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Abstract
Functional microcircuits model the coordinated activity of neurons and play an important role in physiological computa-
tion and behaviors. Most existing methods to learn microcircuit structures are correlation-based and often generate dense 
microcircuits that cannot distinguish between direct and indirect association. We treat microcircuit structure learning as a 
Markov blanket discovery problem and propose Bayesian Coherence Analysis (BCA) which utilizes a Bayesian network 
architecture called Bayesian network with inverse-tree structure to efficiently and effectively detect Markov blankets for 
high-dimensional neural activity data. BCA achieved balanced sensitivity and specificity on simulated data. For the real-
world anterior lateral motor cortex study, BCA identified microcircuit subtypes that predicted trial types with an accuracy of  
0.92. BCA is a powerful method for microcircuit structure learning.

Keywords Microcircuit · Structure learning · Markov blanket · Bayesian network · Markov network

Introduction

Coordinated neuronal firing has been reported in the cortical 
and subcortical regions (Harris et al., 2003; Uhlhaas et al., 
2009; Oberto et al., 2022). Statistical associations among 
neural dynamics form a mesoscopic scale functional network 
(millimeter-to-micrometer resolution). Such mesoscopic 
scale networks are functional microcircuits (Chen, 2021). 
Functional microcircuits model coordinated activity of neu-
rons firing in synchrony which has been proposed as the 
general substrate for a variety of physiological computation 
and behaviors  (Baeg et al., 2003; Dragoi & Buzsáki, 2006; 
Fujisawa et al., 2008).

Most existing studies examining functional microcircuits 
are based on correlation analysis and its variations. A typical 
correlation-based process is as follows: for M neurons, we 
first calculate M(M − 1)∕2 pairwise correlation coefficients, 
then use the false discovery rate for multiple comparison 
correction to remove weak associations. The major limita-
tion of correlation-based microcircuit structure learning is 
that it often generates a dense brain graph.

We propose a method called Bayesian Coherence Analysis 
(BCA) to construct microcircuits for high-dimensional neural 
activity data. The foundation of BCA is Bayesian modeling 
for conditional independence. In BCA, the microcircuit struc-
ture learning problem is formulated as a Markov blanket dis-
covery problem. BCA has the following characteristics: first, 
it generates a parsimonious model; second, it can efficiently 
generate a graphical model for high-dimensional data and has 
excellent scalability; third, it is a unified framework for both 
discrete data (binary spikes) and quantitative data (calcium 
imaging signal).

Method

Background

BCA is based on probabilistic graphical models (Koller 
& Friedman, 2009). Let V = {X1, ...,XM} denote a set of 
random variables taking values in a discrete or continu-
ous state space Λ . Let PV be a joint probability distribu-
tion on V . � and � are conditionally independent given � 
if P(�‖�,�) = P(�‖�) , where �,�,� are mutually exclu-
sive subsets of V . A probabilistic graphical model encodes 
conditional independence of PV into a graph structure 
G = {V, E} , where V is the node set and E is the edge (or 
link) set. The Markov Blanket of node Xi , denoted by mb(Xi) , 
is the minimal set of nodes that separates Xi from the rest of 
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the graph (Pearl, 1988). Xi is conditionally independent of 
variables in V ⧵ {Xi,mb(Xi)} given mb(Xi) . Nodes in mb(Xi) 
consist of the minimal set (the most compact set) of vari-
ables that are jointly most predictive of Xi . For the variable 
selection problem, mb(X) is the optimal set to predict Xi.

Probabilistic graphical models represent joint distributions 
in concise forms. A compact representation can dramatically 
accelerate the inference process. There are mainly two types of 
probabilistic graphical models: Markov networks and Bayesian 
networks. Both can be used to study conditional independence 
among a set of random variables. In a Markov network, the 
structure G is an undirected graph and edges represent sym-
metric associations between nodes. If the graph topology is 
a lattice, a Markov network is also referred to as a Markov 
random field, which is widely used in statistical mechanics 
and computer vision. In this paper, we use the Markov network 
to represent PV and the microcircuit is the associated graph G.

