Skip to main content

Advertisement

Log in

Monitoring Inflammation (Including Fever) in Acute Brain Injury

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SAH:

Subarachnoid hemorrhage

DCI:

Delayed cerebral injury associated with vasospasm

IL-6:

Intraleukin 6

CRP:

C-reactive protein

TTM:

Therapeutic temperature modulation

WBC:

White blood cell count

TNFα:

Tumor necrosis factor

SIRS:

Systemic inflammatory response syndrome

BSAS:

Bedside Shivering Assessment Scale

IDC:

Indirect calorimetry

References

  1. Tracy RP. The five cardinal signs of inflammation: calor, dolor, rubor, tumor… and penuria (apologies to Aulus Cornelius Celsus, De medicina, c. A.D. 25). J Gerontol A. 2006;61(10):1051–2.

    Article  Google Scholar 

  2. Poungvarin N, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med. 1987;316(20):1229–33.

    Article  CAS  PubMed  Google Scholar 

  3. Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.

    Article  PubMed  Google Scholar 

  4. Childs C, et al. Brain temperature and outcome after severe traumatic brain injury. Neurocrit Care. 2006;5(1):10–4.

    Article  PubMed  Google Scholar 

  5. Fernandez A, et al. Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology. 2007;68(13):1013–9.

    Article  CAS  PubMed  Google Scholar 

  6. Muehlschlegel S, et al. Frequency and impact of intensive care unit complications on moderate-severe traumatic brain injury: early results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocrit Care. 2013;18(3):318–31.

    Article  PubMed  Google Scholar 

  7. Oliveira-Filho J, et al. Fever in subarachnoid hemorrhage: relationship to vasospasm and outcome. Neurology. 2001;56(10):1299–304.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang G, Zhang JH, Qin X. Fever increased in-hospital mortality after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):239–43.

    Google Scholar 

  9. Badjatia N, et al. Impact of induced normothermia on outcome after subarachnoid hemorrhage: a case–control study. Neurosurgery. 2010;66(4):696–700; discussion 700–1.

  10. Oddo M, et al. Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory Fever. Stroke. 2009;40(5):1913–6.

    Article  PubMed  Google Scholar 

  11. Puccio AM, et al. Induced normothermia attenuates intracranial hypertension and reduces fever burden after severe traumatic brain injury. Neurocrit Care. 2009;11(1):82–7.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Thompson HJ, Pinto-Martin J, Bullock MR. Neurogenic fever after traumatic brain injury: an epidemiological study. J Neurol Neurosurg Psychiatry. 2003;74(5):614–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Albrecht RF 2nd, Wass CT, Lanier WL. Occurrence of potentially detrimental temperature alterations in hospitalized patients at risk for brain injury. Mayo Clin Proc. 1998;73(7):629–35.

    Article  PubMed  Google Scholar 

  14. Childers MK, Rupright J, Smith DW. Post-traumatic hyperthermia in acute brain injury rehabilitation. Brain Inj. 1994;8(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  15. Meythaler JM, Stinson AM 3rd. Fever of central origin in traumatic brain injury controlled with propranolol. Arch Phys Med Rehabil. 1994;75(7):816–8.

    CAS  PubMed  Google Scholar 

  16. Shapiro NI, et al. Who needs a blood culture? A prospectively derived and validated prediction rule. J Emerg Med. 2008;35(3):255–64.

    Article  PubMed  Google Scholar 

  17. Darm RM, Hecker RB, Rubal BJ. A comparison of noninvasive body temperature monitoring devices in the PACU. J Post Anesth Nurs. 1994;9(3):144–9.

    CAS  PubMed  Google Scholar 

  18. Erickson RS, Kirklin SK. Comparison of ear-based, bladder, oral, and axillary methods for core temperature measurement. Crit Care Med. 1993;21(10):1528–34.

    Article  CAS  PubMed  Google Scholar 

  19. Henker R, Coyne C. Comparison of peripheral temperature measurements with core temperature. AACN. 1995;6(1):21–30.

    CAS  Google Scholar 

  20. Jensen BN, et al. Accuracy of digital tympanic, oral, axillary, and rectal thermometers compared with standard rectal mercury thermometers. Eur J Surg. 2000;166(11):848–51.

