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Abstract 

Effective treatment options for patients with life‑threatening neurological disorders are limited. To address this unmet 
need, high‑impact translational research is essential for the advancement and development of novel therapeutic 
approaches in neurocritical care. “The Neurotherapeutics Symposium 2019—Neurological Emergencies” conference, 
held in Rochester, New York, in June 2019, was designed to accelerate translation of neurocritical care research via 
transdisciplinary team science and diversity enhancement. Diversity excellence in the neuroscience workforce brings 
innovative and creative perspectives, and team science broadens the scientific approach by incorporating views from 
multiple stakeholders. Both are essential components needed to address complex scientific questions. Under rep‑
resented minorities and women were involved in the organization of the conference and accounted for 30–40% of 
speakers, moderators, and attendees. Participants represented a diverse group of stakeholders committed to trans‑
lational research. Topics discussed at the conference included acute ischemic and hemorrhagic strokes, neurogenic 
respiratory dysregulation, seizures and status epilepticus, brain telemetry, neuroprognostication, disorders of con‑
sciousness, and multimodal monitoring. In these proceedings, we summarize the topics covered at the conference 
and suggest the groundwork for future high‑yield research in neurologic emergencies.
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Introduction
High-impact translational research is essential for the 
development of novel therapeutic approaches in neu-
rocritical care. Although it is well known that diver-
sity improves productivity in team science [1–4], there 
is still a prominent imbalance in the representation of 
diverse backgrounds and gender in the neuroscience 

workforce [5–7] and in scientific conferences [6, 8]. 
“The Neurotherapeutics Symposium 2019—Neurologi-
cal Emergencies” was designed to address these chal-
lenges by creating a platform to facilitate the discussion 
of innovative translational approaches in acute neuro-
logic illnesses, while specifically seeking the participa-
tion of women and under represented minorities in the 
conference planning and development processes. This 
2-day conference was co-hosted by the University of 
Florida and University of Rochester and was funded by 
NINDS (R13 NS11956-01), the McKnight Brain Insti-
tute, and industry (detailed support is listed under 
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funding section); no funding party provided input in 
the development of scientific content of the conference 
or in the proceedings. The symposium was endorsed by 
the Neurocritical Care Society and adds to the efforts 
promoting inclusion in the Neurocritical Care Research 
Network conferences [9]. A total of 90 participants 
from 25 institutions attended the conference, including 
30 from under represented groups, and 42 women. The 
conference was comprised of 16 lectures, 6 discussion 
sessions, 2 workshops, a guided poster session, and 4 
networking dinner/lunch gatherings. Each lecture was 
followed by interactive group sessions termed “Looking 
into the Future,” which sourced participants for next 
steps in the translational process and were facilitated by 
pairs of early and established investigators. Opportuni-
ties for mentoring and networking between scientists at 
various career stages were weaved into the curriculum 
throughout the conference. Digital technology, using 
an electronic conference ‘app’, also promoted network-
ing among attendees, while hosting a digital repository 
of e-posters, online discussions, and links to relevant 
manuscripts.

Another hallmark of the conference was the transdis-
ciplinary participation of scientists from diverse back-
grounds, including clinician-scientists, neuroscientists, 
bioengineers, rehabilitation experts, and trainees. Dis-
cussion topics within the conference included: early 
career development, funding strategies, diversity/team 
building, epilepsy and status epilepticus, neurotrauma, 
hypoxic pre-conditioning and neuroplasticity, cerebral 
edema and secondary brain injury, precision medicine 
in neurocritical care, neuroprognostication, advanced 
signal processing of neurophysiologic tests, disorders of 
consciousness, and neurogenic respiratory dysregulation.