In a Bayesian network B = {G,P} , the structure G is a 
directed acyclic graph. A parent node of Xi is a node from 
which there exists a directed edge. The set of parent nodes 
of Xi is denoted as pa(Xi) . The joint distribution of V can be 
factorized as 

∏
Xi
P[Xi�pa(Xi)] . Because of this factorization, 

the Bayesian network can represent the joint distribution in a  
compact fashion. The conditional independence in G can be 
examined by studying D-separation. The process of detect-
ing G based on observed data is referred to as Bayesian net-
work structure learning. A widely used Bayesian network 
structure learning approach is score-based structure learn-
ing. It defines a score function that measures how well the  
model fits the observed data; then finds the highest-scoring 
model. Relative to a Markov network, a Bayesian network 
has the potential to be used to detect causal relationships 
when the direction of information flow can be deter-
mined (Chen, 2021). Details of Bayesian network represen-
tation, D-separation, and structure learning are in  (Koller 
and Friedman, 2009). In this paper, we use a Bayesian net-
work as a computational tool to facilitate Markov blanket 
discovery, instead of as a representation tool.

Bayesian Coherence Analysis

BCA aims to learn a microcircuit G which is represented 
as a Markov network from a neural activity dataset � . In 
a Markov network, the probability distribution has the 
form P(x1, ..., xM) =

1

Z
exp(−

∑
c Vc(�c)), where c is a 

clique (a fully connected subgraph) of G , �c = {xi, i ∈ c} , 
U =

∑
c Vc(�c) is the energy function and Z is the parti-

tion function. P(x1, ..., xM) follows a Gibbs distribution 
with interaction potential Vc(�c) . In a pairwise Markov net-
work, a clique contains up to two nodes. Pairwise Markov 
networks are widely used due to their computational effi-
ciency (Hernández-Lemus, 2021). We adopt the pairwise 
Markov network representation in this paper. In a Markov 

network, the Markov blanket of node Xi is the neighbor-
hood of Xi . The Markov blanket of node Xi is the set of 
nodes that are jointly most predictive of Xi . For node Xi , 
the edges between Xi and nodes in mb(Xi) are referred to as 
direct associations. For example, for a Markov network A 
– B – C, the direct association of node C is B – C. However, 
two nodes could be conditionally independent of each other 
but still associated. In this example, A and C are associated. 
A structure learning algorithm that does not consider condi-
tional independence may generate a graph model including 
the edge A – C. This edge is referred to as indirect edges.

The neural activity data are often binary or continuous. 
For binary spike data, the state space Λ is {0, 1} . The Ising 
model with fields can be used to represent coherence among 
binary nodes. In the Ising model with fields, U = −(

∑
i

r
i
x
i
+
∑

i,j
w
ij
x
i
x
j
) , where wij is the coupling coefficient and 

denotes the preference of nodes Xi and Xj to be in the same 
state. If wij = 0 , then Xi and Xj are not connected. Let 
� = {r1, ..., rM} and � be the matrix containing wi,j . The 
matrix form of the energy function is −(�T� + 1

2
�T��) . For 

continuous data with the state space Λ = ℝ , a Gaussian 
Markov network can be used to model coherence. In this 
model, P(V) = 1√

(2�)M ���
exp(−

1

2
(� − �)T�−1((� − �)) , where 

� is the mean vector and � is the variance-covariance matrix. 
Let � = −�−1 and � = �T� . The matrix form of the energy 
function of a Gaussian Markov network is −(�T� + 1

2
�T��) . 

The Ising model with fields and Gaussian Markov network 
have a unified representation.

For both the Ising model with fields and Gaussian Markov 
network, the neighborhood of node Xi are nodes that are most 
predictive of Xi . Learning G (the structure of the network 
model) can be conducted in a node-by-node fashion. There-
fore, Markov networks are a unified representation and learn-
ing framework for both binary and continuous neural activity 
data. The key task is to detect mb(Xi) . This is a challenging 
task when the dimensionality of V is high. For example, for a 
Gaussian Markov network, G can be detected based on partial 
correlation coefficients between nodes conditioned on all other 
nodes which can be obtained based on the negative inverse 
covariance matrix. Obtaining the negative inverse covariance 
matrix is computationally intensive for high-dimensional data.

