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Abstract The p38 mitogen-activated protein kinase (MAPK)
pathway plays a key role in pathological glial activation and
neuroinflammatory responses. Our previous studies demon-
strated that microglial p38c and not the p38{3 isoform is an
important contributor to stressor-induced proinflammatory
cytokine upregulation and glia-dependent neurotoxicity.
However, the contribution of neuronal p38«x and p38{ iso-
forms in responses to neurotoxic agents is less well under-
stood. In the current study, we used cortical neurons from
wild-type or p38f3 knockout mice, and wild-type neurons
treated with two highly selective inhibitors of p38ax MAPK.
Neurons were treated with one of three neurotoxic insults (L-
glutamate, sodium nitroprusside, and oxygen-glucose depri-
vation), and neurotoxicity was assessed. All three stimuli led
to neuronal death and neurite degeneration, and the degree of
neurotoxicity induced in wild-type and p383 knockout neu-
rons was not significantly different. In contrast, selective
inhibition of neuronal p38c was neuroprotective. Our results
show that neuronal p38f3 is not required for neurotoxicity
induced by multiple toxic insults, but that p38« in the neuron
contributes quantitatively to the neuronal dysfunction re-
sponses. These data are consistent with our previous findings
of the critical importance of microglia p38x compared to
p38f3, and continue to support selective targeting of the
p38a isoform as a potential therapeutic strategy.
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Introduction

Mitogen-activated protein kinase (MAPK) pathways are piv-
otal in linking stimuli to cellular responses. The involvement
of MAPK pathways in many stress- and disease-induced
responses throughout the body has heightened the interest to
develop selective small molecule kinase inhibitors to modu-
late these signal transduction pathways. For example, the p38
branch of the MAPK family is a well-established therapeutic
target for diseases with inflammation as a common mecha-
nism. In the central nervous system (CNS), most studies of
p38 function have focused on p38 in glia and its role in
aberrant proinflammatory responses in acute and chronic neu-
rodegenerative conditions (for reviews, see Bachstetter & Van
Eldik 2010; Correa & Eales 2012). Much less is known about
the relationship between neuronal p38 and CNS pathophysi-
ology. In addition, whether the two major p38 isoforms in the
CNS, p38«x and p38f3, play similar or distinct roles in neuro-
nal responses to pathological stimuli is a major unanswered
question.

Investigations to define the relative importance of neuronal
p38«x and p38f in stress-induced neuronal responses have
been hampered by a lack of specific reagents. Mice with a
genetic knockout of the p383 gene (p38f3 knockout (KO)) are
healthy and fertile (Beardmore et al. 2005; O'Keefe et al.
2007), and therefore are a useful reagent to test the involve-
ment of the p38f3 isoform in particular cellular functions.
However, a similar approach cannot be taken with p38«x
knockout mice because these mice are embryonic lethal
(Adams et al. 2000; Allen et al. 2000; Mudgett et al. 2000;
Tamura et al. 2000). In addition, many small molecule p38
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inhibitors such as the commercially available SB203580 com-
pound do not distinguish between p38cx and p38f3, and actu-
ally react with a number of other cellular targets, including
thromboxane synthase (Borsch-Haubold et al. 1998),
cyclooxygenases (Borsch-Haubold et al. 1998), c-Raf (Hall-
Jackson et al. 1999), and other kinases (Clerk & Sugden 1998;
Lali et al. 2000; Godl et al. 2003; Bain et al. 2007). While one
might assume that the effects of SB203580 are dependent on
p38«, this assumption has not been rigorously tested with
p38«x- and p383-specific reagents.

We recently reported (Watterson et al. 2013) the
development of two highly specific small molecule
p38«x inhibitors, termed MW-108 and MW-181. The
high level of selectivity of the inhibitors was demon-
strated by large-scale kinome activity screens, functional
GPCR agonist and antagonist assays, and cellular target
engagement analyses. MW-108 targets a single kinase,
p38x, and does not cross-react with p383. MW-181
inhibits p38«, and has weaker cross-reactivity with
p38f3. The availability of these p38c inhibitors, along
with the p383 KO mouse, provided us the opportunity
to directly test the contribution of neuronal p38x and
p38B in neurodegenerative responses to specific toxic
stimuli.

