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Abstract
This article introduces the Zeffiro interface (ZI) version 2.2 for brain imaging. ZI aims to provide a simple, accessible and
multimodal open source platform for finite element method (FEM) based and graphics processing unit (GPU) accelerated
forward and inverse computations in the Matlab environment. It allows one to (1) generate a given multi-compartment head
model, (2) to evaluate a lead field matrix as well as (3) to invert and analyze a given set of measurements. GPU acceleration
is applied in each of the processing stages (1)–(3). In its current configuration, ZI includes forward solvers for electro-
/magnetoencephalography (EEG) and linearized electrical impedance tomography (EIT) as well as a set of inverse solvers
based on the hierarchical Bayesian model (HBM). We report the results of EEG and EIT inversion tests performed with
real and synthetic data, respectively, and demonstrate numerically how the inversion parameters affect the EEG inversion
outcome in HBM. The GPU acceleration was found to be essential in the generation of the FE mesh and the LF matrix in
order to achieve a reasonable computing time. The code package can be extended in the future based on the directions given
in this article.

Keywords Matlab Interface · Electro-/Magnetoencephalography (EEG/MEG) · Electrical Impedance Tomography (EIT) ·
Finite Element Method (FEM) · Hierarchical Bayesian Model (HBM)

Introduction

This article introduces the Zeffiro1 interface (ZI) version
2.2 for electromagnetic brain imaging and investigations.
ZI aims to provide an accessible and multi-modal open-
source platform for finite element method (FEM) (Braess

1Zeffiro is Italian for a gentle breeze referring to the ease of
use. The source code of ZI can be accessed at: https://github.com/
sampsapursiainen/zeffiro interface.
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2001) based forward and inverse computations in theMatlab
(TheMathWorks Inc.) environment. The FEM is widely
applied for modeling electromagnetic fields in a bounded
domain, such as the brain and the head (de Munck et al.
2012; Monk 2003). It allows one to discretize realistic three-
dimensional tissue parameter distributions in an accurate
way, including advanced features such as complex internal
boundary layers and anisotropic tissues such as the fibrous
white matter of the brain (Rullmann et al. 2009). The
FEM can be applied to model an electromagnetic source
within the brain (Pursiainen et al. 2016b; Miinalainen et al.
2019) and, thereby, to construct a lead field (LF) matrix to
localize brain activity in electro-/magnetoencephalography
(EEG/MEG) (Hämäläinen et al. 1993; Niedermeyer and da
Silva 2004).

The same quasi-static set of Maxwell’s equations that
predicts the electric potential field of a neural source can
be applied also to model the effect of current injections,
where either direct or alternating currents applied through
electrodes act as the source of the electromagnetic field.
Such an approach is used, for example, in the electrical
impedance tomography (EIT) (Cheney et al. 1999) in which
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the goal is to map the conductivity distribution or its
perturbations within a given domain. EIT constitutes a non-
linear inverse problem which can be linearized with respect
to a given background conductivity distribution to obtain a
LF matrix, i.e., a linearized forward model. The FEM is a
powerful tool in EIT (Vauhkonen 1997), since it does not
set any major restrictions for the conductivity distribution.
In contrast, the boundary element method (BEM) (He et al.
1987), which is the predominating method in EEG/MEG,
sets the conductivity to be a compartment-wise constant
parameter, limiting its practical usage in EIT.

Until recently, the FEM has been considered as compu-
tationally heavy for discretizing the complex geometry of
the brain. To tackle this issue, ZI uses graphics process-
ing unit (GPU) acceleration. It includes forward solvers
for EEG/MEG and linearized EIT as well as a set of
inverse solvers based on the hierarchical Bayesian model
(HBM) which was introduced for EEG/MEG in Calvetti
et al. (2009). The ZI platform and function library has been
designed to be easily expandable and to allow implementing
virtually any FEM based forward model which can be for-
mulated as a product between a LF matrix and a candidate
solution vector.

In this paper, we briefly review the mathematics behind
ZI, describe the principal operations and usage, and
introduce some central points for the developer perspective.
We report the results obtained in EEG and EIT inversion
tests performed with real and syntetic data, respectively,
and demonstrate numerically how the inversion parameters
affect the EEG inversion outcome in HBM.

Methodology

The electric potential field u in the head model Ω is
assumed to satisfy the elliptic partial differential equation
(PDE) of the form ∇ · (σ∇u) = ∇ · Jp, where σ is the
conductivity distribution of the head and Jp is the primary
current density of the neural activity. This equation follows
from the current preservation condition ∇ · J t = 0 for
the total current density J t = Jp − σ∇u, that is, the
sum of Jp and the volume current density −σ∇u. The
electromagnetic field within Ω can be evoked either by
Jp acting as the source, which is the case in EEG/MEG,
or by an external source, e.g., a current pattern injected
through contact electrodes in EIT. The dependence between
the measurements y and the unknown of the inverse problem
x in question, e.g., a source localization problem, is here
assumed be of the following linear form

Lx = y + n, (1)

where L is the LF matrix and n is the noise vector. The LF
matrices for EEG and linearized EIT inverse problem can
be formed as shown in Appendix A.1.

Primary Current Model

ZI utilizes the H(div) source model (Pursiainen et al.
2016b) in which both linear and quadratic basis functions
constitute the primary current density Jp. In Miinalainen
et al. (2019); Pursiainen et al. (2016b), this model was
shown to surpass the accuracy of the classical direct source
modeling approaches based on the partial integration and
St. Venant’s principle and to be especially advantageous for
thin cortices as well as for inverting data.