    Article  CAS  PubMed  Google Scholar 

  21. Konopad E, et al. A comparison of oral, axillary, rectal and tympanic-membrane temperatures of intensive care patients with and without an oral endotracheal tube. J Adv Nurs. 1994;20(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  22. Lattavo K, Britt J, Dobal M. Agreement between measures of pulmonary artery and tympanic temperatures. Res Nurs Health. 1995;18(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz T, et al. A comparison of five methods of temperature measurement in febrile intensive care patients. Am J Crit Care. 1995;4(4):286–92.

    CAS  PubMed  Google Scholar 

  24. Singh V, et al. Variation of axillary temperature and its correlation with oral temperature. J Assoc Physicians India. 2000;48(9):898–900.

    CAS  PubMed  Google Scholar 

  25. Smith LS. Temperature measurement in critical care adults: a comparison of thermometry and measurement routes. Biol Res Nurs. 2004;6(2):117–25.

    Article  PubMed  Google Scholar 

  26. Badjatia N, et al. Metabolic benefits of surface counter warming during therapeutic temperature modulation. Crit Care Med. 2009;37(6):1893–7.

    Article  PubMed  Google Scholar 

  27. Badjatia N, et al. Metabolic impact of shivering during therapeutic temperature modulation: the Bedside Shivering Assessment Scale. Stroke. 2008;39(12):3242–7.

    Article  PubMed  Google Scholar 

  28. Hata JS, et al. A prospective, observational clinical trial of fever reduction to reduce systemic oxygen consumption in the setting of acute brain injury. Neurocrit Care. 2008;9(1):37–44.

    Article  PubMed  Google Scholar 

  29. Sessler DI. Defeating normal thermoregulatory defenses: induction of therapeutic hypothermia. Stroke. 2009;40(11):e614–21.

    Article  CAS  PubMed  Google Scholar 

  30. Olson DM, et al. Interrater reliability of the bedside shivering assessment scale. Am J Crit Care. 2013;22(1):70–4.

    Article  PubMed  Google Scholar 

  31. Choi HA, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14(3):389–94.

    Article  PubMed  Google Scholar 

  32. May T, et al. Association of the Bedside Shivering Assessment Scale and derived EMG power during therapeutic hypothermia in survivors of cardiac arrest. Resuscitation. 2011;82(8):1100–3.

    Article  PubMed  Google Scholar 

  33. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001;32(9):1989–93.

    Article  CAS  PubMed  Google Scholar 

  34. Tam AK, et al. Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: exploratory analysis of CONSCIOUS-1 database. Neurocrit Care. 2010;13(2):182–9.

    Article  PubMed  Google Scholar 

  35. Suzuki S, et al. Acute leukocyte and temperature response in hypertensive intracerebral hemorrhage. Stroke. 1995;26(6):1020–3.

    Article  CAS  PubMed  Google Scholar 

  36. Sturgeon JD, et al. Hemostatic and inflammatory risk factors for intracerebral hemorrhage in a pooled cohort. Stroke. 2008;39(8):2268–73.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Stambrook M, et al. Early metabolic and neurologic predictors of long-term quality of life after closed head injury. Can J Surg. 1990;33(2):115–8.

    CAS  PubMed  Google Scholar 

  38. Sadamasa N, et al. Prediction of mortality by hematological parameters on admission in patients with subarachnoid hemorrhage. Neurol Med Chir. 2011;51(11):745–8.

    Article  Google Scholar 

  39. Nuytinck HK, et al. Whole-body inflammation in trauma patients. An autopsy study. Arch Surg. 1988;123(12):1519–24.

    Article  CAS  PubMed  Google Scholar 

  40. Muroi C, et al. Systemic interleukin-6 levels reflect illness course and prognosis of patients with spontaneous nonaneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:77–80.

    PubMed  Google Scholar 

  41. Mrakovcic-Sutic I, et al. Early changes in frequency of peripheral blood lymphocyte subpopulations in severe traumatic brain-injured patients. Scand J Immunol. 2010;72(1):57–65.

    CAS  PubMed  Google Scholar 

  42. Mathiesen T, Lefvert AK. Cerebrospinal fluid and blood lymphocyte subpopulations following subarachnoid haemorrhage. Br J Neurosurg. 1996;10(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  43. Holling M, et al. Prognostic value of histopathological findings in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;110(3):487–91.

    Article  PubMed  Google Scholar 

  44. Forster K, et al. Elevated inflammatory laboratory parameters in spontaneous cervical artery dissection as compared to traumatic dissection: a retrospective case–control study. J Neurol. 2006;253(6):741–5.

