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Abstract Maintenance of adequate oxygenation is a

mainstay of intensive care, however, recommendations on

the safety, accuracy, and the potential clinical utility of

invasive and non-invasive tools to monitor brain and sys-

temic oxygenation in neurocritical care are lacking. A

literature search was conducted for English language arti-

cles describing bedside brain and systemic oxygen

monitoring in neurocritical care patients from 1980 to

August 2013. Imaging techniques e.g., PET are not con-

sidered. A total of 281 studies were included, the majority

described patients with traumatic brain injury (TBI). All

tools for oxygen monitoring are safe. Parenchymal brain

oxygen (PbtO2) monitoring is accurate to detect brain

hypoxia, and it is recommended to titrate individual targets

of cerebral perfusion pressure (CPP), ventilator parameters

(PaCO2, PaO2), and transfusion, and to manage intracranial

hypertension, in combination with ICP monitoring. SjvO2

is less accurate than PbtO2. Given limited data, NIRS is not

recommended at present for adult patients who require

neurocritical care. Systemic monitoring of oxygen (PaO2,

SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recom-

mended in patients who require neurocritical care.
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Introduction

Maintenance of adequate oxygenation is a primary objec-

tive of critical care, and the assessment of tissue

oxygenation is essential to patient management. Hypoxia is

defined as the reduction of tissue oxygenation to levels

insufficient to maintain cellular function and metabolism.

Hypoxia may result from ischemia—either macro-vascular

(reduced/absent cerebral blood flow [CBF] e.g., vascular

thrombosis, vasospasm, reduced carbon dioxide [PaCO2])

or micro-vascular (perivascular edema, blood–brain barrier

disruption, endothelial dysfunction)—anemia, and hypox-

emia. Cytopathic hypoxia is primarily from failure of the

cell to extract oxygen (e.g., oxygen diffusion barriers and/

or mitochondrial dysfunction).

Failure to maintain adequate oxygenation aggravates

secondary brain damage, therefore, detection and treatment

of brain and systemic hypoxia are important. Hyperoxia also

can aggravate outcome. Brain oxygen can be measured by

two invasive bedside techniques: brain tissue oxygen tension

(PbtO2) and jugular bulb oxygen saturation (SjvO2); or a

non-invasive bedside method: near-infrared spectroscopy

(NIRS). Monitoring of systemic oxygenation and CO2 can be

achieved invasively with arterial blood gas analysis and non-

invasively with pulse oximetry and end-tidal CO2 devices.
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The objective of this systematic review was to (1)

examine the safety and accuracy of systemic and brain

oxygen and CO2 monitoring; (2) evaluate its utility to

guide therapy; and (3) analyze whether oxygen or CO2

monitoring-guided therapy improves patient outcome after

acute brain injury (ABI) including traumatic brain injury

(TBI), subarachnoid hemorrhage (SAH), intracerebral

hemorrhage (ICH), acute ischemic stroke (AIS), or post-

cardiac arrest (CA) coma.

Methods

This systematic review was performed according to the

Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) statement [1].

Search Criteria

Studies were considered eligible based on the PICO

approach, which includes: (a) Patient population, i.e.,

critically ill TBI, SAH, ICH, AIS, or comatose CA

patients; (b) Intervention provided, i.e., PbtO2, SjvO2,

NIRS for regional cerebral oxygen saturation (rSO2),

arterial blood gas analysis (ABG) monitoring of arterial

oxygen saturation (SaO2)/partial arterial oxygen pressure

(PaO2)/partial arterial carbon dioxide pressure (PaCO2),

pulse oximetry (SpO2), capnometry for partial end-tidal

pressure of carbon dioxide (ETCO2); (c) Controls, i.e., ABI

patients without monitoring or patients without ABI who

underwent monitoring, or ABI patients monitored with

more than one device or in whom correlations with relevant

variables were analyzed; (d) Outcome endpoints, i.e.,

mortality, Glasgow Outcome Score (GOS), Glasgow Coma

Scale (GCS), modified Rankin Scale (mRS), functional

independence scores, neurological outcome, National

Institute of Health Stroke Scale, intensive care unit (ICU),

and hospital length of stay, duration of mechanical venti-

lation, complications, therapy modification, and changes in

physiological variables. Imaging techniques are not part of

this review. After selection, the evidence was classified and

practical recommendations were developed according to

the Grades of Recommendation, Assessment, Develop-

ment, and Evaluation (GRADE) system [2, 3].