A Cartesian set of source orientations can be obtained
from a mesh-based set using the Position Based Optimiza-
tion (PBO) method (Bauer et al. 2015) with an adaptive
(Miinalainen and Pursiainen 2017) 10-source stencil in
which 4 face and 6 edge functions are applied for each
element containing a source (Pursiainen et al. 2016b). Alter-
natively, the Whitney model (Bauer et al. 2015), i.e., the
4-source stencil (4 face functions), can be used. Moreover,
a set of Whitney functions can be applied without inter-
polation. That is, the LF matrix can be formed directly
using the mesh-based set of basis functions as suggested
in Miinalainen and Pursiainen (2017). In each active tis-
sue compartment, the sources can either be normally con-
strained or unconstrained with respect to the surface of the
compartment (Creutzfeldt et al. 1962; Hari et al. 2018).
The source positions are randomly (uniformly) distributed
in each case.

Conductivity Distribution

The current FE meshing strategy employed in ZI treats
the conductivity as an isotropic piecewise (element-wise)
constant distribution, i.e., a single scalar value is associated
with each element in the FE mesh. However, when
evaluating an LF matrix, ZI allows the conductivity
distribution σ to be anisotropic, i.e., tensor-valued: the �-th
row of the form (σ11, σ22, σ33, σ12, σ13, σ23) within a multi-
row array is associated with the symmetric conductivity
tensor σij , i = 1, 2, 3, j = 1, 2, 3 (σij = σji) in the �-th
element.

HBM

The inverse tools of ZI are based on the HBM (Calvetti
et al. 2009; O’Hagan and Forster 2004) which enables
finding a reconstrution for the unknown x as either the
posterior maximizer, i.e., maximum a posteriori (MAP) or

Neuroinform (2020) 18:237–250238



the conditional mean (CM) of the posterior probability
density. In HBM, the posterior probability for x is defined
via choosing the standard deviation of a Gaussian likelihood
density, the hypermodel, i.e., the gamma (G) or inverse
gamma (IG) hyperprior determining the actual prior, and the
shape and scale parameter β and θ0 for the hyperprior. For
a given measurement vector y, the Bayes formula (O’Hagan
and Forster 2004) for the posterior is of the form

p(x | y) = p(x) p(y | x)
p(y)

∝ p(x) p(y | x), (2)

where p(x) is the prior density and p(y | x) the likelihood
function (Schmidt et al. 1999). Here, the noise term n, which
together with the forward model (1) implies the likelihood
p(y | x), is assumed to be a Gaussian zero-mean random
vector with independent entries.

In HBM, the prior can be expressed in the following
hierarchical form p(x,h) ∝ p(θ) p(x | θ), where θ is
the primary hyperparameter of the model. The conditional
part p(x | θ) of the prior is a zero-mean Gaussian
density, whose diagonal covariance matrix is predicted by
the hyperprior p(θ). The hyperprior is assumed to have a
long-tailed density, implying that x is likely to be a sparse
vector corresponding to a well-localized (focal) volumetric
distribution. In ZI, it is either G or IG density (Calvetti
et al. 2009), which are controlled by the shape and scale
parameter β and θ0. The G and IG hyperprior can be coupled
into a single model in a straightforward way, since the
reciprocal θ−1 of a G-distributed random variable θ with
respect to β and θ0 is IG-distributed w.r.t. β and θ−1

0 .
A description of the IAS algorithm applied in ZI can

be found in Appendix B. ZI’s CM estimation technique
is based on the Gibbs sampler algorithm (Spitzer 1971;
Murphy 2012) according to (Calvetti et al. 2009).

Hardware Requirements

ZI is principally designed to be used with a workstation or a
high-end desktop computer with tens of gigabytes of RAM,
a multi-core CPU and one or more GPUs. When generating
the FEmesh and the LFmatrix ZI is likely to allocate several
gigabytes of RAM. A one-millimeter FE mesh resolution
might lead to 64 GB of motherboard RAM and 2–4 GB of
GPU RAM allocation during the forward computations. The
resulting FE mesh will consist of 3-4 M nodes and 20-30
M elements, and the eventual project size, when stored on a
hard disk, will be 0.5–1 GB.

GPU Function

ZI utilizes a GPU to accelerate the FE mesh generation
process, forward and inverse computations, source inter-
polation and decompositions, as well as to speed up 3D

visualizations. This is vital in order to achieve a convenient,
around one hour computing time for a one-millimeter FE
mesh resolution which has been shown to be essential in
order to obtain physiologically accurate inverse estimates
(Rullmann et al. 2009). A GPU is a parallel processing unit
which has somewhat limited RAM compared to the mother-
board. It can handle computation intensive operations very
effectively, while memory intensive operations should be
avoided. The operations related to forward and inverse com-
putations can be accelerated due to the fast processing of
matrix-vector products in a GPU. The other GPU operations
are mainly based on the acceleration of find and sort
routines, evaluating those as blocks rather than individual
entries.