We believe that facilitating such collaborative research 
has the potential to contribute to the development of 
long-term networking resources that nurture diversity in 
team science. Targeted fostering has shown initial suc-
cess in an example of a women science database [10]. 
The talent represented by the high proportion of partici-
pants in this symposium from under represented groups, 
extended an opportunity to foster long-lasting mentor-
ship relationships and career building for early career 
investigators. This is especially important as data sup-
port a persistent gap in racial and ethnic representation 
in the medical education pipeline [11]. Further, while the 
number of scholars of under represented background has 
grown, reflecting the establishment of an effective pipe-
line, attrition throughout their careers remains a signifi-
cant factor that challenges the sustainability of inclusion 
efforts; this is supported by the lower proportion of grant 
funding and awards among these groups [7, 12, 13]. Our 

goals were aligned with the Neurocritical Care Society’s 
stated goals for Diversity, Equity & Inclusion [14].

In addition to reviewing the discussed content, we pro-
vide a blueprint to shape the future directions of neu-
rocritical care research focused on novel therapeutics. 
An executive summary of the conference proceedings is 
shown in Table 1. In the following sections, we summa-
rize the key topics discussed in the conference, includ-
ing disease-specific future directions for collaborative 
research.

Strategies for Promoting Success in New Research 
Initiatives in Neurocritical Care Through Team 
Science, Diversity, and Novel Funding Mechanisms
The complexities and multifaceted sequela of neurologi-
cal emergencies require novel strategies for scientific pro-
gress and the development of ground breaking therapies 
with the potential to change outcomes and mitigate dis-
ability. In the current era of advanced subspecialties, such 
as neurocritical care, transdisciplinary teams are critical 
for health care team functioning [1], as well as scientific 
discovery and translational research pursuits [2]. Capi-
talizing on the greater synergistic gains of team science 
will be an important asset in neurocritical care research. 
Transdisciplinary team science research often develops 
in phases, which are summarized in Table  2 [15]. Each 
phase has its own importance and function in a suc-
cessful program. The impact of transdisciplinary team 
science engagement includes cross-disciplinary collabo-
ration, work environments with positive team climate—a 
perceived set of norms, expectations, and attitudes of a 
team—[16], and novel approaches to conducting, analyz-
ing, and disseminating research [15–17].

Transdisciplinary teams include members with 
resourcefulness, strong delegation skills, diverse back-
grounds, and trust in the process of multidisciplinary 
collaboration. The latter includes the establishment of 
psychological safety: the notion of standing up to speak 
on bold concepts, without fear of retaliation or nega-
tive repercussions. Diverse teams are also more likely to 
resolve complex problems [16, 18]. Having team mem-
bers from diverse backgrounds may be an effective way 
of altering behaviors of a social majority group and ulti-
mately lead to more accurate group thinking, as diverse 
groups have an increased tendency to focus on facts and 
are less likely to make factual errors [19–21]. In addition 
to bringing more objectivity to the decision-making pro-
cess and brainstorming activities [20], diverse teams are 
also more likely to explore novel approaches to problems 
[21, 22]. Diversity challenges conformity [23], and the 
resulting innovation and deeper information process-
ing may enrich the potential of scientific progress [24]. 
Another important aspect of inclusive team science is 
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that diverse faculty members are more likely to engage 
in research aimed at reducing disparities in neurologic 
outcomes and spend more time mentoring diverse stu-
dents and trainees [25, 26]. The Curing Coma Campaign, 
launched during the Neurocritical Care Society Annual 
Meeting in 2019, reflects the Neurocritical Care Society 
efforts in the establishment of longitudinal collabora-
tions in a team science with the mission of addressing 

disorders of consciousness and promoting awakening 
[27]. Nurturing diverse, early-career scholars, and train-
ees from under  represented backgrounds is a crucial 
step to achieve inclusion excellence in neuroscience, as 
these promising scientists have the potential to become 
leaders in academic research and inspire future genera-
tions to explore innovative pathways to treat neurologic 
disorders. The Neurocritical Care Society’s Women in 

Table 1 Future directions from the Neurotherapeutics Symposium 2019—Neurological Emergencies

Executive summary

Strategies for Promoting Success in New Research Initiatives Through Team Science, Diversity, and Novel Funding Mechanisms

Intensify efforts in maintaining adequate representation of all stakeholders and backgrounds in future conference planning, speakers and attend‑
ees