Using the PubMed database, a systematic review was

performed (1980–August 2013) of the English language

literature. We did not consider unpublished data or congress

presentations/abstracts. The search strategy included the

terms: brain injury, traumatic brain injury (and related terms:

head trauma, neurotrauma, head injury), subarachnoid

hemorrhage, intracerebral hemorrhage, acute ischemic

stroke, large hemispheric infarction, malignant middle

cerebral artery infarction, cardiac arrest, hypoxic

encephalopathy, brain oxygen, brain tissue oxygen, brain

tissue oxygen pressure, brain tissue oxygen tension, brain

oxygenation, brain tissue oxygenation, near-infrared spec-

troscopy, cerebral oximetry, cerebral oxygenation, cerebral

tissue oxygenation, jugular bulb saturation, jugular venous

bulb oxygen saturation, jugular venous oxygen saturation,

jugular oximetry, systemic oxygenation, arterial oxygen

saturation, pulse oximetry, oximetry, central venous oxy-

genation, arterio-venous oxygen saturation difference,

partial arterial oxygen pressure, partial arterial carbon

dioxide pressure, blood gas analysis, ischemia, secondary

ischemia, brain hypoxia, brain tissue hypoxia, hypoxia,

cerebral ischemia, brain ischemia, delayed cerebral ische-

mia, vasospasm, cerebral perfusion imaging, mean arterial

pressure, intracranial pressure, cerebral perfusion pressure,

cerebral blood flow, hemoglobin, hematocrit, anemia,

transfusion, positive end expiratory pressure, fraction of

inspired oxygen, hypoxemia, mortality, Glasgow Outcome

Score, Glasgow Coma Scale, modified Rankin Scale, func-

tional independence scores, neurological outcome, National

Institute of Health Stroke Scale, Intensive Care Unit length

of stay, duration of ventilation, hospital length of stay, dis-

charge to home, discharge to institutional care, and

prognosis.

Study Selection and Data Collection

Articles were independently pre-selected according to their

title to identify those describing invasive brain oxygen,

non-invasive brain oxygen, and systemic oxygen monitor-

ing. We excluded: (a) review articles; (b) case reports or

case series with B5 patients; (c) animal studies; (d) pedi-

atric studies (<18 years); (e) studies that were not

conducted on ICU patients; and (f) studies performed on

patients without our pre-defined diseases.

Review Endpoints

The endpoints of this review were to answer the following

broad questions on oxygen monitoring: (1) is monitoring

safe and accurate, (2) does monitoring help guide man-

agement, and (3) does monitoring help to improve

outcome? Specific questions that were addressed include:

1. What are the indications for brain and systemic

oxygenation in neurocritical care patients?

2. What are the principal methods of reliable and

accurate brain oxygen monitoring?

3. What is the safety profile of brain oxygen monitoring?

4. What is the utility of brain oxygen monitoring to

determine prognosis in the comatose patient?

5. What is the utility of brain oxygen monitoring to direct

medical and surgical therapy?
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6. What is the utility of brain oxygen monitoring to

improve neurological outcome?

Grading of Evidence

The quality of available evidence was judged based on the

GRADE system. Summaries of the literature are followed

by recommendations. Additional findings and conclusions

are given in an on-line supplementary tables.

Results

Summary of the Literature

The initial search yielded 7,762 articles and abstracts and

529 articles were reviewed. After exclusions, the reviewers

identified 281 articles for inclusion; 161 for PbtO2, 57 on

SjvO2, 29 on NIRS, and 34 on systemic oxygenation

monitoring. More than two-thirds of the articles described

TBI patients. We found 3 randomized controlled trials

(RCT) for PbtO2 monitoring, 1 for SjvO2 monitoring, 1 for

NIRS monitoring, and 3 for systemic oxygen monitoring.

All other studies were non-RCT (case-controlled studies,

prospective/observational, retrospective studies). A large

majority were retrospective studies. The structure of this

chapter is separated into four main parts: (1) PbtO2, (2)

SjvO2, (3) NIRS, (4) ABG and ETCO2.

PbtO2 Monitoring

Regional brain tissue oxygen tension (PbtO2) monitoring

requires insertion of a catheter into the brain parenchyma

(sub-cortical white matter), through a single or multiple

lumen bolt or tunneled. Generally patients are selected for

PbtO2 monitoring when intracranial pressure (ICP) is

monitored.

Is PbtO2 Monitoring Safe and Accurate?