When a probability distribution can be represented as a 
Markov network and Bayesian network, mb(Xi) in these two 
models are identical. This is illustrated in Fig. 1. Figure 1(a) 
is a Bayesian network. In a Bayesian network, the Markov 
blanket of a node includes the parent node, the child node, 
and the parent set of child nodes. In Fig. 1(a), the Markov 
blanket of node C is {A,B,D,E} . We can convert the Bayes-
ian network in Fig. 1(a) by moralization and obtain the asso-
ciated Markov network which is depicted in Fig. 1(b). In 
Fig. 1(b), the neighborhood of C is {A,B,D,E} . The Markov 
blanket of C in these two probabilistic graphical models is 
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identical. Based on this observation, G can be reconstructed 
by detecting the Markov blanket structure in a Bayesian net-
work which is consistent with �.

For high-dimensional data, directly learning the Markov 
blanket structure in a Bayesian network could be a daunt-
ing task. We have proposed a specific type of Bayesian net-
work, called Bayesian Network Classifier with Inverse Tree 
structure (BNCIT), which supports efficient Markov blanket 
discovery for high-dimensional data (Chen & Herskovits, 
2005a; b). Let V ⧵ � denote the set of nodes in V and not 
in � . In BNCIT, to detect mb(Xi) , Xi is set to be a leaf node 
and V ⧵ {Xi} are potential parent nodes of Xi . mb∗(Xi) , the 
detected Markov blanket, is a subset of V ⧵ {Xi} which can 
maximize a model fitness function Γ(mb(Xi),�) . That is,

This optimization problem can be solved by the hill-
climbing method. For binary data, the fitness function 
can be the Bayesian Dirichlet equivalent uniform (BDeu) 
score (Heckerman et al., 1995). For continuous data, the 
fitness function can be the Bayesian information criterion 
(BIC)  (Schwarz, 1978). An important characteristic of 
these fitness functions is that they balance the likelihood 
and model complexity and tend to generate compact mod-
els. BNCIT is an approximate learning method to greatly 
improve learning speed. The Markov blanket of node Xi dis-
covered by BNCIT is guaranteed to be a subset of the ground 
truth Markov blanket (Chen & Herskovits, 2005a). BNCIT 
is fast and has very high specificity.

The BCA algorithm is listed in Algorithm 1. With BNCIT, 
we can learn the Markov blanket structure node by node. 
When V contains M nodes, this step generates M BNCIT 
models. Then we combine these models. If Xi is in mb∗(Xj) 
or Xj is in mb∗(Xi) , the (i, j) element of G is 1 (nodes Xi and Xj 
are connected in the microcircuit); otherwise, it’s zero. The 
model combination step is important to improve sensitivity. 

(1)mb∗(Xi) = argmax
mb

Γ(mb(Xi),�). Theoretical Analysis

The central assumption of BCA is as follows: if a probability 
distribution P can be represented by a Markov network M 
and a Bayesian network B , and the Markov blanket struc-
tures of M and B are identical, then BCA can be used for 
approximate structure learning of M.

Let I(P) be the set of conditional independence asser-
tions that hold in P. Let I(G) be the conditional independ-
ence encoded in the graph object G . G is an I-map for P if 
I(G) ⊆ I(P) . G is a minimal I-map for P if the removal of a 
single edge from G renders it not an I-map. G is a perfect map 
for P if I(G) = I(P) . If P admits a Markov network which is 
a minimal I-map and also admits a Bayesian network which 
is a perfect map, then the Markov blanket structure in the 
Bayesian network is more compact. If P admits a Markov 
network which is a perfect map and also admits a Bayesian 
network which is a minimal I-map, then the Markov blanket 
structure in the Markov network is more compact.