The goal of the current study was to determine whether
neuronal p38« or p383 is important for neurotoxic responses
induced by three clinically relevant insults: L-glutamate
(excitotoxicity), sodium nitroprusside (SNP; a nitric oxide
donor), and oxygen-glucose deprivation (OGD; hypoxia is-
chemia). We chose these three neurotoxic insults because
there is precedent for p38 playing a role in neurotoxicity
responses induced by these agents (Kawasaki et al. 1997;
Lin et al. 2001; Legos et al. 2002; Chen et al. 2003; Cao
et al. 2004; Pi et al. 2004; Tabakman et al. 2004; Guo & Bhat
2007; Molz et al. 2008; Strassburger et al. 2008; Li et al. 2009;
Luetal. 2011). We used primary cortical neurons from wild-
type (WT) and p383 global KO mice to determine if deletion
of p38f3 affected the neuronal damage responses. To test the
contribution of p38«x to the neurotoxic responses and to
determine if targeting a single kinase was neuroprotective,
we treated WT mouse neurons with the neurotoxic agents in
the presence of our p38c inhibitors MW-181 and MW-108
(Watterson et al. 2013). Consistent with our previous findings
of a distinct role for p38x and p38f in microglia upon
inflammatory insult (Xing et al. 2011; Xing et al. 2013),
we report here that the absence of p38f in cortical
neurons does not suppress the neurotoxic responses to
any of the three insults. However, selective inhibition of
p38«x in neurons not only reduces cell death but also
reduces the neurite damage in the surviving neurons.
These results demonstrate the importance of the neuro-
nal p38«x isoform in neurotoxicity induced by multiple
disease-relevant insults.
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Materials and Methods
Ethics Statement

All mouse experiments were conducted in accordance with
the principles of animal care and experimentation in the Guide
for the Care and Use of Laboratory Animals. The Institutional
Animal Care and Use Committee of the University of
Kentucky approved the use of animals in this study (protocol
#2010-0615).

Reagents

L-glutamate (Cat. no. G1251) and SNP (Cat. no.
228710) were obtained from Sigma-Aldrich. The highly
selective p38«x inhibitors MWO01-10-181SRM (MW-181)
and MWO01-11-108SRM (MW-108) were synthesized
and characterized as described (Watterson et al. 2013).
Stock solutions of the inhibitors were prepared in sterile
0.9 % NacCl.

Animals

The p38f global KO mice were generated as described
(O'Keefe et al. 2007), and a colony bred and maintained at
University of Kentucky. C57BL/6 mice were purchased from
Harlan Laboratories. The p38 gene KO was confirmed by
Transnetyx, Inc (Cordova, TN, USA).

Determination of p38 Isoform RNA Levels

The levels of expression of p38«x, {3, d, and y RNA were
determined as previously described (Xing et al. 2013). Briefly,
RNA was isolated from primary cortical neuron cultures using
RNeasy minicolumns with on-column DNase treatment
(Qiagen), and RNA quantity and quality were determined by
measuring the A,go/Asg0 ratio by NanoDrop (Thermo
Scientific). Reverse transcription (RT) was done with a High
Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Cat. no. 4368814), with no template and no RT
controls included. Real-time PCR was done with the TagMan
Gene Expression assay kit (Applied Biosystems) on a ViiA 7
Real-Time PCR System (Applied Biosystems). The following
TagMan probes (Applied Biosystems) were used: p38ax
(MAPK14, Mm00442507 m1), p38p3 (MAPKI1I1,
Mm00440955 ml), p386 (MAPK13, Mm00442488 ml),
p38y (MAPK12, Mm00443518 ml), and 18S rRNA
(Hs99999901 s1). Relative gene expression was calculated
by the 2 AACT method. Levels of p38f expression in WT
neurons were normalized to 1.0.
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Primary Neuronal Culture

Primary neuronal cultures were derived from embryonic day
18 WT or p38f3 KO mice, as previously described (Xing et al.
2011). Cells were dissociated from dissected cerebral cortices
by trypsinization for 20-25 min at 37 °C, followed by passing
through a 70-um nylon mesh cell strainer. The cells were
seeded at a density of 5x10* cells/well onto poly-d-lysine-
coated 12-mm glass coverslips for L-glutamate and OGD
experiments, or at 2x10* cells/well in 24-well plates for
SNP experiments. Neurons were grown in neurobasal medi-
um containing 2 % B27 supplement (Invitrogen), 0.5 mM I-
glutamine, 100 IU/ml penicillin, and 100 pg/ml streptomycin;
no serum or mitosis inhibitors were used. Every 3 days, 50 %
of the media was replenished with fresh medium.