    Article  PubMed  Google Scholar 

  45. Di Piero V, Bastianello S. Prognostic value of peripheral white blood cell count in intracerebral hemorrhage. Stroke. 1987;18(5):957.

    PubMed  Google Scholar 

  46. Chou SH, et al. Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res. 2011;2(4):600–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Agnihotri S, et al. Peripheral leukocyte counts and outcomes after intracerebral hemorrhage. J Neuroinflammation. 2011;8:160.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Grau AJ, et al. Increased cytokine release by leucocytes in survivors of stroke at young age. Eur J Clin Invest. 2001;31(11):999–1006.

    Article  CAS  PubMed  Google Scholar 

  49. Maiuri F, et al. The blood leukocyte count and its prognostic significance in subarachnoid hemorrhage. J Neurosurg Sci. 1987;31(2):45–8.

    CAS  PubMed  Google Scholar 

  50. Spallone A, et al. Relationship between leukocytosis and ischemic complications following aneurysmal subarachnoid hemorrhage. Surg Neurol. 1987;27(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  51. Rothoerl RD, et al. Possible role of the C-reactive protein and white blood cell count in the pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2006;18(1):68–72.

    Article  PubMed  Google Scholar 

  52. Provencio JJ, et al. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010;12(2):244–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Niikawa S, et al. Correlation between blood parameters and symptomatic vasospasm in subarachnoid hemorrhage patients. Neurol Med Chir. 1997;37(12):881–4; discussion 884–5.

  54. McGirt MJ, et al. Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(6):1222–6.

    Article  PubMed  Google Scholar 

  55. Kasius KM, et al. Association of platelet and leukocyte counts with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis. 2010;29(6):576–83.

    Article  CAS  PubMed  Google Scholar 

  56. Sun W, et al. Correlation of leukocytosis with early neurological deterioration following supratentorial intracerebral hemorrhage. J Clin Neurosci. 2012;19(8):1096–100.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cortina MG, et al. Monocyte count is an underlying marker of lacunar subtype of hypertensive small vessel disease. Eur J Neurol. 2008;15(7):671–6.

    Article  PubMed  Google Scholar 

  58. Kitchen WJ, et al. External ventricular drain infection: improved technique can reduce infection rates. Br J Neurosurg. 2011;25(5):632–5.

    Article  PubMed  Google Scholar 

  59. Aucoin PJ, et al. Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am J Med. 1986;80(3):369–76.

    Article  CAS  PubMed  Google Scholar 

  60. Mayhall CG, et al. Ventriculostomy-related infections. A prospective epidemiologic study. N Engl J Med. 1984;310(9):553–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sundbarg G, Nordstrom CH, Soderstrom S. Complications due to prolonged ventricular fluid pressure recording. Br J Neurosurg. 1988;2(4):485–95.

    Article  CAS  PubMed  Google Scholar 

  62. Beeftink MM, et al. Relation of serum TNF-alpha and TNF-alpha genotype with delayed cerebral ischemia and outcome in subarachnoid hemorrhage. Neurocrit Care. 2011;15(3):405–9.

    Article  CAS  PubMed  Google Scholar 

  63. Chou SH, et al. Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Investig Med. 2012;60(7):1054–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Csuka E, et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999;101(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  65. Dalla Libera AL, et al. IL-6 polymorphism associated with fatal outcome in patients with severe traumatic brain injury. Brain Inj. 2011;25(4):365–9.

    Article  PubMed  Google Scholar 

  66. Helmy A, et al. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31(2):658–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Hergenroeder GW, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflamm. 2010;7:19.

    Article  Google Scholar 

  68. Kirchhoff C, et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur J Med Res. 2008;13(10):464–8.

    CAS  PubMed  Google Scholar 

  69. Li W, et al. Elevated cerebral cortical CD24 levels in patients and mice with traumatic brain injury: a potential negative role in nuclear factor kappa B/inflammatory factor pathway. Mol Neurobiol. 2013;49:187–98.

    Article  PubMed  Google Scholar 

  70. Maier B, et al. Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study. J Neurotrauma. 2005;22(7):822–35.

    Article  PubMed  Google Scholar 

  71. Maier B, et al. Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury. Shock. 2006;26(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  72. Polin RS, et al. Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89(4):559–67.