1) If both M and B are perfect maps of P, then 
I(M) = I(B) and the Markov blanket structures of M and 
B are identical. Our assumption is satisfied. 2) When M 

Fig. 1  A Bayesian network (a) and the related Markov network (b)
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is a minimal I-map and B is a perfect map, BCA can still 
detect the correct conditional independence structure in 
P. For this case, the Markov blanket structure detected by 
BCA is more compact than that generated by algorithms that 
directly learn the Markov network (such as the regression-
based graph construction). 3) When M is a perfect map and 
B is a minimal I-map, the graph generated by BCA includes 
redundant links, relative to the graphs generated by algo-
rithms that directly learn the Markov network. 4) When M 
is a minimal I-map and B is also a minimal I-map, it is not 
clear which graphical model is more compact. This depends 
on the characteristics of P.

Although it’s not guaranteed that P admits a Markov net-
work or a Bayesian network which is a perfect map of P, 
a positive distribution P always admits a Markov network 
and a Bayesian network which are minimal I-maps of P. 
Details are in Sects. 3.4 and 4.4.3 of (Koller & Friedman, 
2009). Therefore, in general, we can generate a probabilistic 
graphical model for the observed data. However, the gener-
ated model may not encode all conditional independence 
assertions in P.

Markov networks have been used to model single cell 
neuronal data (Makarenko et al., 1997; Schneidman et al., 
2006; Ohiorhenuan et al., 2010). These studies center on 
coherence which is a symmetric relationship, instead of 
causal structures. Under some conditions such as a node 
order of causal relationship is given or intervention data are 
available, Bayesian network modeling can be used for causal 
discovery. In this setting, the edge direction has a causal 
interpretation. In BCA, we use a Bayesian network as a com-
pact representation of a probability distribution. The edge 
direction in the generated model does not represent causality.

Results

We assessed the performance of BCA in three studies: the 
6-node model, biophysics-based simulation, and the Ante-
rior Lateral Motor cortex (ALM) study. When a ground-truth 
graph Ggt is available, the performance of a microcircuit 
structure learning algorithm can be measured by compar-
ing the estimated microcircuit Gest and Ggt and calculat-
ing the False Positive Rate (FPR) and True Positive Rate 
(TPR). FPR is the number of falsely identified links divided 
by the total number of empty links in Ggt where an empty 
link represents there is no edge between a node pair. TPR 
is the total number of correctly identified links divided by 
the total number of true edges in Ggt . Sensitivity is equal to 
TPR and specificity is 1 - FPR. Both the 6-node model and 
biophysics-based simulation are simulation-based and have 
ground-truth graphs.

We implemented two comparison methods: correlation-
based analysis and regression-based graph structure learning. 
In correlation-based analysis, we first calculated pairwise 

Spearman’s correlation coefficients. For (Xi,Xj) , if the asso-
ciated p-value with the false discovery rate correction is 
smaller than a significance level, Eest

i,j
= 1 ; otherwise Eest

i,j
= 0 . 

We used three significance levels: 0.05, 0.005, and 0.0005. 
The lower significance level represented a more conservative 
estimation. We used the method in  (van Borkulo et al., 2014) 
for regression-based graph construction. This method com-
bines L1-regularized logistic regression with model selec-
tion based on the extended Bayesian information criterion. 
It generates a set of node-wise regression models and then 
combines them to form a graph model.

The 6‑node Model

We generated data for a microcircuit with 6 nodes. Each 
node was a neuron. The simulated data were sampled from  
an Ising model which is depicted in Fig.  2(a). The cou- 
pling coefficients were as follows: w1,2 = 0.5 , w1,4 = 0.5 , 
w2,3 = 0.5 , w3,4 = 0.5 , w4,5 = −0.8 , and w5,6 = 0.9 . Tempera-
ture � = 2 . The sample size was 5000. The sampling method was  
the Metropolis-Hastings algorithm.