Forward Simulation

In the Matlab environment, the most essential speed-up gain
is related to the sparse FE matrix-vector products which
need to be evaluated iteratively in the forward simulation
phase. The GPU-parallelization of the forward simulation
is especially important, because Matlab currently handles
the sparse matrix products in a single processor thread. To
evaluate the lead field matrix as described in Appendix A.4,
ZI uses the preconditioned conjugate gradient (PCG)
(Golub and van Loan 1989) method with a lumped diagonal
preconditioner (LDP) in which each diagonal entry is
obtained as the row sum of the absolute entry values. LDP
is an advantageous preconditioner regarding the limited
GPU memory. While LDP is not optimal with respect to
minimizing the iteration steps needed for convergence, it
enables establishing a fast forward solver due to the high
parallel processing performance provided by a GPU.

IAS Iteration

In the IAS iteration (Appendix B), the most time consuming
step is the third one, Eq. 7, in which the size of the matrix
to be inverted is determined by the length of the data
vector. If a high number of time steps will need to be
processed, the fastest processing is obtained by evaluating
the matrix-vector product of Eq. 7 in a GPU.

Interface Structure and Function

When started, ZI creates a single data structure (struct)
zef in Matlab’s base workspace. All the parameters and
variables, such as the lead field matrix, measurement data
and reconstruction, can be accessed via the zef structure.
The basic workflow consists of three phases illustrated in
Fig. 1. In this section, we briefly review the workflow and
introduce the most important fields of zef for each phase.
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Fig. 1 The basic three-phase workflow in ZI. In phase 1, the head
model is first defined using the segmentation tool, after which, in phase
2, the three-dimensional FE mesh and the LF matrix are generated with
the mesh tool. Finally, in phase 3, the inverse tools can be applied to

reconstruct and analyze parameter distributions, e.g., the primary cur-
rent density of the brain activity. The parcellation tool can be applied
in each of the phases 1–3 to assist decomposing the brain into a finite
set of ROIs

Segmentation Tool

In the first phase, a surface segmentation describing
different tissue structures and properties withinΩ is defined
using the segmentation tool (Fig. 2). A triangular surface
mesh for each tissue type is imported in ZI as an ASCII
file. In the current version, a single head model can contain
up to 27 different tissue compartments. Moreover, several
surface meshes (sub-meshes) can be merged together into
a single compartment, e.g., the left and right hemisphere of
the cerebral cortex. A multi-compartment segmentation can
be defined in a single initialization (.INI) file which allows
importing a complete head segmentation at once. The nodes
and points of each surface mesh can be stored either in two
separate .DAT files or in a single .ASC file exported from
the FreeSurfer2 Software Suite (Fischl 2012).

The default set of compartments includes white matter,
grey matter, cerebrospinal fluid (CSF), skull, and scalp,
whose default conductivity values are 0.14, 0.33, 0.0064,
and 0.43 S/m, respectively, according to Dannhauer et al.
(2011); Vorwerk et al. (2014). Each compartment can be
defined as active or inactive. The set of active compartments
contains the DOFs of x. In EEG/MEG, the activity can be
either constrained or unconstrained. In the former case, it is
restricted into the direction of the surface normal, and in the
latter case, it can have any orientation.

Mesh Tool

In the second phase of the workflow, a uniform tetrahedral
mesh is generated based on the surface segmentation.
The meshing parameters can be defined in the mesh tool.
The meshing process proceeds from the innermost (detail)
compartment to the outermost one. It allows the tissue

2https://surfer.nmr.mgh.harvard.ed

boundaries to intersect each other which is necessary with
a real segmentation obtained from magnetic resonance
imaging (MRI) data. Each compartment can be given a
priority which is referred to if a tetrahedron has nodes in
two or more compartments. The priority parameter allows
fine-tuning the width of the thin tissue layers, e.g., the skull:
the lower the value the higher the priority. The FE mesh can
be also smoothed using the Bi-Laplacian smoothing flow
(Ohtake et al. 2001; Pursiainen 2012). After generating the
mesh, the LF matrix can be computed for a selected imaging
modality and a given number of the degrees of freedom
(DOFs). Finally, an interpolation process connecting the
DOFs and the FE mesh nodes needs to be performed, to
enable inversion of measurement data.

Together with the figure tool, the mesh tool allows one to
visualize both the surface segmentation and the volumetric
FE mesh, or any surface or volumetric distribution
(reconstruction) defined on those. The visibility of a
compartment can be selected in the Segmentation tool. The
options tool includes additional options which control, e.g.,
the colormap, scale, vector component, and the index of
the sub-mesh for the visualized distribution, e.g., that of the
left or right hemisphere (see Section “Segmentation Tool”).
An example of a multi-layer surface segmentation and the
resulting volumetric mesh created with ZI are shown in
Fig. 3. For further code development, the most important
fields of zef are the following:

1. zef.nodes and zef.tetra store the nodes and
tetrahedra of the FE mesh, respectively;

2. zef.L is the lead field matrix;
3. zef.source positions stores the source posi-

tions corresponding to the columns of zef.L in the
respective order. This array contains the DOF positions
also if they do not represent neural sources, which is the
case in EIT.
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Fig. 2 A screenshot of ZI with figure, mesh, parcellation, and option tool opened

4. zef.source directions contains the source ori-
entations. If Cartesian orientations are used, this field
is empty, and the source orientation for the columns

of zef.L is given by the following regular pat-
tern: position 1, xyz; position 2, xyz; position 3, xyz,
etc.;

Fig. 3 Top row: Surface and
volume visualizations of the
head model in ZI. Bottom row:
FreeSurfer-based cortical
parcellation with 36
Desikan-Killiany labels
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5. zef.source interpolation ind stores the
indices that connect the finite element mesh with the
DOFs;

6. zef.h axes1 stores the axes handle of the figure
tool.