Develop funding mechanisms that promote and facilitate team science approach
Expand the use of crowdsourcing funding mechanisms and advertisement of project campaigns across survivors and caregivers groups
Leverage the infrastructure provided by Strategies to Innovate Emergency Care Research Network (SIREN) with ancillary (“add‑on”) study propos‑

als to major ongoing clinical trials
Harmonization of multiple parametric data in future studies and creation of a centralized repository of curated data from clinical trials

Stroke and Cerebrovascular Disease

Work toward expanding evidence of safety within a broader eligibility criteria for reperfusion therapy in acute ischemic stroke
Optimization of systems of care for expeditious triage (imaging and clinical assessments) involving first responders, neurologists, radiologists, 

neurointerventionalists, and emergency medicine providers
Development of adjunctive therapies addressing secondary brain injury mechanisms that can be modulated by interventions targeting spread‑

ing depolarization, cerebral edema, white matter tract injury, seizures, and inflammation

Therapeutic Intermittent Hypoxia and Neuroplasticity in Neurogenic Respiratory Dysregulation

Refinement of acute intermittent hypoxia therapeutic protocols based on the weight of hypoxia depth and burden in competing mechanisms 
involved in neuroplasticity

Combination of acute intermittent hypoxia with pharmacologic modulation of adenosine‑ and/or serotonin‑mediated pathways, with inflamma‑
tion‑targeted strategies

Refinement of acute intermittent hypoxia delivery and monitoring methods

Brain Telemetry, Seizure Detection and Management in the Critically Ill

Optimization of systems of care bypassing the lack of local critical care encephalography expertise, and capitalizing on the use of remote continu‑
ous EEG monitoring services

Automatic seizure detectors and real‑time alarms using quantitative EEG should be developed and validated to expedite timely and accurate 
review

Expansion and refinement of continuous EEG use as well as standardization of algorithms for ischemia monitoring and brain dysfunction to direct 
individual hemodynamic goals

Expansion of status epilepticus international registries to overcome the challenges of examining patients with heterogeneity of disease processes
Expansion of antiseizure treatment algorithms to include nutritional therapies (ketogenic diet) and tailored immunomodulation

Outcome Prediction in Disorders of Consciousness, Cognition, and Sepsis

Objective characterization of gaps of knowledge and methodologic flaws in neuroprognostic studies
Unveiling endotypes using multimodality assessment of cerebral reserve and resilience coupled with longitudinal trajectories following critical 

illness

Multimodal Monitoring (MMM) in the Neurocritically Ill

Adaptation of strategies to show cost‑effectiveness for multimodal monitoring, implement broadly applicable settings where possible, targeting 
overall clinical performance rather than single datapoints, and integrating various MMM elements and temporal trends

Incorporate standardized treatment algorithms, and assess their performance, in studies exploring the value of MMM

Table 2 Phases of Team Science for Translational Research

Phases of Team Science [8, 9]

Developmental phase—assembling team and developing roles
Conceptualization phase—developing a hypotheses framework and scientific approach
Implementation phase—conducting the research
Translational phase—collaborating to apply results to clinical trial study development
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Neurocritical Care (WINCC) section demonstrates the 
commitment toward diversity and equity and is a power-
ful resource to support early career scholars.

Several studies have demonstrated that knowledge gaps 
and lack of exposure to racially and ethnically diverse 
groups, as well as sexual and gender minorities, may lead 
to barriers in access to clinical care for disadvantaged 
populations. This may stem from unconscious decisions 
influenced by the implicit biases of providers [3, 4, 28] or 
system biases that limit accessibility for diverse popula-
tions. Neurodisparity is defined as the effect of disparities 
in neurologic care; [3] it does not only refer to barriers 
contributed by race and/or ethnicity, but includes dispar-
ities influenced by: sex, gender [7], age, neurodiversity, 
sexual orientation, religion, geographic origin, disability, 
weight, incarceration, and other social demographic fac-
tors [3]. For example, several publications highlight dis-
parities in representation in the American Academy of 
Neurology recognition awards and of women in leader-
ship roles in neurology [5, 6]. Neurocritical care, as a bur-
geoning discipline, is ripe to lead initiatives to increase 
awareness of knowledge gaps that will address the needs 
of diverse patient populations and foster adequate rep-
resentation in clinical leadership and the neuroscience 
workforce.