Eight studies tested safety and accuracy [4–11]: in sum-

mary, they found no catheter-related infections, 0–3 %

local bleeding around the catheter (with no clinical con-

sequence), 6–14 % technical complications (e.g.,

dislocation or defect). Catheters are MRI 1.5 Tesla com-

patible. For data accuracy, adaptation time was *2 h,

display error *2–3 mmHg, zero-drift *2 mmHg: display

errors and drift were greater during the first 4 days of

monitoring.

The Licox� system from Integra Neurosciences and the

Neurovent-PTO� system from Raumedic are currently

commercially available, and provide stable monitoring for

up to 7–10 days. In comparative studies, there are differ-

ences in absolute PbtO2 values, PbtO2 response to FiO2

increase, and PbtO2-derived indexes between the two devi-

ces [12–16]. Fever (*39 �C) may affect the Licox data.

CBF and CPP are important determinants of PbtO2 [17–

30], but a PbtO2 monitor is not simply an ‘‘ischemia

monitor’’ since several variables such as PaCO2 [31–40],

PaO2 [23, 41, 42], systemic factors that modify CMRO2

(e.g., fever, shivering [43, 44]) alter PbtO2. PbtO2 best

reflects the product of CBF and arterio-venous oxygen

tension difference [23] and is influenced by the oxygen

diffusion gradient [45]. Hence, when local tissue extraction

of O2 is impaired (e.g., peri-vascular edema), PbtO2 may be

low despite normal CBF.

‘‘Normal’’ PbtO2 is 23-35 mmHg [5, 46, 47] but

depends on probe depth, being less in deeper brain regions

[5]. Values <20 mmHg are considered abnormal and have

been associated with greater evidence for cerebral ischemia

and energy dysfunction [48–50]. In many centers, treat-

ment is initiated when PbtO2 is <20 mmHg although other

authors describe treatment when PbtO2 is <15 mmHg

[51].

Probe location can influence how PbtO2 responds to

therapeutic interventions and its association with outcome

in TBI [52–56]. In general, PbtO2 absolute values and the

response of PbtO2 to FiO2 are less in peri-contusional areas

compared to normal brain visualized on CT scan [52–54,

56]. In SAH, the ability of a PbtO2 probe to detect ischemia

associated with vasospasm depends on probe placement

and is better when the MCA or ICA is involved [57]. It is

important, therefore, that PbtO2 data be interpreted once a

post-insertion CT scan has verified probe position.

Does PbtO2 Monitoring Help Guide Management?

Most studies include comatose TBI patients and less fre-

quently SAH patients. PbtO2 monitoring can guide several

aspects of patient care. PbtO2 monitoring helps target

‘‘optimal CPP levels’’ (i.e., a CPP level to prevent/treat

brain tissue hypoxia, [PbtO2 < 20 mmHg]) in individual

patients or a level at which ICP requires treatment in TBI

[22, 29, 58–62] and SAH [30, 63, 64]. PbtO2 data can be

used to identify deleterious effects of drugs on CPP [65–

67] and document the effect of interventions such as

induced hypertension to increase CPP [20, 68–70].

Patient’s autoregulation state can be identified using the

online correlation between CPP and PbtO2, or the oxygen

pressure reactivity index (ORx), which helps target CPP in

TBI [18, 21, 71–73], SAH [27, 74], and stroke [26]. The

effect of osmotherapy to control ICP can be guided by

PbtO2 data [75–78]. Other ICP therapies (hypothermia [79–

83], barbiturates [84, 85], or decompressive craniectomy

[86–88]) can be guided by PbtO2 data. In patients receiving
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hypothermia PbtO2 monitors may detect deleterious effects

associated with a change in CO2 affinity or with shivering

[43, 83, 89, 90]. Anemia (hemoglobin < 9 g/dl) is asso-

ciated with lower PbtO2 after TBI [91] and SAH [92, 93]

and PbtO2 monitoring may help guide transfusion end-

points [91, 94–97]. The variable effects of sedation,

anesthetic agents, and ‘‘wake-up tests’’ on individual

patients can be examined using PbtO2 data [98–105]. PbtO2

levels may help guide ventilator management [106]. There

is a well-described relationship between hyperventilation,

reduced PaCO2, and decreased PbtO2 as well as between

impaired lung function and low PbtO2: recruitment

maneuvers (PEEP of 30-40 cmH2O) may thus help

improve PbtO2 [107] but this effect may depend on

hemodynamic stability [108]. Finally PbtO2 monitor use

and changes in ORx are described in SAH induced vaso-

spasm management [27, 74, 109–117] both to provide

insight about an intervention or to ‘‘predict’’ delayed

cerebral ischemia [109, 110, 114].