Figure 2(b)-(h) are network structures generated by differ-
ent methods. Table 1 is TPRs and FPRs for different meth-
ods. In this table, the second column is the number of edges 
in Ggt and the third column is the number of empty edges in 
G
gt . We also include two ensemble-based methods: BCA-

AND-regression and BCA-OR-regression. In BCA-AND-
regression, if a link exists in both the model generated by 
BCA and that of regression-based, it is in the final model. 
In BCA-OR-regression, if a link exists in either the model 
generated by BCA or that of regression-based, it is in the 
final model. BCA perfectly recovered the ground-truth struc-
ture. The regression-based method detected all edges, and 
added two spurious edges. The correlation-based analysis 
had a high FPR and detected many spurious edges. Relative 
to BCA, two ensemble-based methods achieved no perfor-
mance gain. Although the data were sampled from a Markov 
network model, BCA which uses Bayesian network learning 
as the computation engine detected the ground-truth network 
structure with TPR=1 and FPR=0.

Biophysics‑based Simulation

We simulated 1200 samples for a feed-forward network with 
100 integrate-and-fire neurons with additive noise. The neu-
ron model was as follows: dV

dt
=

Vrest−V

�
+ � × � × �−0.5 , where 

V was the membrane potential and Vrest was the resting 
potential. The neuron fired an action potential if V > 1 . � was 
a Gaussian random variable with mean 0 and standard devia-
tion 1. � × � × �−0.5 was the noise term and � controlled the 
noise level. � = 0.2 . � was the membrane time constant. 
There were two neural ensembles: groups A (50 neurons) 
and B (50 neurons). For group A, � was a Gaussian random 
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variable with mean 20 ms and standard deviation 5. For 
group B, � = 100 ms. The simulation sampling step was 5 
ms. Neurons in group A were activated by an external stimu-
lus. The external stimulus was randomly presented every 3 
or 4 frames (15 or 20 ms). A neuron in group B was con-
nected to two randomly selected neurons in group A. If a 
parent node fired, then the membrane potential of the target 
node increased by a = 0.8 . In the simulated data, one neuron 
in group B had no firing and was excluded from the analysis. 
The reference microcircuit Ggt is defined as follows: if neu-
rons Xi and Xj in group B have at least one common parent 
node in group A, then Egt

i,j
= 1 , otherwise Egt

i,j
= 0 . This 

microcircuit for group B is depicted in Fig. 3(a). There were 
98 edges in Ggt.

This simulation is inspired by the studies demonstrating 
coupling spiking could be a consequence of shared presyn-
aptic input (Shadlen & Newsome, 1998; Renart et al., 2010). 
Renart et al. investigated the relationship between coherence 
(measured by correlation) and shared excitatory inputs and 
found that the correlation between a neuron pair increased 
with increasing shared input fractions (Fig. 1b of  (Renart 
et al., 2010)). Our simulation focuses on examining the 
coherence of neurons in group B. The ground-truth con-
nectivity matrix reflects shared inputs.
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Fig. 2  The microcircuits for 6-node model

Table 1  Structure learning for 
the 6-node model

Model #edge #empty TP FP TPR FPR

Correlation-0.05 6 9 6 8 1.00 0.89
Correlation-0.005 6 9 6 7 1.00 0.78
Correlation-0.0005 6 9 6 5 1.00 0.56
BCA 6 9 6 0 1.00 0.00
Regression 6 9 6 2 1.00 0.22
BCA-AND-Regression 6 9 6 0 1.00 0.00
BCA-OR-Regression 6 9 6 2 1.00 0.22



200 Neuroinformatics (2023) 21:195–204

1 3

The results of structure learning are listed in Table 2 and 
the generated microcircuits are depicted in Fig. 3. Correlation- 
based analysis generated a dense network with many spu-
rious edges (Fig. 3(b)-(d)). Other methods balanced true 
positives and false positives in different ways. Relative to 
BCA and regression-based methods, two ensemble-based 
methods (Fig. 3(g) and (h)) didn’t improve true positives 
and false positives significantly. True positives of BCA and 
regression-based were 63 and 82, while false positives of 
BCA and regression-based were 30 and 111. BCA missed 
extra 19 edges and eliminated 81 false positives. BCA was 
more balanced between sensitivity and specificity and had 
very low FPR.