Expanding funding mechanisms is essential to sup-
port diverse team science efforts [29]. Under represented 
groups have been reported to receive less support for 
research funding [13]. Also, the research funds that are 
provided are more likely to be limited to research topics 
that pertain to health disparities, disease prevention and 
intervention, socioeconomic factors, healthcare, lifestyle, 
psychosocial, adolescence, and risk management [26]. 
Specifically, funding was less likely to be awarded if these 
terms were used in comparison with studies that focused 
on topics linked to neuron, corneal, cell, and iron [26]. 
Several funding sources were discussed at the confer-
ence. Crowdfunding mechanisms are emerging funding 
opportunities that bring flexibility to support innovative 
scientific efforts while promoting a platform that bridges 
investigators and donors; the American Brain Foundation 
(ABF) Crowdfunding Grant Mechanism (https ://www.
ameri canbr ainfo undat ion.org/proje cts/) is the first neu-
roscience crowdfunding platform and has received nearly 
150 donations and funded 8 projects (as of 2019). The 
National Institute of Health (NIH) Strategies to Innovate 
Emergency Care Research Network (SIREN) [30] repre-
sents a new network established in 2017 with 11 regional 
centers and 50 satellite research sites, aimed to develop 
acute neurological emergency research across the disci-
plines of Neurology, Neurosurgery, Emergency Medicine 
and Critical Care, and leverage this infrastructure to sup-
port multicenter randomized clinical trials (RCT). This 

multidisciplinary approach to clinical trials in the study 
of status epilepticus [31, 32] and stroke [33–35] have led 
to the identification of successful interventions. The Neu-
rocritical Care Society has supported a growing grant 
funding portfolio that reflects its transdisciplinary mis-
sion and includes the Research Training—a 12-month 
research fellowship for physicians, nurses, scientists, 
advanced practitioners, among other specialties—and 
the INvesting in CLINical Neurocritical CarE Research 
(INCLINE) grant, which fosters multicenter outcome-
focused research. The Neurocritical Care Research Cen-
tral (NCRC) was developed to streamline research efforts 
within members of the Neurocritical Care Society. The 
Neurocritical Care Research Network (NCRN)—a sub-
committee of the NCRC—was developed with the goal 
of bringing together a cohesive group of established 
researchers to facilitate successful implementation of 
patient-oriented research.

Further, efforts in harmonizing data collection in future 
trials of acute brain injuries, including curated multiple 
parametric and imaging data repositories, are urgently 
needed to facilitate subsequent data analyses and cohort 
discovery across populations.

Disease‑Specific Knowledge Gaps and Future 
Directions
The following represents a summary of topics discussed 
during the conference. Due to the nature of its format as 
a live conference with interactive presentations and criti-
cal debates, this summary highlights the major points of 
discussion and perceived future directions of research 
proposed by the Neurotherapeutics Symposium 2019 
attendees.

Stroke and Cerebrovascular Diseases
Major advances in the treatment of ischemic stroke sec-
ondary to large-vessel occlusion have led to improved 
outcomes [33–35]. Patient selection mediated through 
advanced neuroimaging has expanded the eligibility 
of reperfusion therapies for patients outside the con-
ventional treatment windows or with an unknown last-
known-well time [36–38]. Novel strategies in stroke 
emphasize the role of neuroimaging to elucidate contrib-
uting mechanisms for neurologic recovery and further 
guide patient selection for acute therapy.