Does PbtO2-Guided Care Influence Outcome?

Twenty-four studies (21 TBI, 3 SAH) describe an association

between reduced PbtO2 (using thresholds of <20, <15 and

<10 mmHg) and worse outcome. In TBI, reduced PbtO2 is

associated with mortality [118–123], lower GOS score [124–

130], and increased neuropsychological deficits [131]. PbtO2

values of 0 mmHg are consistent with brain death [132, 133].

The tissue oxygen response (TOR; i.e. PbtO2 response to

100 % FiO2) also is associated with TBI outcome [134–136].

In SAH there is a relationship between reduced PbtO2 and

mortality but the relationship with morbidity is less robust

than in TBI [114, 137, 138].

Interventions such as ventilator manipulation (e.g. a

change in FiO2 or PEEP), CPP augmentation, sedation, or

osmotherapy are most frequently used to treat low PbtO2.

Overall medical therapy can correct three quarters of the

episodes of compromised PbtO2 (<20 mmHg) but varies

with the specific therapy or combination of therapies [139,

140]. Increased FiO2 generally is the most effective therapy

and both normobaric and hyperbaric oxygen can increase

PbtO2, although the exact response may depend on probe

position [52, 141–149]. Whether this translates into

improved cerebral metabolism and better tissue outcome is

still controversial.

A physiologic response to therapy to correct PbtO2 is

associated with better outcomes in TBI and SAH [139,

150]. Nine observational studies have described the effect

of PbtO2-directed therapy used with ICP/CPP management

in severe TBI [151–159], suggesting a tendency to better

outcomes with combined PbtO2 and ICP/CPP therapy

compared to ICP/CPP therapy alone in the majority of

them.

SjvO2 Monitoring

Jugular bulb catheters sample the intracranial circulation.

Measuring jugular bulb venous oxygen saturation (SjvO2)

or the difference between arterial and jugular venous

oxygen content (AJVDO2) provides information about

global cerebral oxygenation. The catheter should be in the

dominant internal jugular vein and proximal to the first

extra-cranial tributary, the facial vein for best results [160–

163]. A cervical spine x-ray is recommended to define

correct position [164].

Is SjvO2 Monitoring Safe and Accurate?

Jugular bulb blood can be sampled intermittently with a

catheter or continuously using a fiberoptic catheter. Cath-

eters need frequent calibration usually every 8–12 h [165,

166]. Poor quality signals from extra-cranial contamination

associated with inaccurate placement, clot formation,

catheter, and venous thrombosis or inadequate calibration

are common [167–171]. Hence data accuracy ranges

between 40 and 80 % [171–173] of total monitored time.

Several studies have compared SvjO2 and PbtO2 monitor-

ing [172, 174–179]. Overall these studies show SjvO2 is

less accurate than PbtO2.

Normal SjvO2 is between 55 and 75 %. Although vari-

ous definitions have been used, SjvO2 values <55 % are

consistent with cerebral ischemia [180–185]. At least 13 %

of the brain volume needs to be ischemic for the SjvO2 to

be abnormal and so its ability to detect regional ischemia is

limited [186–191].

Can SjvO2 Monitoring Help Guide Management?

The majority of studies have been in TBI patients, with

only few data in SAH or AIS. Reduced CPP is a common

cause of SjvO2 desaturation [192–198] and optimization of

CPP can reduce these episodes of low SjvO2 [196, 197,

199, 200]. Increased ICP also is associated with reduced

SjvO2 [192, 201, 202] but the response of SjvO2 to ICP

treatment including hyperventilation, osmotherapy, sur-

gery, or hypothermia is variable [202–206]. A decrease in

SjvO2 associated with hyperventilation can be used to de-

escalate therapy i.e., guide hyperventilation during ICP

treatment [195, 196, 207–212]. A failure of AVDO2 to

improve once ICP is normalized is associated with a

greater likelihood of cerebral infarction [213]. Sedatives

such as propofol or opiates have an uncertain effect on

SjvO2 [103, 214, 215]. There are limited studies in SAH

but they suggest changes in SjvO2 or AVDO2 may precede

neurologic symptoms associated with vasospasm and so

can be used to titrate or institute induced hypervolemia or

hypertension [196, 216].
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Does SjvO2-Guided Care Influence Outcome?

