-
pated functions, such as the NAD+-dependent deacetylase
sirtuin 2 (SIRT2, see below), cytoskeletal proteins of the
septin family [23, 25, 131], and ermin [132], regulators of
intracellular vesicle transport in the secretory pathway, such
as cdc42 and Rac1 [133], Rab3A, and other Rab-GTPases
[134, 135], the paranodal transmembrane glycoprotein
Opalin/TMEM10 with a suggested signaling or adhesive
function [136–138], the nucleoside diphosphate kinases
NM23A and NM23B [95], and a protein particularly
abundant in the CNS myelin of teleost fish, the 36K protein,
also termed short-chain dehydrogenase/reductase (SDR
family) member 12 (DHRS12) [139]. Some of these are
quite abundant myelin proteins as judged both by the spots
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Fig. 3 Assembling a compendium of myelin proteins. a The
number of proteins identified by MS in different approaches to the
CNS myelin proteome is plotted. The total number of myelin-
associated proteins is unknown. Transmembrane proteins (black)
have been categorized based on prior experimental studies or have
been predicted using TMHMM and Phobius software. Proteins
associated with mitochondria, which copurify with myelin, were
omitted. T 2D-IEF/SDS-PAGE [95], V 2D-IEF/SDS-PAGE [97], W
2D-IEF/SDS-PAGE [25], B 2D-16-BAC/SDS-PAGE [25], R shotgun
[23], S shotgun [97], E LC-MSE (Tenzer et al., unpublished). b Venn

diagram comparing the number of myelin-associated proteins
identified by MS after gel separation [25, 95, 97], previous gel-
free shotgun approaches by LC/LC-MS/MS [23, 97], with those
identified by LC-MSE (Tenzer et al., unpublished). Note the high
overlap of proteins identified independent of the technique used. c
Venn diagram showing our own experience with the identification of
myelin-associated proteins by MS after combined 2D-IEF/SDS-
PAGE and 2D-16-BAC/SDS-PAGE separation [25] or by LC-MSE

with known myelin proteins according to the literature
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constituted on 2D gels and LC-based quantification, and the
challenge to establish their functions in vivo promises a
deepened understanding of myelin. Besides, novel myelin
proteins are candidates to cause (when mutated), enhance, or
ameliorate white matter disease, such as leukodystrophies.

Differential Myelin Proteome Analysis
in Myelin-Related Disease

The proteomic comparison of myelin from human patients or
animal models with that of respective controls is a powerful

approach towards the identification of secondary molecular
changes that may contribute to the pathogenesis of myelin-
related disease. Such a differential approach has first been
applied to myelin purified from PLPnull mice [25], which
provide a genuine model for spastic paraplegia (SPG-2) in
humans, a comparatively mild variant of the leukodystrophy
Pelizaeus–Merzbacher Disease with progressive axonal
degeneration in the presence of normal amounts of CNS
myelin [29, 140]. In that study, 2D-DIGE [141] was used to
screen for candidate proteins that could be involved in the
oligodendroglial failure to support the long-term integrity of
myelinated axons. Three distinct proteins of the cytoskeletal

PLP
MBP
CNP
MOG
MAG
SIRT2
OSP/Claudin11
Neurofascin
Ncam1
CD81
Contactin1
Plasmolipin
MOBP
Ezrin
TSPAN2
Rab3a
M6B
Rab3c
Necl4/Cadm4
Opalin
Ermin 
novel myelin proteins

a bRelative abundance of myelin proteins
Relative abundance of myelin proteins (%)
Protein    Literature         LC-MSE

PLP      30-45               17
MBP      22-35                 8
CNP        4-15                 4
MOG          ND                 1
MAG         1-4                 1
SIRT2         ND                 1
OSP         ND                 1
Others        5-25               67
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c

Fig. 4 Relative abundance of myelin proteins. a The abundance of
known myelin proteins was determined by LC-MSE. Note that known
myelin proteins constitute less than 50% of the total myelin protein.
Mitochondrial proteins were not considered. b Comparison of myelin
protein abundance as quantified by LC-MSE with previous estimates
based on band intensity after 1D-PAGE and various protein staining
techniques [19, 85, 87, 88]. Note that the abundance of PLP and MBP
was previously overestimated because low abundant proteins did not
constitute significant bands due to limitations in the resolving power
of the 1D gels and in the dynamic range of protein staining.