Inverse Tools

In the third phase, the measurement data are imported and,
after that, a reconstruction for x can be obtained using one
of the inverse tools. A MAP estimate can be obtained via
the IAS method using one of the following tools:

1. IAS MAP estimation which finds a MAP estimate for
the whole domain;

2. IAS MAP estimation ROI which focuses on a ROI;
3. IAS MAP multiresolution which explores multiple

different resolutions.

A CM estimate can be obtained for a ROI using theHierarchi-
cal Bayesian sampler tool. For external inverse procedure
development, the most important fields are the following:

1. zef.measurements is the set of measurements to
be inverted; this field can be a matrix or a cell array
with the number of rows and columns equal to that of
zef.L and the time steps in the dataset, respectively;

2. zef.reconstruction is the reconstruction of x
corresponding to the set of source positions and
orientations.

Parcellation Tool

The parcellation tool (Fig. 2) allows importing a parcella-
tion created with the FreeSurfer Software Suite. A single
parcellation consists of a file containing a colortable (.MAT)
and another one including the points/labels (.ASC). After
importing, an interpolation process will need to be per-
formed to connect the points with the DOFs. The parcella-
tion can be used as a priori information in the reconstruction
or visualization stage. After obtaining a reconstruction, one
can evaluate a time series of the activity for each region
present in the parcellation. The time series can represent,
e.g., the maximal or median activity within a region. The
purpose of the time series is to enable the analysis of
different statistical properties and connectivity of the activ-
ity over a time interval. In the current version, e.g., the
amplitude, standard deviation, correlation, covariance, and
dynamic time warping (DTW) (Sakoe and Chiba 1978)
measure can be evaluated. The most important fields w.r.t.
the parcellation tool are the following:

1. zef.parcellation colortable and
zef.parcellation points store the colortable
and points of the parcellation;

2. zef.parcellation interp ind contains the
indices connecting the parccellated brain regions and
the DOFs;

3. zef.parcellation time series stores the
time series obtained for the brain regions after
reconstructing the brain activity.

Plugin Utility

ZI can be extended via the plugin utility. The list of plugins
is defined in the zeffiro plugins.ini file which is
located in ZI’s root folder. A menu item will be created
for each listed plugin. The Hierarchical Bayesian sampler
tool (Spitzer 1971; Murphy 2012) is included in the code
package as an example plugin (HBSampler).

Numerical Experiments

In the numerical experiments, we demonstrate the practical
performance of ZI and the IAS MAP estimation technique
via numerical experiments in which EEG and EIT inversion
is tested with real and synthetic data, respectively. We also
analyze the effect of hyperprior and scale parameter on the
source localization in EEG using simulated measurements.

EEG Inversion Test

To enable comparability of the results to an existing solver,
in this case that of the Brainstorm3 software (Tadel et al.
2011), EEG source localization accuracy was examined by
inverting Brainstorm’s EEG and epilepsy tutorial dataset4

which was used with the consent of Prof. A. Schulze-
Bonhage, Epilepsy Centre, University Hospital Freiburg,
Germany. The dataset was obtained for a patient who
had suffered from focal epilepsy with focal sensory,
dyscognitive and secondarily generalized seizures since the
age of eight years. It consists of 58 epileptiform discharges
(spikes) which were recorded at 256 Hz frequency
and detected using Brainstorm by the epileptologists in
Freiburg. An invasive EEG study concentrating on the same
subject can be found in Dümpelmann et al. (2012).

Following the tutorial, the measurement data to be
inverted, depicted in Fig. 4, were obtained for 29 electrodes
applying an epoching time interval between -5 and 5 s
w.r.t. the time point of the inverted data. All the non-
EEG channels have been removed from the measured data.
The brain activity was reconstructed via two steps of the
IAS MAP estimation algorithm with low-cut and high-cut
frequency of 0.5 Hz and 80 Hz, assuming that the likelihood
standard deviation is 3 % of the maximum entry in the data,

3https://neuroimage.usc.edu/brainstorm/Introduction
4https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
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Fig. 4 A butterfly plot of EEG inversion test (Section “EEG Inver-
sion Test”) data which were obtained by averaging 58 epileptiform
discharges between -5 and 5 s. The vertical axis shows the measured

voltage in microvolts, and the horizontal axis the measurement time
in seconds. The reconstruction was found for the zero time point 0 s
which is indicated by the vertical dashed line

and selecting the shape and scale parameters as β = 1.5 and
θ0 = 1E-12. The head model linked to the dataset consists of
the surface meshes of the scalp, skull, CSF, grey matter, and
white matter. ZI’s default conductivity values were used.
The LF matrix was generated for 100000 sources using
1 mm mesh resolution. The reconstructions were obtained
with ZI’s IAS MAP estimation inverse tool.

EIT Inversion Test

EIT inversion was examined numerically using the pop-
ulation head model5 which includes a scalp, skull, CSF,
ventricle, grey matter, and white matter compartment (Lee
et al. 2016). The default conductivity values were applied,
associating the condutivity of the ventricles with that of
the CSF. A total of 72 ring electrodes with an assumed 1
kOhm impedance and an outer and inner diameter of 10 and
7.5 mm, respectively, were modeled through the complete
electrode model (CEM) described in Appendix A.1.