In TBI patients, reduced SjvO2 [180–182, 184, 203, 217],

increased SjvO2 (>75 %) [180], and increased AVDO2

[185, 213, 218] are associated with worse outcome. An

SjvO2 < 50 % for more than 10 min or failure of the

AVDO2 to respond to treatment are associated with worse

outcome [182, 213].

In a randomized controlled study, Robertson et al. [200]

examined whether a CBF-targeted protocol, using higher

CPP and optimized volume management but without tar-

geting a specific range SjvO2 improved outcome compared

to standard ICP-based care in severe TBI. Patients assigned

to the CBF-targeted management had fewer episodes with

low SjvO2 < 55 % but 6-month outcome was similar

because of a greater incidence of pulmonary complications

in the CBF-targeted protocol group.

Near-Infrared Spectroscopy (NIRS)

Near-infrared spectroscopy (NIRS) is based on the prin-

ciple that light (wavelength 700–950 nm) passing

through biological tissue is absorbed by blood depending

on its oxygenation status. The attenuation of light allows

estimation of oxygen status in the tissue volume reached

by the light. While NIRS use is better described in

cardiothoracic surgery and in neonatal or pediatric criti-

cal care, we only reviewed studies in adult neurocritical

care in which commercially available devices were used.

Most of these studies are small, there are several meth-

odological limitations, and results are conflicting.

Furthermore, NIRS has several limitations in adult use

[219–223].

Currently, four commercial NIRS systems are available:

(1) FORE-SIGHT (CAS Medical Systems, Branford, Con-

necticut, USA; FDA-approved); (2) EQUANOX (Nonin

Medical, Plymouth, Minnesota, USA; FDA-approved); (3)

INVOS (Covidien, Boulder, Connecticut, USA; FDA-

approved); and (4) NIRO (Hamamatsu Photonics, Ham-

amatsu City, Japan; CE-marked). The INVOS and the NIRO

are the most widespread in clinical use. There is insufficient

data to recommend one device over the other. For inter-

monitor comparisons and technical aspects, the reader is

referred elsewhere [220, 223–237].

Is NIRS Monitoring Safe and Accurate?

While only two studies specifically addressed safety and the

application of NIRS [219, 238], no adverse effects were

described in other studies. Seventeen studies examined how

NIRS compared to other measures of brain oxygen and

perfusion including changes in these variables. The results

are very variable with good [222, 239–249], partial [219,

222, 238, 240–250], or poor correlation [251–254]. In large

part, this variability results from factors such as ambient

light, scalp, skull, and CSF conditions [223] or extra-cranial

circulation that influence the NIRS signal [220, 224].

Can NIRS Monitoring Help Guide Management?

Nineteen studies, mostly small observational studies,

describe how NIRS may be used to understand patient

physiology or guide management in neurocritical care. This

includes use in ICP waveform analysis [255]; cerebral

autoregulation [248, 249, 256]; CPP and MAP assessment

[60, 222, 251, 257–260]; vasospasm [221, 261, 262]; head

positioning [263], hematoma assessment, and surgical

decision making [264–266]. The results are mixed.

Does NIRS Monitoring Help to Improve Outcome?

There are very limited data on this question and no studies to

show that NIRS use helps to improve outcome in adult

neurocritical patients. Ideally, NIRS should be used with

other monitors and most studies suggest it is easy to incor-

porate NIRS into multimodal monitoring. This is best

exemplified in its use to assess cerebral autoregulation [248,

249].

NIRS: Conclusions

While NIRS is an attractive monitor since it is non-inva-

sive, it has several limitations in adult use and at present

has little if any role in adult neurocritical care. In partic-

ular, NIRS, alone, is currently not indicated for routine

monitoring of adult patients who require neurocritical care.

Instead if NIRS is to be used, it is best integrated with other

monitors to answer research questions but at the moment

not to guide management.

Systemic Oxygen Monitoring

Systemic oxygen can be measured invasively by arterial

blood gas analysis (ABG) for PaO2 and SaO2 and non-

invasively with pulse oximetry (for SpO2). There are a

variety of devices to assess systemic oxygenation but too

few technology validation studies in neurocritical care

patients to allow recommendation of one device over the

other. Most data are from TBI and SAH, thus limiting

generalizability. Most studies are small, non-controlled,

and suffer methodological weaknesses. Furthermore, sys-

temic oxygen monitoring usually is not the primary

endpoint but reported as part of the methods or as a sec-

ondary endpoint. Consequently, many studies were not

designed to answer the review questions directly and

instead provide indirect evidence only.
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Is Systemic Oxygen Monitoring Safe and Accurate?