The current patient selection criteria for endovascular 
thrombectomy (EVT)—particularly late-window—are 
relatively strict, which deprives a significant proportion of 
patients from targeted revascularization [39]. Decision-
making in acute therapy relies on the defined inclusion 
criteria from clinical trials. This may be best epitomized 
by decisions regarding EVT, which is dictated in large 
part by factors including time from symptom onset, the 

https://www.americanbrainfoundation.org/projects/
https://www.americanbrainfoundation.org/projects/
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presence of preexisting disability, and ischemic core vol-
ume estimates. The positive early- and late-windows 
EVT trials relied on neuroimaging markers for patient 
selection that varied in complexity from CT head  and 
angiography (MR CLEAN [40]) and target mismatch on 
perfusion imaging (SWIFT PRIME [41] and DEFUSE-3 
[34]). A relatively large ischemic burden reflected by 
Alberta Stroke Program Early CT Score (ASPECTS) 
scores of 5 or 6 is often used as a reason to not proceed 
with EVT within 6 h of last known well, though in some 
cases this score could reflect injury to areas of the brain 
that are less eloquent, and therefore, less likely to portend 
a poor outcome. Other limitations of using imaging as 
a strict criterion for therapy eligibility include early dif-
fusion weighted image (DWI) reversibility [42–44] and 
CT perfusion “ghost” core [45]. Similarly, the presence of 
preexisting disability (e.g., inability to ambulate indepen-
dently) is often used as an exclusion, yet providers should 
interpret preexisting disability from the perspective of 
the individual patient, not as an immutable construct. 
A paradigm shift was proposed, especially for the early 
window (< 6  h), where considerations should be made 
to explore individualized decision-making such that the 
pool for those whom may benefit can be broadened. The 
goal would be to continue research efforts to determine 
which patients not included in published randomized 
control trials may still benefit from EVT without increas-
ing the risk of harm.

Beyond reperfusion therapies, stroke-related therapeu-
tics must expand to target white matter disease and cyto-
toxic edema pathways, and provide biologic biomarkers 
for patient individualized therapies [46, 47]. Premor-
bid white matter structural injury of presumed vascular 
origin can be characterized on MRI by diffusion tensor 
imaging (DTI) and inform functional outcomes [48, 49]. 
The characterization of white matter structural integrity 
could allow for a precision medicine-based prognostica-
tion and stroke outcome modeling, advancing knowl-
edge on the critical white matter tracts involved in stroke 
recovery, increasing patient enrichment for clinical trials 
design, and potentially, leading to the future development 
of novel therapeutics. There are multiple ongoing early 
phase clinical trials testing lifestyle, behavior, and phar-
macologic interventions aimed at reducing progression 
of white matter injury and cerebral small vessel disease 
[50].

Pathways leading to cytotoxic edema after stroke repre-
sent another target for novel therapeutics with promising 
findings in pre-clinical and early clinical trials. Glybur-
ide—an inhibitor of the ATP-sensitive potassium channel 
regulatory subunit sulfonylurea receptor 1—is an emerg-
ing therapy with favorable results on metrics of edema 
in the phase II RCT of hemispheric strokes (GAMES-RP 

[51, 52]). A phase III RCT testing the efficacy and safety 
of glyburide for severe cerebral edema after large hemi-
spheric infarction (CHARM) has commenced enroll-
ment (ClinicalTrials.gov Identifier: NCT02864953). This 
cytotoxic edema mechanism is probably shared by other 
acute brain injuries, and its modulation may represent a 
therapy with a role beyond acute ischemic stroke.

Deepening the understanding of mechanisms under-
pinning secondary brain injury in cerebrovascular dis-
ease is another important step toward neurotherapeutics. 
Cortical spreading depolarization and depression—self-
propagating waves of near complete breakdown of ion 
gradient homeostasis—is a potential mechanism of sec-
ondary injury in traumatic brain injury, acute ischemic 
stroke, intracerebral hemorrhage, and subarachnoid 
hemorrhage (SAH) often triggered by extravasation of 
blood, trauma or focal ischemia [53]; however, a direct 
causal relationship remains to be demonstrated [54]. 
While the modulation of spreading depolarization as a 
potential therapeutic target in cerebrovascular diseases 
seems feasible given the wide range of available  drugs 
that suppress its occurrence, there are important barriers 
to be overcome. There are no reliable noninvasive meth-
ods for spreading depolarization detection with high 
temporal resolution, and neurophysiologic invasive mon-
itoring—the gold standard—has limited spatial resolu-
tion and requires violation of the cranial vault. In another 
angle, a novel filtration system (termed neuroapheresis) 
designed to rapidly remove blood and blood byproducts 
from cerebral spinal fluid in patients with SAH tackles 
the hypothesis that blood breakdown products in SAH 
are detrimental to outcomes. The feasibility study on 
this system has demonstrated that an automated lumbar 
catheter system can safely filter cerebral spinal fluid and 
remove blood byproducts [55], and may be associated 
with a positive impact in neuroinflammation.