The head model was discretized using 1 mm mesh
resolution. The FE mesh is shown in Fig. 6. A LF
matrix was evaluated for a total number of 5000 DOFs
using the approach presented in Appendix A.1 and the
original piecewise constant conductivity as the background
distribution, i.e., the point of the linearization. The DOFs
were distributed in the CSF, white matter and grey matter
compartment.

The synthetic data were generated by perturbing the
conductivity inside the brain within a spherical 30
mm diameter sub-domain representing an intracerebral
hemorrhage (Broderick et al. 1993). Following, e.g., Li et al.
(2017); Tang et al. (2010), the magnitude of the perturbation
was set to be +0.73 S/m and the signal-to-noise ratio was
assumed to be 60 dB. The measurement errors consisted of
additive Gaussian zero-mean white noise.

5https://itis.swiss/virtual-population/regional-human-models/
phm-repository/

The likelihood standard deviation was set to be 12 %
conciding approximately with the level following from the
noise model. The IG hyperprior was employed selecting
the shape and scale parameters as β = 1.5 and θ0 =
0.001. To reconstruct the deep-lying anomaly, the total set
of DOFs was decomposed into randomized 300 subsets
which were formed w.r.t. an equal number of randomly
(uniformly) distributed center points via the nearest point
interpolation technique. The MAP estimate was found
by performing two steps of IAS iteration for altogether
100 such randomized decompositions. A serial approach
was adopted: the estimate obtained for one decomposition
was set as the initial guess for the next one. The final
reconstruction was produced as the mean of the resulting
100 MAP estimates.

The motivation to use averaging was to reduce the effect
of decomposition-related artifacts which we assumed to be
identically distributed for each separate decomposition and,
thus, converge towards an expectation of an asymptotical
Gaussian distribution based on the law of random numbers
and the central limit theorem (O’Hagan and Forster 2004).
The averaged reconstruction was obtained using the IAS
MAP multiresolution inverse tool which allows averaging
the reconstruction over one or more resolution levels
and multiple randomized decompositions. The resolution
is determined by the number of subsets within a single
decomposition which is here 300 in each.

Hypermodel and Parameter Selection

The HBM approach requires selecting the hypermodel
together with an appropriate value for the shape and scale
parameter β and θ . To investigate the effect of the parameter
selection on the IASMAP estimation process, we compared
the localization of a simultaneously active pair of synthetic
deep and superficial 10 nAm source in the case of EEG.
The reconstruction was found as the center of mass of
the primary current distribution within two 30 mm ROIs
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Fig. 5 A surface and volume
visualization of reconstructed
brain activity (amplitude)
obtained in the EEG inversion
test (Section “EEG Inversion
Test”). The left and right images
correspond to G and IG
hyperprior, respectively. Top
row: An axial projection of the
reconstructions interpolated on
the surface of the grey matter
compartment. Bottom row: The
volumetric reconstructions cut
by a coronal plane at the
location of the maximal activity.
The reconstructions have been
normalized to one

centered at the actual source locations. The accuracy was
measured by evaluating the position (mm) and orientation
(degree) difference with respect to the exact sources. As
the computation domain we used a six-compartment (white
matter, grey matter, CSF, compact skull, spongious skull,
scalp) head model corresponding to a 49-year old male
subject with ZI’s default conductivity values. For the
spongious part of the skull 0.028 S/m was selected (Vorwerk
et al. 2014). The EEG LF matrix was formed for a cap of
72 electrodes. The effects of choosing the hyperprior h and
scale parameter θ0 were examined for the following four
pars: (i) h = G, θ0 = 1E − 5, (ii) h = IG, θ0 = 1E − 5,
(iii) h = G, θ0 = 1E − 9, and (iv) h = IG, θ0 = 1E − 9,
respectively. The shape parameter β was set to be β = 1.5 in
each case. Gaussian white noise with 2 % relative standard
deviation was added in the data. Each reconstruction was
evaluated for 50 different realizations of the noise vector.
The inverse tool applied in the experiment was ZI’s IAS
MAP estimation ROI.

Results

ZI’s forward simulation performance was evaluated w.r.t.
the computing time for the head model described in
Section “Hypermodel and Parameter Selection”. The
mesh generation, LF matrix evaluation and interpolation
processes took 21, 39 and 3.5 minutes, respectively, using

NVIDIA6 Quadro P6000 GPU. GPU acceleration was also
found to be necessary to obtain a reasonable computing time
as it sped up these routines by more than a factor of ten.

EEG Inversion Test

The results of the EEG inversion test can be found in
Fig. 5 which displays the reconstructed brain activity for
the surface of the cortex and a volume cut corresponding
to the location of the maximal activity. The reconstruction
obtained with the IG hyperprior was observed to be
more focal than the one corresponding to G. The surface
visualizations obtained for the G and IG hyperprior confirm
similar active area as illustrated in Brainstorm’s EEG and
epilepsy tutorial, especially, compared to the outcome of
the Brainstorm’s maximum of entropy on the mean (MEM)
framework solution. The volume cuts show the depth of the
reconstructed activity.