    Article  CAS  PubMed  Google Scholar 

  73. Roberts DJ, et al. Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. J Neurotrauma. 2013;30:1727–36.

    Article  PubMed  Google Scholar 

  74. Semple BD, et al. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab. 2010;30(4):769–82.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Singhal A, et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotrauma. 2002;19(8):929–37.

    Article  CAS  PubMed  Google Scholar 

  76. Suehiro E, et al. Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J Neurotrauma. 2004;21(12):1706–11.

    Article  PubMed  Google Scholar 

  77. Waters RJ, et al. Cytokine gene polymorphisms and outcome after traumatic brain injury. J Neurotrauma. 2013;30:1710–6.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Sarrafzadeh A, et al. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010;13(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  79. Sattar N, et al. Are markers of inflammation more strongly associated with risk for fatal than for nonfatal vascular events? PLoS Med. 2009;6(6):e1000099.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Peltola HO. C-reactive protein for rapid monitoring of infections of the central nervous system. Lancet. 1982;1(8279):980–2.

    Article  CAS  PubMed  Google Scholar 

  81. Tanner AR, Collins AL, Bull FG. The clinical value of rapid C-reactive protein measurement in cerebro-spinal fluid. Clin Chim Acta. 1985;147(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  82. Rajeshwar K, et al. C-reactive protein and nitric oxide levels in ischemic stroke and its subtypes: correlation with clinical outcome. Inflammation. 2012;35(3):978–84.

    Article  CAS  PubMed  Google Scholar 

  83. Seo WK, et al. C-reactive protein is a predictor of early neurologic deterioration in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2012;21(3):181–6.

    Article  PubMed  Google Scholar 

  84. Hamidon BB, et al. The prognostic value of C-reactive protein (CRP) levels in patients with acute ischaemic stroke. Med J Malays. 2004;59(5):631–7.

    CAS  Google Scholar 

  85. Corso G, et al. Blood C-reactive protein concentration with ABCD(2) is a better prognostic tool than ABCD(2) alone. Cerebrovasc Dis. 2011;32(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  86. Di Napoli M, et al. C-reactive protein level measurement improves mortality prediction when added to the spontaneous intracerebral hemorrhage score. Stroke. 2011;42(5):1230–6.

    Article  PubMed  Google Scholar 

  87. Roudbary SA, et al. Serum C-reactive protein level as a biomarker for differentiation of ischemic from hemorrhagic stroke. Acta Med Iran. 2011;49(3):149–52.

    PubMed  Google Scholar 

  88. Jeon YT, et al. The postoperative C-reactive protein level can be a useful prognostic factor for poor outcome and symptomatic vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2012;24(4):317–24.

    Article  PubMed  Google Scholar 

  89. Juvela S, Kuhmonen J, Siironen J. C-reactive protein as predictor for poor outcome after aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien). 2012;154(3):397–404.

    Article  Google Scholar 

  90. Berger C, et al. Serum procalcitonin in cerebral ventriculitis. Crit Care Med. 2002;30(8):1778–81.

    Article  CAS  PubMed  Google Scholar 

  91. Tomio R, et al. Procalcitonin as an early diagnostic marker for ventriculoperitoneal shunt infections. Surg Infect. 2013;14:433–6.

    Article  Google Scholar 

  92. Muroi C, et al. Early systemic procalcitonin levels in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2013;21:73–7.

    Article  Google Scholar 

  93. Hug A, et al. Usefulness of serum procalcitonin levels for the early diagnosis of stroke-associated respiratory tract infections. Neurocrit Care. 2011;14(3):416–22.

    Article  CAS  PubMed  Google Scholar 

  94. Oconnor E, et al. Serum procalcitonin and C-reactive protein as markers of sepsis and outcome in patients with neurotrauma and subarachnoid haemorrhage. Anaesth Intensive Care. 2004;32(4):465–70.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Neeraj Badjatia receives consulting fees form Bard and Medivance and is a Scientific Advisor to Cumberland Pharmaceuticals. J. Javier Provencio receives research funding from NIH, Bard Medivance, and Advanced Circulatory Systems, and is on the scientific advisory board of Edge Therapeutics and Minnetronix.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Javier Provencio.

Additional information

The Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring are listed in “Appendix”.