These parallel avenues of translational research seek 
to improve long-term outcomes after cerebrovascular 
diseases through novel neurotherapeutics. Harmonizing 
existing clinical databases and standardizing neuroimag-
ing and neurophysiology interpretations for the purpose 
of inter-institutional collaborations sharing advanced 
expertise (such as the application of machine learning to 
big datasets) will facilitate these efforts [46].

Intermittent Hypoxia and Neuroplasticity in Neurogenic 
Respiratory Dysregulation
Chronic respiratory failure is a common and extremely 
disabling complication of motor neuron disease and 
cervical spinal cord injury [56], rendering patients 
dependent on mechanical ventilation and prone to have 
respiratory tract infections. The mechanisms underly-
ing respiratory motor neuron plasticity and resilience 



641

to injury remain poorly understood, hindering advance-
ment in neurotherapeutics focused on respiratory func-
tion rehabilitation [57].

Ischemic preconditioning through acute intermittent 
hypoxia (AIH) is a promising therapy with potential to 
prevent respiratory deconditioning and enhance reha-
bilitation in chronic respiratory failure [58, 59]. AIH 
promotes phrenic nerve long-term facilitation through 
carotid chemoreceptors and raphe nuclei modulation 
[57]. Respiratory motor neuron plasticity is mediated by 
balancing 5-HT receptor activation and adenosine (A2A) 
receptor antagonism at different levels of hypoxia depth 
and duration [60, 61]. The induction and maintenance 
of AIH follow different signaling pathways that allow 
for long-lasting phrenic motor facilitation to take place. 
In this context, 5-HT and A2A receptors can have both 
favorable and deleterious effects for neuron plasticity 
depending on the degree of activation or antagonism of 
these receptors. Serotonin can enhance synaptic trans-
mission in motor neurons, while adenosine can be neuro-
toxic for phrenic motor neurons. Promising preliminary 
findings in human studies using AIH include improve-
ment in exercise endurance by athletes and respiratory 
mechanics in patients who are ventilator dependent 
and had a phrenic diaphragm pacemaker (increase in 
maximal inspiratory pressure) [59, 62, 63]. Interestingly, 
increased muscle strength was not seen exclusively in 
diaphragmatic muscles in patients with chronic spinal 
cord injury. Forelimb function and walking ability were 
also improved when AIH was added to standard rehabili-
tation exercises [64]. These effects were dose dependent 
and varied according to the fraction of inspired oxygen 
level and number of AIH cycles per day.

These translational and pilot human studies highlight 
the complexity of the biological mechanisms involved 
in neuroplasticity. The high variability in respiratory 
mechanics improvement depending on AIH methods, 
and the depth and duration of hypoxic events, support 
the hypothesis that respiratory motor neuron plasticity 
relies on balancing several and often competing path-
ways. These methods can have beneficial, but also patho-
logic consequences to patients; therefore, the refinement 
of AIH therapies in future studies is imperative. Biomark-
ers of short-term and long-term respiratory function will 
be fundamental to guide the delivery and monitoring 
of these therapies. Future studies should combine AIH 
strategies with pharmacological interventions, such as 
adenosine antagonism with caffeine or autoinflammatory 
modulation with corticosteroids—an approach with the 
potential to enhance the already promising results of AIH 
in motor neuron disease and spinal cord injury.