EIT Inversion Test

In the EIT inversion test, the averaged reconstruction found
for the synthetic hemorrhage matched well with its exact
location, which is shown in Fig. 6. A visual comparison

6https://en.wikipedia.org/wiki/List of Nvidia graphics processing
units
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Fig. 6 Left: An illustration of the synthetic hemorrhage (grey sphere)
which was applied to generate the data of the EIT inversion tests.
The diameter of the sphere was 30 mm and its conductivity was set
to be 0.73 S/m higher compared to its surroundings. The unperturbed
background conductivity distribution was assumed to be constant in
each tissue compartment including white matter (white), grey matter
(grey), CSF (green and blue), skull (khaki), and scalp (brown). The
CEM electrodes (Appendix A.1) are shown as surface patches (black

rings): Center: An averaged reconstruction of the synthetic hemor-
rhage found using the IAS MAP multiresolution inverse tool. The final
distribution was produced as an average of altogether 100 different
MAP estimates corresponding to different randomized decompositions
of 300 DOFs as explained in Section “EIT Inversion Test”. Right:
A reconstruction (an unaveraged MAP estimate) found for a single
decomposition of 300 DOFs. The reconsructions have been normalized
to one

between the averaged and unaveraged and reconstruction
(Fig. 6) suggests that the averaging process was beneficial
w.r.t. the localization accuracy. The resolution (level of
detail) of the averaged reconstruction seems to be refined
compared to that of the unaveraged one. Moreover, using
a comparatively low number of DOFs (here 300) in each
randomized decomposition was found to be necessary for
detecting the hemorrhage.

Hypermodel and Parameter Selection

Figure 7 illustrates the source localization results obtained
in the hypermodel and parameter selection test. G was
observed to perform comparably well for the superficial ROI
and IG for the deep one. This is reflected by the cases (i)
and (iv) in which the utmost position accuracy was obtained
in these ROIs, respectively. Moreover, for G, the larger

Fig. 7 Top row: Examples of the center of mass (red pin) found for the
deep and superficial source (1 and 2, respectively) in the cases (i)–(iv)
with synthetic EEG data and the noise level of 2 %. The exact posi-
tion of each source is also depicted (cyan pin). Bottom row: Box-plots

showing the distributions (i)–(iv) of the position (millimeter) and angle
error (degree) found for sources 1 and 2 and 50 different realizations
of the noise vector
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scale parameter value seemed preferable to the smaller one,
while, for IG, the situation was the opposite. Regardless of
the hyperprior, selecting a smaller scale parameter seemed
beneficial for localizing the deep source until a certain level,
where noise effects started to affect the reconstruction.

Discussion

This article introduced Zeffiro interface (ZI) version 2.2, a
GPU accelerated Matlab tool for multi-modal FEM-based
modeling of electromagnetic fields in brain imaging and
investigations (Braess 2001; de Munck et al. 1988; Monk
2003). It was shown that, when aided by a state-of-the-art
GPU,ZI allows one to invert a given set of EEGdata for a phys-
iologically accurate (Rullmann et al. 2009) one-millimeter
volumetricmulti-compartment headmodel within a reasonable
one hour’s time. GPU acceleration is needed, specifically,
in the forward simulation phase, that is, in the generation
of the FE mesh and the LF matrix as well as in the inter-
polation process connecting the DOFs of the unknown with
the nodes of the FE mesh. Since Matlab does not currently
parallelize the sparse matrix operations in a CPU, the per-
formance difference between CPU and GPU computations,
both applicable in ZI, is particularly pronounced.

As the mutual performance of GPU- and CPU-based
codes is strongly system-specific and depends on various
factors in addition to the processors themselves, ZI was
not directly compared to the alternative tools. These
include, for instance, Duneuro7 (Nüßing et al. 2019) and
SimBio8 (Fingberg et al. 2003) which are open source
FEM libraries for EEG/MEG with similar functions as
Zeffiro but utilizing C++ language. Brainstorm9 (Tadel
et al. 2011) and Fieldtrip10 (Oostenveld et al. 2011) are
alternative packages for the Matlab platform. The core
forward modeling approach of Brainstorm is the BEM
(He et al. 1987). Fieldtrip does not have an advanced
forward and inverse modeling functions. None of these are
currently capable of advanced FEM or GPU computations.
The MNE-Python11 toolbox (Gramfort et al. 2013) is the
leading option for Python. It allows utilizing a GPU, but is,
nevertheless, limited to a BEM-based forward simulation.

The present results suggest that ZI enables robust
inversion of multi-modal data. Firstly, the reconstructions
obtained for Brainstrom’s EEG and epilepsy tutorial dataset
show that ZI’s forward and inversion methods can be
applied to detect brain activity. Secondly, based on the

7http://duneuro.org
8http://simbio.de
9https://neuroimage.usc.edu/brainstorm/Introduction
10http://www.fieldtriptoolbox.org
11https://martinos.org/mne/stable/index.html

numerical results obtained in the EIT inversion test, it seems
that ZI can also be extended for non-linear problems and
inversion of scalar-valued fields. The IAS MAP estimation
technique was found to be applicable for EIT via averaging
MAP estimates obtained for a randomized set of low-
resolution domain decompositions. This technique might be
usable also for other imaging modalities, for example, to
localize deep brain activity. Furthermore, the present EIT
solver might be adapted for other applications involving
current injections, such as transcranial electric stimulation
(Herrmann et al. 2013) in which the brain activity is evoked
through external stimuli.