Appendix: Participants in the International Multi-Disciplinary Consensus Conference on Multimodality Monitoring

Appendix: Participants in the International Multi-Disciplinary Consensus Conference on Multimodality Monitoring

Peter Le Roux, MD, FACS

Brain and Spine Center

Suite 370, Medical Science Building

Lankenau Medical Center

100 East Lancaster Avenue

Wynnewood, PA 19096, USA

lerouxp@mlhs.org

David K Menon, MD, PhD, FRCP, FRCA, FFICM, FMedSci

Head, Division of Anaesthesia, University of Cambridge

Consultant, Neurosciences Critical Care Unit

Box 93, Addenbrooke’s Hospital

Cambridge CB2 2QQ, UK

dkm13@wbic.cam.ac.uk

Paul Vespa, MD, FCCM, FAAN, FNCS

Professor of Neurology and Neurosurgery

Director of Neurocritical Care

David Geffen School of Medicine at UCLA

Los Angeles, CA 90095, USA

PVespa@mednet.ucla.edu

Giuseppe Citerio

Director NeuroIntensive Care Unit

Department of Anesthesia and Critical Care

Ospedale San Gerardo, Monza

Via Pergolesi 33, Monza 20900, Italy

g.citerio@hsgerardo.org

Mary Kay Bader RN, MSN, CCNS, FAHA, FNCS

Neuro/Critical Care CNS

Mission Hospital

Mission Viejo, CA 92691, USA

Marykay.Bader@stjoe.org

Gretchen M. Brophy, PharmD, BCPS, FCCP, FCCM

Professor of Pharmacotherapy & Outcomes Science and Neurosurgery

Virginia Commonwealth University

Medical College of Virginia Campus

410 N. 12th Street

Richmond, VA 23298-0533, USA

gbrophy@vcu.edu

Michael N. Diringer, MD

Professor of Neurology, Neurosurgery & Anesthesiology

Chief, Neurocritical Care Section

Washington University

Dept. of Neurology, Campus Box 8111

660 S Euclid Ave

St Louis, MO 63110, USA

diringerm@neuro.wustl.edu

Nino Stocchetti, MD

Professor of Anesthesia and Intensive Care

Department of physiopathology and transplant

Milan University

Director Neuro ICU

Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico

Via F Sforza, 35, 20122 Milan, Italy

stocchet@policlinico.mi.it

Walter Videtta, MD

ICU Neurocritical Care

Hospital Nacional ‘Prof. a. Posadas’

El Palomar - Pcia. de Buenos Aires

Argentina

wvidetta@ar.inter.net

Rocco Armonda, MD

Department of Neurosurgery

MedStar Georgetown University Hospital

Medstar Health, 3800 Reservoir Road NW

Washington, DC 20007, USA

Rocco.Armonda@gmail.com

Neeraj Badjatia, MD

Department of Neurology

University of Maryland Medical Center

22 S Greene St

Baltimore, MD 21201, USA

nbadjatia@umm.edu

Julian Bösel, MD

Department of Neurology

Ruprect-Karls University

Hospital Heidelberg, Im Neuenheimer Feld 400

D-69120 Heidelberg, Germany

Julian.Boesel@med.uni-heidelberg.de

Randal Chesnut, MD, FCCM, FACS

Harborview Medical Center

University of Washington Mailstop 359766

325 Ninth Ave

Seattle, WA 98104-2499, USA

chesnutr@u.washington.edu

Sherry Chou, MD, MMSc

Department of Neurology

Brigham and Women’s Hospital

75 Francis Street

Boston, MA 02115 USA

schou1@partners.org

Jan Claassen, MD, PhD, FNCS

Assistant Professor of Neurology and Neurosurgery

Head of Neurocritical Care and Medical Director of the Neurological Intensive Care Unit