Anterior Lateral Motor Cortex

In the mouse, neurons in the anterior lateral motor cortex 
exhibit preparatory activity that predicts movements. The 
ALM in the mouse is a possible homologue of premotor 
cortex in primates. We reanalyzed two-photon calcium imag-
ing data of ALM (Li et al., 2015). In this experiment, mice 
underwent a whisker-based object location discrimination 
task. A trial had three epochs: sample, delay, and response. 
A vertical pole was presented in the anterior or posterior 
position during the sample epoch. During the response 
epoch, mice reported the perceived pole position (posterior, 
lick right; anterior, lick left). Two-photon calcium imaging  
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Fig. 3  The microcircuits for biophysics-based simulation

Table 2  Structure learning for 
biophysics-based simulation

Model #edge #empty TP FP TPR FPR

Correlation-0.05 98 1078 98 1028 1.00 0.95
Correlation-0.005 98 1078 98 966 1.00 0.90
Correlation-0.0005 98 1078 98 916 1.00 0.85
BCA 98 1078 63 30 0.64 0.03
Regression 98 1078 82 111 0.84 0.10
BCA-AND-Regression 98 1078 61 26 0.62 0.02
BCA-OR-Regression 98 1078 84 115 0.86 0.11
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data were obtained for neurons in the left ALM which were 
labelled with GCaMP6s. The imaging depth was 410 �m .  
The number of observed neurons was 89 and the number of  
trials was 53. There were two trial types: lick left and lick  
right. Neural activity was measured by ΔF∕F0 = (F − F0)∕F0 ,  
where F0 was the baseline fluorescence signal. For each 
trial, we used BCA to generate a microcircuit. This process 
resulted in 53 microcircuits.

We conducted subtype detection (Chen, 2021) to group 
the generated microcircuits into clusters. The similarity 
between Ga and Gb is the Sørensen-Dice coefficient of the 
adjacency matrix of Ga and that of Gb . This similarity meas-
ure is in [0, 1] with 1 representing a perfect match and 0 
representing no overlap. For these 53 trials, we generated a 
53 × 53 similarity network, then used the multi-level modu-
larity optimization algorithm to detect subtypes. For each 
subtype, we can select a representative graph that has the 
maximal similarity to other graphs in the same cluster. Two 
subtypes were detected (Fig. 4). The detected subtypes were 
highly predictive of trial types. Subtype 1 had 26 graphs for 
trial type ’left’ and 3 graphs for trial type ’right’ and subtype 
2 had 1 graph for trial type ’left’ and 23 graphs for trial type 
’right’ Fig. 5.

We can use graph-theoretic analysis for undirected 
graphs to understand the generated microcircuits. Node 
centrality scores quantify the importance of nodes based 
on their topological properties. A node centrality score can 
be calculated node-by-node. The graph-level node cen-
trality score is the average across nodes. We used these 
graph-level node centrality metrics: betweenness centrality 

and eigenvector centrality (Fig. 5). Betweenness central-
ity measures how often a node is on the absolute shortest 
path between a node pair. Eigenvector centrality measures 
a node’s importance while considering the importance of 
the node’s neighbors. It is a generalization of the degree 
centrality and calculated based on the eigenvector of the 
graph adjacency matrix. For the ALM study, we compared 
these graph-level centrality scores across subtypes with 
two-sample t-tests (two-tailed). We found that subtypes 
1 had a higher betweenness centrality score (p-value = 
0.0036), and subtype 1 had a lower eigenvector central-
ity score (p-value = 0.0090). Nodes with high between-
ness centrality often connect nodes in different network 
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Fig. 4  The representative microcircuits for subtypes 1 and 2. The microcircuits are generated based on calcium imaging data of the ALM study
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communities. The findings of graph-theoretic analysis 
suggest that microcircuits in subtype 1 prefer local com-
putation and microcircuits in subtype 2 are more densely 
connected.