Cell Culture Treatments

Neurons from WT and p38 KO mice were subjected to L-
glutamate, SNP, or OGD insults at 7 days in vitro (DIV7), and
neurotoxicity measured at 24 h after insult. For L-glutamate
studies, neurobasal/B27 medium was carefully removed from
primary neuron cultures and saved. Neurons were then treated
with 25 uM L-glutamate for 10 min in CSS buffer (120 mM
NaCl, 5.4 mM KCl, 0.8 mM MgCl,, 1.8 mM CaCl,, 20 mM
HEPES, and 15 mM glucose) (Schubert & Piasecki 2001).
The cells were then washed three times with Hank’s balanced
salt solution (HBSS), and returned back into the original
neurobasal/B27 media for 24 h. WT neurons were treated
with the p38« inhibitors MW-181 or MW-108 (60 uM) for
60 min before L-glutamate addition. For SNP studies, neurons
were treated with 1 mM SNP dissolved in culture medium for
24 h before neurotoxicity assays. MW-181 or MW-108
(60 uM) was added at the same time as the SNP solution.
For OGD studies, primary neurons were treated with the p38«
inhibitor MW-181 or MW-108 (60 uM) for 60 min prior to
OGD. OGD was done for 1 h in an anaerobic chamber
saturated with 5 % CO, and 95 % N, in glucose-free
DMEM medium. The OGD condition was terminated by
switching cells back to normal culture conditions and incu-
bating for 24 h until neurotoxicity assays were done. Control
cells were incubated in DMEM with glucose in a normoxic
incubator for the same period.

Neuronal Viability Assay

Neuron viability was assayed by trypan blue exclusion (Xie
et al. 2004). Neuron-containing coverslips were incubated
with 0.2 % trypan blue in HBSS for 2 min in a 37 °C incubator
and then gently rinsed three times with HBSS. Neurons were
viewed under bright field microscopy atx200 final magnifi-
cation. Five to eight fields were chosen randomly per cover-
slip, and a total of 485 to 761 cells were counted per coverslip.

Trypan blue-positive and negative neurons were counted per
field and the ratio of positive cells to the total cells was taken
as the percent neuronal death.

Immunocytochemistry

Cells were fixed with 3.7 % formaldehyde containing 0.1 %
Triton X-100 in PBS for 10 min at room temperature. After
washing three times with PBS, the coverslips were incubated
with blocking buffer (PBS containing 6 % goat serum, 3 %
bovine serum albumin (fraction V), 0.1 % Triton X-100) for
30 min at room temperature. Primary chicken anti-MAP2
antibody (1:1,000, Neuromics, Cat. no. CH22103) was diluted
in blocking buffer and incubated with the cells at room tem-
perature for 2 h. For detection of MAP2 staining, the cells
were incubated with secondary biotin SP-conjugated goat
antichicken antibody (1:1,000, Jackson ImmunoResearch)
for 1 h, followed by streptavidin Alexa Fluor® fluorescent
488 (1:1,000, Invitrogen) incubation in blocking buffer at
room temperature for 1 h. Wide field fluorescent photomicro-
graphs were obtained using a Nikon Eclipse Ti microscope
with an Axiocam MRc5 digital camera (Carl Zeiss).

Semi-automated Sholl Analysis

The semi-automated Sholl assay was used to measure the
neurite degeneration of MAP2-labeled neurons, essentially
as we previously described with a manual Sholl analysis
(Xing et al. 2011). The original images were binarized and
thresholded using NIH ImageJ. Sholl semi-automated analysis
program was loaded from ImageJ plugins (http://imagej.nih.
gov/ij/plugins/). The central point on the soma of each neuron
was selected, and a series of concentric circles were drawn
automatically, with the radius of the smallest sampling circle
at 8§ um from the central point and the radius of the largest
sampling circle at 50 wm with a radius step size of 0.167 pum.
The Sholl analysis then determined how many times the
neurites intersected the sampling circles, and measured the
average intersections over the whole area occupied by the
neurite per neuron. The mean of average intersections of
107—-188 neurons per group was calculated, and the mean
from control group was normalized to 0 % damage.