Based on the hyperprior and scale parameter selection
experiment, IG seems to be an advantageous choice for the sub-
cortical areas, whereasG seems preferable for the cerebral cor-
tex. The scale parameter applied in the former case should
be generally lower than in the latter one. This baseline is
in parallel with the previous findings (Calvetti et al. 2009)
and might be optimized later on. We also emphasize that the
parameter selection is generally a complicated issue which
is not covered completely in this study. For example, the
effect of the shape parameter, which partially overlaps with
that of the scale parameter, is omitted here.

Compared to the BEM, the FEM has at least two major
advantages when applied in EEG/MEG. Firstly, while a
BEM solver slows down if the surface mesh resolution
or the number of surfaces grows, the computational
performance of the FEM is virtually independent of these
factors. ZI’s current design takes this aspect into account,
as altogether 27 tissue compartments, each one composed
of sub-entities if needed, can be included in a single
head model. The uniform mesh generator is well-suited
for multi-compartment meshing, since unlike many widely
used software, e.g., TetGen12 (Si 2015) and Netgen13

(Schöberl 1997), it allows the tissue boundaries to intersect
each other without collapsing. This is essential in practice,
since the segmentation routines utilizing MRI data do not
always render the surfaces smoothly. Moreover, ZI performs
appropriately with a high surface resolution, thereby,
allowing one to directly use the detailed surfaces exported
from the FreeSurfer14 Software Suite (Fischl 2012).

The second major benefit of the FEM is that the
conductivity distribution can be anisotropic (Güllmar et al.
2010; Rullmann et al. 2009). ZI’s forward simulation
routines are currently capable of handling anisotropicity.
The current meshing routine, however, generates an
isotropic conductivity distribution. Generating or importing
an anisotropic distribution, e.g., from diffusion-weighted
MRI data, constitutes a potential topic for the future work.

12http://wias-berlin.de/software/tetgen/
13https://ngsolve.org/
14https://surfer.nmr.mgh.harvard.ed
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Another potential direction is to develop the inversion
methodology: one might apply the HBM for sub-cortical
areas (Seeber et al. 2019), with non-diagonal prior
covariance structures and/or with sampling-based posterior
exploration techniques, e.g., the Gibbs sampler (Spitzer
1971; Murphy 2012). From the practical viewpoint, there is
also an obvious need to develop tools for various purposes
including epochs, the covariance of the measurements,
and connectivity, e.g., phase-locking (Lachaux et al.
1999). Clinical studies would be needed to validate ZI
for different applications and measurement situations.
Providing command line executable scripts for performing
the main operations without the graphical user interface,
e.g., in a computing cluster, is also a potential option.
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Appendix A: Finite Elements in Multimodal
Lead Field Evaluation

To model electromagnetic fields, ZI applies the finite
element method which allows obtaining lead field matrices
for multiple different applications and data modalities. This
appendix shows mathematically, how the lead field matrices
of the EEG and linearized EIT problem are obtained in ZI,
when the complete electrode model (CEM) is applied.

Complete ElectrodeModel in Lead Field Evaluation

The governing PDE can be equipped with the following
(lumped) CEM boundary conditions (Cheng et al. 1989).

(I): σ∇u·n|∂Ω\∪�e�
= 0, (II):

∫
e�

σ∇u·n dS = I�, and (III):
(u + Z�A�σ∇u · n)|e�

= U� for � = 1, 2, . . . , L, where n
denotes the surface normal. According to the first condition
(I), the normal current σ∇u · n on ∂Ω can flow out of or
into the domain only through electrodes e�, � = 1, 2, . . . , L.
The second one (II) sets the net current flowing through
each electrode is I�, and the third one (III) corresponds to
the potential jump on the skin-electrode contact boundary.
The voltage of the �-th electrode is denoted by U�. Z� is
the average contact impedance or resistance and A� is the
contact area of the �-th electrode. An additional condition
is the the equation

∑L
�=1 I� = 0 which guarantees that the

subject is grounded appropriately, so that there is no current
flowing out of the head through the neck. Integrating the
governing PDE for the potential field, i.e., ∇ · (σ∇u) =
∇ · Jp, by parts yields the for weak form (Pursiainen et al.
2016a):

−
∫

Ω

(∇ · Jp)v dV =
∫

Ω

σ∇u · ∇v dV +
L∑

�=1

1

Z�A�

∫

e�

u v dS

−
L∑

�=1

1

Z�A2
�

∫

e�

u dS

∫

e�

v dS −
L∑

�=1

Z�I�. (3)

If the divergence of Jp is square integrable, i.e., if Jp ∈
{w | ∇ · w ∈ L2(Ω)}, the weak form has a unique solution
u ∈ H 1(Ω) = {w ∈ L2(Ω) : ∂w/∂xi ∈ L2(Ω),
i = 1, 2, 3} satisfying (3) for all v ∈ H 1(Ω). The weak
form (3) can be discretized in a straightforward way via
the classical Ritz-Galerkin technique (Braess 2001) which
yields the system

(
A −B

−BT C

)(
z
v

)

=
( −Gx

I

)

. (4)

Matrix A is of the form ai,j = ∫
Ω

σ∇ψi · ∇ψj dV +
∑L

�=1
1

Z�A�

∫
e�

ψiψj dS, where ψi , i = 1, 2, . . . , n are
linear (nodal) FE basis functions. To ensure the invertibility
of A, it is additionally defined that the identities ai′,i′ = 1
and ai′,j = 0 (j �= i′) are satisfied for the index i′
corresponding to a basis function ψ ′

i which is maximized
on the boundary ∂Ω \ ∪�e� not covered by the electrodes.
The entries of B, C and G are given by bi,� = 1