Brain Telemetry, Seizure Detection and Management in the 
Critically Ill
Continuous electroencephalography (cEEG) is an inte-
gral part of the evaluation of critically ill patients with 
encephalopathy as nonconvulsive seizures are common 
in the critically ill and may negatively impact outcomes 
[65, 66]. A cross-sectional analysis using the National 
Inpatient Sample database including over 7 million 
critically ill patients, 22,728 of whom underwent cEEG, 
suggested a positive impact of continuous monitoring 
on mortality in the subset of patients with intracer-
ebral hemorrhage, SAH and those with encephalopathy, 
which may offset the increased cost of hospitalization 
associated with monitoring [67]. Recent studies indi-
cate that epileptiform activity on EEG combined with 
changes in quantitative EEG measures, such as reduced 
alpha–delta ratio and relative alpha variability, can 
detect ischemia earlier than conventional modalities 
in patients with SAH [68, 69]. Despite these emerging 
benefits of cEEG beyond seizure detection, this tool is 
still under-utilized. Potential barriers to the expansion 
of its use as a brain telemetry instrument include the 
lack of resources for cEEG acquisition equipment and 
data storage, limited availability of trained EEG tech-
nologists, lack of experts in ICU EEG interpretation to 
provide timely review of the EEG to be meaningful to 
bedside clinicians, and the variability in interpretation 
of abnormal findings, and therapeutic management 
strategies.

Status epilepticus (SE) is a common neurologic emer-
gency. Over the last decade, the role of pro-inflamma-
tory mediators in seizure generation and propagation, 
and the search for novel therapeutic anti-inflammatory 
targets have been areas of intense research. Novel tai-
lored immunotherapies targeting specific cytokines 
(e.g., interleukin-1 receptor antagonist—anakinra, and 
interleukin-6 receptor inhibitor—tocilizumab) have 
been shown to be effective in new-onset refractory sta-
tus epilepticus (NORSE) and febrile-infection related 
epilepsy syndrome (FIRES) [70, 71]. In addition, the 
expansion of ketogenic diet to the critical care setting 
has been demonstrated to be feasible and effective with 
success rates in weaning anesthetics without recur-
rence of SE surpassing 70%, even when after 420  days 
from SE onset [72–74]. While these emerging therapies 
are promising novel treatment options, there remains a 
paucity of randomized controlled trials showing defini-
tive safety, feasibility, and efficacy. Challenges that were 
identified as a first step in moving the needle toward 
the development of new treatment strategies and con-
ducting clinical trials include: the heterogeneity of SE 
etiologies, lack of standardization of treatment proto-
cols, and variations in the selected outcomes.
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Outcome Prediction in Disorders of Consciousness, 
Cognition, and Sepsis
Impairment in consciousness and cognition can occur in 
the setting of a primary neurologic disease (e.g., hypoxic-
ischemic, hemorrhagic, or traumatic brain injury), or 
as a consequence of a systemic insult (e.g., toxic, meta-
bolic, and/or infectious processes). Invariably, an inter-
play of multiple factors concurrently contributes to the 
development of encephalopathy. As a result, predicting 
the short- and long-term consequences of impaired con-
sciousness and cognition remains a challenge, in which 
the self-fulfilling prophecy bias of premature pessimistic 
outcome predictions plays an important role [75, 76]. Key 
disease-specific knowledge gaps in neuroprognostication 
have been recently unveiled in a joint statement from the 
German Neurocritical Care Society and the Neurocritical 
Care Society [77]; future studies should account for these 
limitations. Population-derived disease severity scores 
are incorrectly used to ascertain long-term individual 
prognostic trajectories. Further, these scores are not 
dynamic and are frequently inaccurate. Accurate neuro-
prognostication is crucial to guide critical care resource 
allocation and to guide families in goals of care discus-
sions; thus, it is imperative to improve tools for prognos-
tication in neurocritically ill patients. cEEG monitoring 
provides dynamic information on brain physiology, and 
it can be used as a noninvasive biomarker that correlates 
with level of consciousness [78] and neurological recov-
ery [79]. Machine learning has been demonstrated to be 
a promising tool to analyze EEG data and unveil patients 
with preserved awareness by means of electroencepha-
lographic activation in patients with acute brain injury 
[78]. This state known as “cognitive motor dissociation” 
was previously demonstrated in chronically unresponsive 
patients [80], and more recently in acute brain injury [78, 
81]. Similarly, the use of machine learning and quantita-
tive analysis of longitudinal EEG signals shows promise in 
improving accuracy of commonly employed neurophysi-
ologic predictors of outcome after cardiac arrest, such as 
background reactivity, epileptiform activity, and back-
ground continuity [79, 82].