Statistics

Statistical analysis was conducted using GraphPad prism soft-
ware V.6 (GraphPad Software). Unless otherwise indicated,
values are expressed as mean=SEM. Groups of two were
compared by unpaired ¢ test. One-way ANOVA followed by
Bonferroni’s multiple comparison test was used for compari-
sons among three or more groups. Statistical significance was
defined as p<0.05.
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Results
Validation of p383 KO in Primary Cortical Neurons

As a first step, it was important to confirm the deletion of
p38B in primary cortical neurons from the p383 KO
mouse and verify that significant compensatory changes
in the p38«x, p385, and p38y isoforms were not present.
RNA was prepared from primary cortical neuron cultures
derived from WT or p38f KO mouse fetuses, and the
expression levels of the p38 isoforms were determined by
qPCR. As expected, p383 mRNA was readily measurable
in WT mice but was not detected in the p383 KO mice
(Fig. 1). The mRNA level of p38cx in both WT and p38(3
KO neurons was ~40-fold higher than that of p383 in WT
neurons, but there was no significant difference between
the p38«x levels in the WT compared to the p38f KO
mice. The levels of p386 and p38y mRNA were similar
and very low in both WT and p38 KO mice (data not
shown). Altogether, the data verify that, as expected, p38f3
is deficient in neurons from the p38(3 KO mice and there
are no significant compensatory changes in any of the
other p38 isoforms.
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Fig. 1 Verification of p38(3 KO in neurons. Primary cortical neurons
from WT and p38 KO mice were prepared as described in the
“Methods” section and plated at 5x 10* cells/well in 24-well plates. Total
RNA was isolated from neuronal cultures derived from WT (black bars)
or p383 KO (white bars) mice, and the mRNA levels of different p38
MAPK isoforms were determined by qPCR. The result shows that p383
mRNA was readily measureable in WT mice but was not detected in the
p38p KO mice. The p38cc MAPK isoform in both WT and p38f3 KO
neurons was expressed at much higher levels compared to p383, but there
was no significant difference between the levels of p38x in WT
and p383 KO mice. The levels of p385 and p38y mRNA were
very low to undetectable in both WT and p38f KO mice (data
not shown). Results are expressed as fold change compared to
p383 expression levels in WT neurons, and represent the mean+
SEM of four to eight determinations
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Neurotoxicity Induced by L-Glutamate

L-glutamate is a standard neurotoxic stimulus that is a model
of excitotoxic cell death (Choi et al. 1987), and p38 has been
reported to be involved in excitotoxic pathways leading to
neuron damage/death (Kawasaki et al. 1997; Chen et al.
2003; Pi et al. 2004; Chaparro-Huerta et al. 2008; Molz et al.
2008; Bakuridze et al. 2009; Izumi et al. 2009). Therefore, we
compared the degree of neuron death and neurite degeneration
induced by L-glutamate in primary cortical neurons derived
from WT and p38f3 KO mice. Under the culture conditions
used, L-glutamate induced ~22 % neuron death as measured
by trypan blue assay (Fig. 2a). L-glutamate also induced
significant (22-25 %) neurite damage in the surviving neurons
as measured by Sholl analysis (Fig. 2b), where the percentage
of average intersections over the whole area occupied by the
neurite is determined. L-glutamate treatment resulted in exten-
sive neurite fragmentation, swelling, and blebbing (Fig. 2c¢).
The degree of neuron death/neurite damage was not signifi-
cantly different between WT and p38f3 KO neurons. In con-
trast, inhibition of neuronal p38c by MW-181 or MW-108 1 h
prior to L-glutamate treatment significantly reduced both the
neuron death and the neurite degeneration (Fig. 2a, b). As
shown in Fig. 2c, the neurons treated with MW-181 or MW-
108 showed less fragmentation and blebbing of the neurites.