Discussion

We propose BCA to learn the structure of a microcircuit 
from high-dimensional continuous or binary neural activ-
ity data. BCA treats structure learning as a node-wise 
Markov blanket discovery problem and utilizes Bayesian  
networks as computational tools to efficiently solve  
this problem. BCA incorporates the following major 
strengths. First, relative to correlation-based analysis 
which is one of the widely used methods for microcircuit 
construction, BCA can generate a compact model. Such 
compact models are parsimonious and facilitate down-
stream analysis such as clustering, differential analysis, 
and graph-based neural decoding (Chen & Lin, 2019). 
Second, BCA can handle high-dimensional data because 
it uses BNCIT for Markov blanket detection. BNCIT is 
a Bayesian network architecture to support approximate 
learning of Markov blanket with high specificity. Third, 
BCA is a unified structure learning framework for both 
continuous and binary neural activity data.

We compared BCA, correlation-based analysis, and 
regression-based analysis on a simulated dataset for 
a 6-node Ising model. BCA can perfectly recover the 
ground-truth structure while other methods have structure 
learning errors (Table 1). We assessed BCA’s performance 
on a biophysics-based simulation in which the reference 
microcircuit’s structure is determined by anatomical con-
nectivity. Correlation-based analysis generates a very 
dense graph with many spurious edges. The microcircuit 
generated by BCA is well balanced in sensitivity and spec-
ificity. For the real-world ALM study, we constructed a 
microcircuit for each trial and obtained 53 microcircuits. 
We found that these microcircuits can be grouped into two 
subtypes that are highly predictive of trial types (lick left 
or lick right). This result demonstrates microcircuit struc-
ture learning with BCA can facilitate downstream analysis.

In this study, our goal is to learn the structure of a 
Markov network to describe the coordinated activity of 
neural firing in synchrony. The proposed method aims to 
address the limitations of the correlation-based analysis. 
We found that the proposed method generated more com-
pact graphs than did the correlation-based analysis. First, 
the proposed method is not designed for causal discov-
ery. Markov networks cannot model causal relationships. 
Figure 1 depicts the conditional independence structures, 
instead of causal relationships. Second, both Markov 
networks and Bayesian networks can be used to model 

conditional independence. For some conditional independ-
ence relations, it is possible that the Bayesian network 
representation is more compact. It is also possible that the 
Markov network representation is more compact (an exam-
ple is in Sect. 4.1 of (Koller & Friedman, 2009)). We adopt 
the Markov network representation because the Bayesian 
network representation may not be unique. That is, an 
independence relation might admit many Bayesian net-
work representations. Although the Markov blanket struc-
tures of these equivalent Bayesian networks are identical, 
the edge directions could be different. This might cause 
problems in downstream analysis such as graph clustering.

BCA is an approximate learning method. Its sensitivity 
could be improved by ensemble learning. However, ensem-
ble learning methods often have much higher computation 
costs because they generate a set of models. We plan to 
assess the feasibility of combining BCA and ensemble 
learning under the Bayesian framework in our future work.

Information Sharing Statement

The simulated data and the software package are freely 
available for academic purposes on request. The ALM 
dataset is is available at  (Li et al., 2015).

Appendix

In this experiment, we provided a comprehensive assess-
ment of correlation-based analysis. Instead of setting a fixed 
significance level threshold � , we treated � as a hyperpa-
rameter and generated a receiver operating characteristic 
(ROC) curve by varying � . In the ROC curve, sensitivity 
is TPR and specificity is 1-FPR. The ROC curves for the 
6-node model and the biophysics-based simulation are in 
Fig. 6(a) and (b). For the 6-node model, the operating point 
with the lowest FPR had FPR = 0.11 (one false-positive 
edge) and TPR = 1. If we lower � further, TPR would be 0. 
For BCA, FPR = 0 and TPR = 1. For the biophysics-based 
simulation, the operating point with the lowest FPR had 
FPR = 0.13 (143 false-positive edges) and TPR = 0.91 (89 
correctly detected edges). For BCA, FPR = 0.03 and TPR = 
0.64. Relative to correlation-based analysis with the lowest 
FPR operating point, BCA eliminated 113 false positives, 
with the cost of missing 26 true positives. If an application 
focuses on high TPR, then correlation-based analysis could 
be preferred. In this case, how to choose the threshold is 
critical. If an application focuses on generating compact 
models and achieving a balanced trade-off between TPR 
and FPR, BCA could be preferred.
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