c Simulated 2D map of myelin-associated proteins identified by LC-
MSE. Proteins are indicated as dots at their molecular weight and
isoelectric point as predicted from the amino acid sequence. The size
of each dot reflects the relative abundance as determined by LC-MSE.
Myelin-associated proteins without transmembrane domains are
shown in blue and transmembrane proteins in green, the latter being
usually under-represented or absent from conventional 2D gels.
Mitochondrial proteins are shown in gray. The red frame indicates
the portion of proteins that can be reproducibly displayed by 2D-IEF/
SDS-PAGE (see Fig. 2a)
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septin family were found to be reduced, and the deacetylase
SIRT2 was virtually absent from PLPnull myelin. SIRT2 is an
abundant myelin protein in the CNS and the PNS [23, 25,
142] and regulates microtubule dynamics during oligoden-
drocyte development [143]. Whether acetylated α-tubulin is
a relevant substrate of SIRT2 in vivo remains to be shown.
Similar to PLPnull mice, CNPnull mice are also normally
myelinated but develop length-dependent axonal loss [92,
144]. It is intriguing that CNP also modulates microtubule
dynamics [145, 146]. Taken together, spatiotemporal control
of microtubule stability in oligodendrocytes (by SIRT2,
CNP, and likely other factors) seems critical for normal
axon–glia interaction.

Acetylation is a reversible post-translational modifica-
tion of numerous mammalian proteins [147, 148], and all
acetylated myelin proteins (α-tubulin, MBP, MOG, and
several nonidentified proteins of lower abundance) are
candidate substrates for SIRT2 [25]. In oligodendrocytes
and myelin, SIRT2 activation upon increased axonal NAD+

levels may remove acetyl residues from myelin-associated
proteins with consequences for their net charge and
function. Interestingly, SIRT2 has been recently shown to
interact with 14-3-3 beta and gamma [149], which are
myelin-associated as revealed by proteome analysis
(Table 1). Their interaction is strengthened by the serine/
threonine kinase AKT [149], which is a central signaling
molecule for CNS myelination [150]. 14-3-3 proteins have
been implicated in membrane protein transport, exocytosis
[151], and stress response [152], but their function in
myelin has not yet been investigated. 14-3-3 proteins are
homologs of the C. elegans partitioning-defective polarity
protein Par5 and bind to the tight junction-associated Par3
[153, 154], which is required for establishing polarity prior
to myelination, at least by Schwann cells in the PNS [155].
To determine whether SIRT2, 14-3-3 proteins, Par-proteins,
protein kinases, and tight junctions indeed interact in
myelinating glia will be an important topic of future
investigation. We speculate that the competence of oligo-
dendrocytes to dynamically react to NAD+ level changes in
white matter tracts is required for their role in maintaining
long-term axonal integrity.

With the objective to identify novel therapeutic targets for
the treatment of multiple sclerosis, a systematic proteomic
profiling of tissue samples from three brain lesions affected to
various degrees (acute plaque, chronic active plaque, and
chronic plaque) has recently been performed [156]. Material
from the respective lesion type was collected by laser-capture
microdissection and extracted proteins were separated by
1D gel electrophoresis followed by mass spectrometric
protein identification. Unexpectedly, five coagulation pro-
teins, including tissue factor and protein C inhibitor, were
only present in chronic active plaque characterized by
concomitant inflammation and degeneration, a finding that

provided new insights in the relationship between the
coagulation cascade and inflammation. Most importantly,
administration of inhibitors to tissue factor (i.e., hirudin)
and protein C inhibitor (i.e., activated protein C [aPC]) indeed
ameliorated the disease phenotype in experimental autoim-
mune encephalomyelitis, a model of multiple sclerosis. The
anti-inflammatory treatment with engineered aPC variants
may develop into an alternative route to a therapy of multiple
sclerosis. Together, differential proteome analysis has identi-
fied secondary molecular changes that contribute to under-
standing the pathogenesis of myelin-related disease and
support the design of rational treatment strategies.
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