Neurotoxicity Induced by SNP

To determine whether the findings with L-glutamate implicat-
ing p38x but not p383 in neurotoxicity were generalizable to a
different neurotoxic insult, we tested the effect of SNP on
neuron death and neurite damage. SNP is a nitric oxide donor
commonly used to induce neuronal apoptosis, and p38 activa-
tion has previously been implicated in promoting nitric oxide
induced neuronal damage (Ghatan et al. 2000; Lin et al. 2001).
SNP (1 mM) treatment for 24 h killed 32 % WT neurons and
28 % p38{ KO neurons (Fig. 3a) and induced 27-32 % neurite
damage in both groups (Fig. 3b, c). Although the KO neurons
appeared to be slightly less susceptible to SNP toxicity com-
pared to WT neurons, the levels of neuron death/neurite dam-
age between WT and p38[3 KO neurons were not significantly
different. Similar to the findings with L-glutamate, inhibition
of p38ax by MW-181 or MW-108 treatments of WT neurons
significantly reduced SNP-induced neuronal death (Fig. 3a),
and protected neurons against neurite degeneration (Fig. 3b, c).

Neurotoxicity Induced by OGD

We also tested the relative contribution of p38«x and p38f3 to
neurotoxic responses induced by OGD, a model of ischemic
injury (Kaku et al. 1991; Dawson et al. 1996; Legos et al.
2002). Treatment with OGD for 1 h induced 45-50 % of
neuron death measured at 24 h after insult, in both WT and
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Fig. 2 p38«x inhibition but not p383 KO protects neurons against L-
glutamate insult. WT or p383 KO mouse primary cortical neurons were
plated on cover slips at 5x10* cells/well and grown for 7 days in vitro
(DIV7). After 1 h pretreatment of WT neurons with 60 uM MW-181 or
MW-108, the media was removed and saved, then WT and p38(3 KO
neurons were treated for 10 min with culture medium alone, L-glutamate
(25 uM) alone, or L-glutamate plus 60 tM MW-181 or MW-108. After
10 min of incubation, cells were washed three times with HBSS, and the
original culture media was added back into the appropriate wells. Trypan
blue exclusion assay for neurotoxicity and Sholl analysis for neurite
damage were performed after 24 h. a L-glutamate induced ~22 % neuro-
nal death in both p383 KO and WT neurons. In contrast, p38c inhibition

p38 KO groups (Fig. 4a), and again no significant difference
in the degree of cell death was found between these two
groups. OGD treatment induced 30-34 % neurite damage in
both groups (Fig. 4b, c), and there was no significant differ-
ence in the degree of neurite degeneration between WT and
P38 KO neurons. Similar to the results with L-glutamate and
SNP, treatment of WT neurons with MW-181 or MW-108 led
to a significant reduction in the neuronal death (Fig. 4a) and
neurite degeneration (Fig. 4b) induced by OGD. Again, the
neurites in the compound-treated cultures appeared smoother
and had more neurite branches compared to OGD treatment in
the absence of compounds (Fig. 4c).

Discussion

In this study, we tested the respective contribution of the p38«x
and p383 MAPK isoforms in the neurodegeneration induced

by MW-181 or MW-108 significantly reduced the neuron death after L-
glutamate insult. b Similarly, L-glutamate-induced neurite fragmentation
and blebbing in both p383 KO and WT neurons, with no significant
difference between the two groups. In contrast, inhibition of p38x MAPK
by MW-181 or MW-108 significantly protected neurites against L-gluta-
mate-induced damage. ¢ Representative photomicrographs of MAP2 im-
munocytochemistry show the morphology of neurons after 24 h. Arrows
point to the appearance of damaged neurites after L-glutamate insult in
both p38f3 KO and WT neurons (****p<0.0001 vs. control; #p<0.05 vs.
L-glutamate treatment; ###p<0.001 vs. L-glutamate treatment;
###p<0.0001 vs. L-glutamate treatment, Bonferroni’s multiple compar-
ison test). Data are from three independent experiments. Scale bar 10 um

by three neurotoxic insults, and addressed the question if
targeting a single kinase is sufficient to provide neuroprotec-
tive effects. Our results demonstrate that targeting p38a
MAPK in neurons provides significant protection against
three different neurotoxic insults, while loss of neuronal
p383 MAPK does not affect the neurodegenerative responses
to any of the three insults. These findings complement and
extend our previous studies (Xing et al. 2011; Xing et al.
2013) that documented the importance of glial p38ax MAPK
in stressor-induced proinflammatory cytokine production and
microglia-mediated neuron death. Altogether, our data dem-
onstrate key roles of p38x MAPK signaling in both glial and
neuronal responses that are linked to neuronal dysfunction,
and continue to indicate the potential of this kinase as a CNS
drug discovery target.