Our understanding of the pathophysiology behind 
sepsis-associated encephalopathy (SAE) remains limited 
and is another area of much needed research in neuro-
critical care given the long-term disability associated 
with persistent cognitive deficits [83, 84]. A complex 
interplay of factors is involved in SAE pathophysiology 
and includes the release of damage associated molecu-
lar pattern (DAMP) molecules as potent activators of 
the innate immune system leading to the release of neu-
roinflammatory cytokines, which cause disruption of 
the brain blood barrier, activation of endothelial cells, 
mitochondrial dysfunction, cellular hypoxia, impaired 

brain perfusion regulation, and apoptosis [85]. Methods 
to quantify the degree of neuronal injury associated with 
sepsis are urgently needed to characterize the spectrum 
of SAE, identify potential targeted therapies, and tailor 
rehabilitation. Chemical biomarkers of neuronal injury, 
such as serum neuron specific enolase (NSE), S-100 B 
and neurofilament (Nf), glial fibrillary acidic protein 
(GFAP), co-peptin, tau, and ubiquitin C-terminal hydro-
lase L1 (UCH-L1), are currently being investigated to ful-
fill this role (ClinicalTrials.gov Identifier: NCT03133208). 
In addition, there might be an association between ele-
vations of certain biomarkers with specific microbiota. 
Currently, laboratory tests that can be ordered clinically 
are still not widely available at every institution and often 
may not result for several days to weeks, limiting its 
applicability in clinical practice.

Multimodal Monitoring (MMM) in the Neurocritical 
Care Unit
Multimodal monitoring in neurocritical care includes, 
but is not limited to, cEEG, intracranial pressure (ICP) 
monitoring, and measurement of cerebral blood flow sur-
rogates, cerebral oxygenation, and cerebral microdialysis. 
The employment of MMM is mainly targeted to detect 
factors associated with the development of secondary 
brain injury, often as a result of bioenergetic failure, and 
monitor responses to targeted therapies. Various MMM 
subtypes aim to evaluate tissue function by assessing 
individual measures of metabolism, blood supply, or oxy-
genation. Further, MMM allows for the reliable detec-
tion of spreading depolarizations and their metabolic toll 
in cerebral tissue. For each parameter being assessed by 
MMM, there are several drawbacks that limit the expan-
sion of this modality in clinical practice. Targeting indi-
vidual values from MMM is unlikely to improve clinical 
outcomes in isolation. The assessment of average val-
ues may miss transient changes that, cumulatively, may 
result in a higher injury burden. The lack of integral data 
analysis precludes the incorporation of time in relation 
to the brain injury and the duration of secondary insults. 
Additionally, not accounting for individual resilience 
to insults, and the morbidity of certain therapies (e.g., 
increased sedation or the use of vasopressors for hemo-
dynamic augmentation), challenges the ability of MMM 
to demonstrate a positive impact in clinical outcomes.

Conclusions
The Neurotherapeutics Symposium 2019 included a 
transdisciplinary participation of scholars from diverse 
backgrounds, research interest and fields, and subspe-
cialty focus. The conference highlighted the perceived 
clinically relevant research needs in various acute brain 
injuries and outlined future strategies on how to expand 
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upon them while incorporating diversity and team sci-
ence. We hope this format will also encourage continued 
mentorship and career building for early career inves-
tigators to help support and sustain a forward feeding 
pipeline of women and under  represented minorities to 
advance translational research in neurologic emergen-
cies. A focus on strong research networks, streamlined 
data sharing practices, and support for early investigators 
will increase the likelihood of important discoveries.
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