Columbia University College of Physicians & Surgeons

177 Fort Washington Avenue, Milstein 8 Center room 300

New York, NY 10032, USA

jc1439@cumc.columbia.edu

Marek Czosnyka, PhD

Department of Neurosurgery

University of Cambridge

Addenbrooke’s Hospital, Box 167

Cambridge CB20QQ, United Kingdom

mc141@medschl.cam.ac.uk

Michael De Georgia, MD

Professor of Neurology

Director, Neurocritical Care Center

Co-Director, Cerebrovascular Center

University Hospital Case Medical Center

Case Western Reserve University School of Medicine

11100 Euclid Avenue

Cleveland, OH 44106, USA

michael.degeorgia@uhhospitals.org

Anthony Figaji, MD, PhD

Head of Pediatric Neurosurgery

University of Cape Town

617 Institute for Child Health

Red Cross Children’s Hospital

Rondebosch, 7700 Cape Town, South Africa

anthony.figaji@uct.ac.za

Jennifer Fugate, DO

Department of Neurology

Mayo Clinic

200 First Street SW

Rochester, MN 55905, USA

Fugate.Jennifer@mayo.edu

Raimund Helbok, MD

Department of Neurology, Neurocritical Care Unit

Innsbruck Medical University

Anichstr. 35, 6020 Innsbruck, Austria

raimund.helbok@uki.at

David Horowitz, MD

Associate Chief Medical Officer

University of Pennsylvania Health System

3701 Market Street

Philadelphia, PA 19104, USA

david.horowitz@uphs.upenn.edu

Peter Hutchinson, MD

Professor of Neurosurgery

NIHR Research Professor

Department of Clinical Neurosciences

University of Cambridge

Box 167 Addenbrooke’s Hospital

Cambridge CB2 2QQ, United Kingdom

pjah2@cam.ac.uk

Monisha Kumar, MD

Department of Neurology

Perelman School of Medicine, University of Pennsylvania

3 West Gates, 3400 Spruce Street

Philadelphia, PA 19104, USA

monisha.kumar@uphs.upenn.edu

Molly McNett, RN, PhD

Director, Nursing Research

The MetroHealth System

2500 MetroHealth Drive

Cleveland, OH 44109, USA

mmcnett@metrohealth.org

Chad Miller, MD

Division of Cerebrovascular Diseases and Neurocritical Care

The Ohio State University

395 W. 12th Ave, 7th Floor

Columbus, OH 43210, USA

ChadM.Miller@osumc.edu

Andrew Naidech, MD, MSPH

Department of Neurology

Northwestern University Feinberg SOM 710

N Lake Shore Drive, 11th floor

Chicago, IL 60611, USA

ANaidech@nmff.org

Mauro Oddo, MD

Department of Intensive Care Medicine

CHUV University Hospital, BH 08-623

Faculty of Biology and Medicine, University of Lausanne

1011 Lausanne, Switzerland

Mauro.Oddo@chuv.ch

DaiWai Olson, RN, PhD

Associate Professor of Neurology, Neurotherapeutics and Neurosurgery

University of Texas Southwestern

5323 Harry Hines Blvd.

Dallas, TX 75390-8897, USA

daiwai.olson@utsouthwestern.edu

Kristine O’Phelan, MD

Director of Neurocritical Care

Associate Professor, Department of Neurology

University of Miami, Miller School of Medicine

JMH, 1611 NW 12th Ave, Suite 405

Miami, FL 33136, USA

USA

kophelan@med.miami.edu

J. Javier Provencio, MD

Associate Professor of Medicine

Cerebrovascular Center and Neuroinflammation Research Center

Lerner College of Medicine

Cleveland Clinic

9500 Euclid Ave, NC30

Cleveland, OH 44195, USA

provenj@ccf.org

Corina Puppo, MD

Assistant Professor, Intensive Care Unit

Hospital de Clinicas, Universidad de la República

Montevideo, Uruguay

coripuppo@gmail.com

Richard Riker, MD

Critical Care Medicine

Maine Medical Center

22 Bramhall Street

Portland, ME 04102-3175, USA

RRiker@cmamaine.com

Claudia Robertson, MD

Department of Neurosurgery

Medical Director of Center for Neurosurgical Intensive Care

Ben Taub Hospital

Baylor College of Medicine

1504 Taub Loop

Houston, TX 77030, USA

claudiar@bcm.tmc.edu

J. Michael Schmidt, PhD, MSc

Director of Neuro-ICU Monitoring and Informatics

Columbia University College of Physicians and Surgeons

Milstein Hospital 8 Garden South, Suite 331

177 Fort Washington Avenue

New York, NY 10032 ,USA

mjs2134@columbia.edu

Fabio Taccone, MD

Department of Intensive Care, Laboratoire de Recherche Experimentale

Erasme Hospital

Route de Lennik, 808

1070 Brussels, Belgium

ftaccone@ulb.ac.be

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provencio, J.J., Badjatia, N. & And the Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Monitoring Inflammation (Including Fever) in Acute Brain Injury. Neurocrit Care 21 (Suppl 2), 177–186 (2014). https://doi.org/10.1007/s12028-014-0038-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0038-0

Keywords

Navigation