A number of previous studies have suggested that activa-
tion of p38 MAPK signaling in neurons in response to
disease-relevant cellular stressors contributes to neuron
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Fig. 3 p38« inhibition but not p383 KO protects neurons against SNP
insult. DIV7 neurons on coverslips were treated with culture medium
alone, SNP (1 mM) alone, or SNP plus 60 uM MW-181 or MW-108 for
24 h, followed by trypan blue exclusion assay and Sholl analysis. a SNP
induced ~28-32 % neuronal death in both p383 KO and WT neurons,
with no significant differences between the genotypes. In contrast, p38c
inhibition by MW-181 or MW-108 significantly reduced the neuron death
induced by SNP. b SNP induced a similar degree of neurite damage in

dysfunction and neuron death, and that inhibition of p38
MAPK in the neuron is neuroprotective. For example, the
p38 MAPK pathway has been implicated in neuron death
induced by a number of agents, including excitotoxic stimuli
(Cao et al. 2004; Semenova et al. 2007; Chaparro-Huerta et al.
2008), nerve injury (Wang et al. 2005; Wittmack et al. 2005),
hypoxia/ischemia (Wang et al. 2002; Guo & Bhat 2007), and
potassium deprivation (Yeste-Velasco et al. 2009). Neuronal
p38 MAPK has also been reported to be involved in diabetic
neuropathy (Sweitzer et al. 2004), hyperpolarization-activated
and voltage-gated channel activation after injury (Wittmack
et al. 2005; Wynne 2006), neurofilament pathology in amyo-
trophic lateral sclerosis (Ackerley et al. 2004), hyperalgesia
and spinal pain (Svensson et al. 2005), activity-induced den-
dritic spine reduction (Sugiura et al. 2009), kainite-induced
seizures and neuronal damage (Namiki et al. 2007), presyn-
aptic serotonin transporter activity (Zhu et al. 2006), and
various cytokine-mediated neuronal damage responses (Li
et al. 2003; Wang et al. 2005; Chaparro-Huerta et al. 2008;
Xing et al. 2011). Almost all the mechanistic data supporting
the role of p38 in neuron dysfunction has been generated
using small molecule p38 inhibitors such as SB203580. The
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both p38 KO and WT neurons. In contrast, WT neurons treated with
SNP in the presence of the p38c inhibitors showed reduced levels of
neurite degeneration. ¢ Representative photomicrographs of MAP2 im-
munocytochemistry show the morphology of neurons after 24 h. Arrows
point to the appearance of damaged neurites induced by SNP treatment in
both p383 KO and WT neurons (****p<0.0001 vs. control; ##p<0.01
vs. SNP; ####p<0.0001 vs. SNP, Bonferroni’s multiple comparison test).
Data are from three independent experiments. Scale bar 10 pm