No studies specifically address this question in neurocriti-

cal care patients, although these devices are used in

virtually all these patients. Pulse oximetry has been vali-

dated in healthy volunteers [267]. ABG and SpO2 use are

well studied in the operating room and the general ICU

where their use is safe and associated with fewer episodes

of hypoxia. The impact on outcome is less certain. There is

no plausible reason to assume that safety, applicability,

methodological reliability, or accuracy would be any dif-

ferent in neurocritical care patients although limited

precision has been identified in select circumstances [268–

270].

Can Systemic Oxygen Monitoring Help Guide

Management?

Systemic hypoxia and hyperoxia are known to exacerbate

outcome. Ten studies, including two small RCTs, addres-

sed how systemic oxygen monitoring can guide

neurocritical care management. In summary, pulse oxim-

etry or ABG analysis can reliably detect pulmonary and

circulatory abnormalities [271], and guide correction of

brain oxygen in select patients when using normobaric

hyperoxia [147, 272], PEEP [105, 107, 108, 273], recruit-

ment maneuvers [274, 275], or prone positioning [276].

Does Systemic Oxygen Monitoring Help to Improve

Outcome?

There are no outcome studies in neurocritical care that

compare patients managed with or without systemic oxy-

gen monitoring. However, two small observational studies

and one large retrospective registry provide indirect evi-

dence for the value of systemic oxygen monitoring in TBI.

In particular, desaturation on pulse oximetry or both low

and very high PaO2 are associated with worse outcome

[277–279]. Since cost and risk of systemic oxygen moni-

toring are low and the value in understanding patient

pathophysiology is high, there is no reason not to use

systemic oxygen monitoring as part of multimodal

monitoring.

Systemic Carbon Dioxide Monitoring

Systemic carbon dioxide is assessed invasively by arterial

blood gas analysis for PaCO2 and non-invasively with

capnography, capnometry, and continuous assessment of

end-tidal CO2 (ETCO2). There are several devices to assess

systemic carbon dioxide but too few technology validation

studies in neurocritical care to allow recommending one

device over the other. The reader is referred elsewhere for

details on technology [280–283].The vast majority of

studies on carbon dioxide monitoring are in TBI or SAH

and usually CO2 is not a primary endpoint, i.e., most evi-

dence is indirect.

Is Systemic Carbon Dioxide Monitoring Safe

and Accurate?

There is extensive research on CO2 analysis using ABG or

ETCO2 monitoring in general critical care and in anes-

thesia that demonstrate feasibility and safety. These

questions have not been specifically addressed in neuro-

critical care but there is no reason to expect a difference.

ABG-analysis of PaCO2 is routine and in widespread

use in all ICUs. Similarly, ETCO2 is used routinely in the

operating room [284]. End-tidal CO2 correlates with

PaCO2 in healthy ventilated patients but with impaired

pulmonary gas exchange (e.g., increased anatomic or

physiologic dead space, or low cardiac output) there can be

a gradient between ETCO2 and PaCO2 that may change

over time [257]. Hence ETCO2 is not a one-for-one sub-

stitute for PaCO2 and when ETCO2 is used it should be

validated against PaCO2.

Does Systemic Carbon Dioxide Monitoring Help Guide

Management?

Fifteen studies address this question; most are prospective

observational studies or case series and use ETCO2 or

PaCO2 monitoring [31, 186, 203, 285–292]. PaCO2 mon-

itoring and less reliably ETCO2 can help to detect and

guide hyperventilation. There is a reasonable relationship

with CBF and brain oxygen but less robust relationship

with CMRO2 and oligemia.

Does Systemic Carbon Dioxide Monitoring Help

to Improve Outcome?

There are no outcome studies in neurocritical care that

compare patients managed with or without systemic CO2

monitoring. Six studies, including one RCT provide indi-

rect evidence in that they show hyper- or, more often,

hypocapnia, to be associated with worse outcome or mor-

tality in TBI [279, 281, 293–295] and SAH [296]. Similar

to oxygen monitoring, it makes physiologic sense that CO2

monitoring be incorporated into multimodal monitoring.
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