commercial availability of SB203580 has led to its wide-
spread use; however, SB203580 is not selective for the p38c
versus p38[3 isoform or even for the p38 family alone.
SB203580 and second-generation SB compounds such as
SB202190 inhibit multiple other kinases, including casein
kinase-1 delta, glycogen synthase kinase-3beta, protein kinase
A, receptor interacting protein-2, and cyclin G-associated
kinase (Clerk & Sugden 1998; Lali et al. 2000; Godl et al.
2003; Bain et al. 2007). Thus, despite the extensive evidence
provided by work using SB compounds that inhibiting p38 is
neuroprotective, the relative role of p38x and p38f in the
neuroprotective responses and whether targeting a single
kinase (p38c or p38f3) is sufficient to exert the neuro-
protective effects had not been tested. To address these
important questions, we utilized our recently developed,
highly selective p38c inhibitors, MW-181 and MW-108
(Watterson et al. 2013), as well as a global p38f3
knockout mouse. The use of these reagents in primary
cortical neuron cultures allowed us to directly demon-
strate for the first time the involvement of neuronal
p38«x, and not p38(3, in the neurotoxic responses to
glutamate, SNP, and OGD.
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Fig. 4 p38c inhibition but not p383 KO protects neurons against OGD
insult. DIV7 neurons on coverslips were pretreated for 1 h with either
60 uM MW-181 or MW-108, and the medium was removed and saved.
After 1 h OGD treatment, the old culture media was then added back into
appropriate wells for 24 h, followed by measurement of neuronal survival
and neurite damage. a OGD induced ~50 % neuronal death in both p383
KO and WT neurons, with no significant differences between the two
groups. In contrast, p38« inhibition by MW-181 or MW-108 significantly
reduced the neuronal death after OGD insult. b OGD induced a similar

Glutamate is a major CNS excitatory neurotransmitter, but
excessive glutamate release and overstimulation of glutamate
receptors can induce excitotoxic neuron death. Activation of
neuronal p38 MAPK signaling is a well-characterized re-
sponse to glutamate insult, but few previous studies have
explored the importance of p38«x versus p38f3 in excitotoxic
neuron death. One relevant study (Cao et al. 2004) implicated
p38ax in glutamate-induced damage of primary cerebellar
granule neurons in culture through the use of a dominant-
negative p38«x construct, but did not explore p38f3 involve-
ment because no p383 was detected in the cultured neurons.
Our results demonstrating the involvement of p38« in primary
cortical neurons are consistent with this study, and also show
that p383 is not required for glutamate-induced neuron death.

Nitric oxide overproduction has been linked to neuron
death in acute and chronic neurological disorders (Dawson
& Dawson 1996; Dawson et al. 1996; Lee et al. 1999; Sattler
et al. 1999; Arundine & Tymianski 2004). Several studies
have utilized nitric oxide donors as a neurotoxic stimulus
and p38 MAPK inhibitors such as SB203580 to explore the
role of p38 MAPK in mediating neurodegenerative responses

degree of neurite damage (~33 %) in both p383 KO and WT neurons. In
contrast, p38« inhibition by MW-181 or MW-108 significantly protected
neurites against OGD-induced damage. ¢ Representative photomicro-
graphs of MAP2 immunocytochemistry show the morphology of neurons
after 24 h. Arrows point to the appearance of damaged neurites induced
by OGD in both p383 KO and WT neurons (¥****p<0.0001 vs. control;
#p<0.05 vs. OGD; ##p<0.01 vs. OGD, Bonferroni’s multiple compari-
son test). Data are from three independent experiments. Scale bar 10 um

of cultured neurons to nitrosative stress. In general, these
studies have demonstrated neuroprotection against nitric ox-
ide insult, through several proposed mechanisms including
reduced mitochondrial dysfunction and inhibition of
peroxynitrite/reactive oxygen species formation (Ghatan
et al. 2000; Lin et al. 2001; Bossy-Wetzel et al. 2004;
Thomas et al. 2008; Nashida et al. 2011). However, as far as
we are aware, no previous study tested specific isoforms of
p38 MAPK in the neurotoxic responses.

We also investigated the role of p38 MAPK in neurotoxic-
ity induced by OGD, a model of hypoxia-ischemia. Several
previous reports have implicated p38 MAPK signaling in
OGD-induced neurotoxicity through the use of the multi-
kinase SB family of inhibitors. For example, SB239063 pro-
tects neuron-enriched forebrain cultures against OGD insult
(Legos etal. 2002), SB203580 reduces OGD-induced death in
PC12 cells (Li et al. 2009), and SB203580 or expression of an
antisense p38 MAPK construct only in neuronal cells reduces
oxidative stress and neuron death in hippocampal slice cul-
tures (Lu et al. 2011). Importantly, a seminal paper (Guo &
Bhat 2007) used p38 isoform-specific siRNAs to show that
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p38«x and not p38f3 was a major contributor to OGD-induced
death in the NSC34 motoneuron cell line. Our results reported
here using highly specific p38«x inhibitors in WT primary
cortical neuron cultures and using neurons cultured from the
p383 global knockout mouse are consistent with that study,
and extend the results to primary neurons.

Although the dispensable role of p383 MAPK in cortical
neurons in our study might be attributed to its relatively low
expression in these cells compared to the expression of p38«x
MAPK, the data are consistent with our previous study show-
ing that p38(3 KO microglia did not provide neuroprotection
for co-cultured WT neurons upon lipopolysaccharide treat-
ment (Xing et al. 2013). We did not explore other potential
mechanisms or cell types where p383 MAPK may contribute.
However, some studies have suggested that p383 MAPK may
be more important in glial cells, rather than neurons. For
example, studies using transient global ischemia, transient
focal ischemia, and kainic acid-induced seizure models all
showed a delayed activation of astrocytes with p383 MAPK
immunoreactivity, but not p38c (Che et al. 2001; Piao et al.
2002; Piao et al. 2003). In addition, p383 was upregulated
after injury in different cell types with different temporal
profiles, with an early and transient induction of p38(3 in
neurons, followed by a later and prolonged induction in as-
trocytes (Piao et al. 2003). Furthermore, the strong substrate
preference of ATF2 by p38f3 compared to p38«x and differen-
tial regulation by upstream kinases (Jiang et al. 1996) also
suggest that the two kinases may act on different downstream
targets and exert different functions in response to injury. The
available data suggest a more restricted repertoire of functions
of p383 MAPK that might be cell-specific and signaling-
specific temporally and spatially in the CNS.

It should be noted that our understanding of the role of
neuronal p38x and p38f3 MAPK signaling in neurotoxic
responses is in its infancy. From the literature, it appears that
the quantitative importance of the p38 MAPK pathway rela-
tive to other stress-induced signaling pathways can vary de-
pending on the cell type, developmental status, toxic stimulus,
timing of activation, and cell-cell interactions. For example,
even in the same neuronal cell type at the same developmental
stage, the involvement of p38 can be dependent on the neu-
rotoxic stimulus. Specifically, p38 was reported to be involved
in glutamate-induced death of cerebellar granule neurons,
whereas death induced by withdrawal of trophic support in-
volved JNK but not p38 (Cao et al. 2004). It is also clear that
multiple signaling pathways can be induced in response to
specific stimuli, and therefore the importance of one particular
pathway may depend on the time points analyzed. Another
important consideration is that glial p38 signaling in response
to toxic stimuli can affect neuronal viability (Izumi et al. 2009;
Xing et al. 2011), which can complicate the interpretation of
results in slice cultures or in vivo models. Finally, discrepant
results could also be due to technical issues, such as different
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culture conditions, animal strains, type or age of neurons, and/
or stimulus paradigm. For example, the expression of the
glutamate NMDA receptor subunit NR1 in neurons cultured
for DIV7 is less than that in DIV11 neurons (Schubert &
Piasecki 2001), the neuronal death induced by SNP is in-
creased in DIV21 versus DIV14 neurons (Dawson et al.
1993), and hippocampal neurons are more vulnerable than
cortical neurons to OGD treatment (Jiang et al. 2004).
Nevertheless, even with the above caveats, our results using
three different neurotoxic insults in the same type (primary
cortical neurons) and age (DIV7) cultures clearly document
that suppression of p38«x with highly specific kinase inhibitors
provides neuroprotection whereas lack of p38{3 in the knock-
out mouse has no effect. The availability of these reagents
should allow future exploration of the importance of p38
MAPK signaling in other models of neuronal death.

Conclusions

Activation of neuronal p38 MAPK occurs in response to a
number of disease-relevant stressors, and pharmacological
inhibition of p38 MAPK is neuroprotective in both cell and
animal models. However, the relative contribution of neuronal
p38«x and p38f3 to neurodegenerative responses had not been
addressed previously. In this study, we used p38«x- and p38f3-
specific reagents to demonstrate that inhibition of neuronal
p38«x provides significant neuroprotection against three dif-
ferent toxic insults, but that loss of neuronal p38(3 has no
effect. These results demonstrate isoform-specific functions of
these p38 kinases in the neuron, and support an important role
of the p38« isoform in neurodegenerative responses to injury.
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