Z�

∫
e�

ψi dS,

c�,� = 1
Z�

∫
e�

dS, ci,� = 0 (i �= �), and gi,j = ∫
Ω

ψi(∇ ·
�wj)dV , where �wj , j = 1, 2, . . . , m are basis functions
belonging to the H(div) space. The current vector I =
(I1, I2, . . . , IL) is nonzero, if the electrodes are actively
injecting currents. The zero-mean electrode voltage vector
y = (U1, U2, . . . , UL) predicted by Eq. 4 can be obtained
via y = Rv in which the matrixR defined by rj,j = 1−1/L
for j = 1, 2, . . . , L, and ri,j = −1/L (i �= j ).

Neuroinform (2020) 18:237–250 247

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


EEG Lead Field

In EEG, the electrode currents included in I are zero, as
the electrodes only measure the voltage on the skin. Thus,
vector v can be explicitly solved from Eq. 4 which leads
to the expression y = R(BT A−1B − C)−1BT A−1Gx, and,
further, to the following EEG LF matrix:

L = R(BT A−1B − C)−1BT A−1G. (5)

The lead field of the MEG problem can be derived in
an analogous way using the Biot-Savart formula for the
magnetic field as shown in Pursiainen (2012).

Linearized EIT Lead Field

In EIT, the primary current density can be assumed to be
zero, as the magnitude of the injected currents is far superior
to the brain activity. The unknown of the EIT inverse
problem is the conductivity distribution σ . The voltage
measurements y = Rv generated by the current injections
I are used as the data. The forward model that follows
is given by y = RM−1I, where M = (C − BT A−1B).
The conductivity distribution is assumed to be piecewise
(element-wise) constant, i.e., of the form σ = ∑M

m=1smχm,
where χm is the indicator function of the element m in
the FE mesh. Denoting by σ (bg) a background conductivity
distribution, i.e., the point of linearization, the unknown of
the inverse problem is the difference vector x = (s1 −
s
(bg)

1 , s2 − s
(bg)

2 , . . . , sM − s
(bg)
M ). The LF for linearized EIT

can be derived by differentiating both sides of the equation
Mv = I as follows: 0 = (−BT ∂

∂sm
A−1B)v + M ∂

∂sm
v.

Moreover, a straightforward differentiation of the equation

AA−1 = I shows that ∂
∂sm

(AA−1) = ∂A
∂sm

A−1 + A ∂A−1

∂sm
=

0, and, further, that ∂A−1

∂sm
= −A−1 ∂A

∂sm
A−1. Taking into

account that ∂y
∂sm

= R ∂v
∂sm

, the linearized lead field can be

written as ∂y
∂sm

= −RM−1BT (A−1 ∂A
∂sm

A−1B)v. Thus, the
differential is of the form

∂y
∂sm

= −RM−1BT (A−1 ∂A
∂sm

A−1B)M−1I. (6)

The linearized forward model of EIT is given by y ≈ Lx +
y(bg), where y(bg) is a simulated data vector corresponding
to the background conductivity distribution σ (bg) and the
entries of the lead field matrix L are of the form lk,m =
∂yk/∂sm|σ (bg) .

Transfer Matrix

Both EEG and EIT lead field matrix can be formed by
first evaluating the so-called transfer matrix T = A−1B.
Obtaining a single column t of T necessitates solving a
linear system of the form At = b, where b is a single

column of the matrix B which has as many columns as there
are electrodes in the measurement system.

Appendix B: IASMAP Inversion

The iterative alternating sequential (IAS) inversion
approach (Calvetti and Somersalo 2007; Calvetti et al.
2009, 2018) to find a maximum a posteriori estimate for the
posterior density is given by:

1. Choose parameters β and θ0. Set k = 1 and θ (0) =
(θ0, θ0, . . . , θ0).

2. Find x(k) = argmaxx p(x | y, θ (k−1)).
3. Find θ (k) = argmaxθ p(θ | y, x(k)).
4. If k is less than the total number of iterations chosen

by the user, then go to 2. and set k = k + 1, else set
xMAP = x(k).

IAS finds a conditional maximum of the posterior
alternatingly with respect to the unknown vector x and the
hyperparameter θ . The algorithm can be, further, written as

1. Set k = 0 and θ (0) = (θ0, θ0, . . . , θ0).
2. Set L(k) = LD1/2

θ (k) with D1/2
θ (k) =

diag

(√
|θ (k)

1 |,
√

|θ (k)
2 |, . . . ,

√
|θ (k)

n |
)

.

3. Evaluate

x(k+1) = D1/2
θ (k)L

(k)T (L(k)L(k)T + ν2I)−1y, (7)

where ν denotes the standard deviation of the likeli-
hood.

4. Update the hyperparameter based on the hypermodel.

– If the hypermodel is G, set θi =
1
2θ0

(

η +
√

η2 + 2x(k)
i

2
/θ0

)

with η = β − 3/2,

i = 1, 2, . . . , n.
– Else, if the hypermodel is IG, set θ

(k+1)
i = (θ0 +

x
(k)
i

2

2 )/κ with κ = β + 3/2, i = 1, 2, . . . , n.

5. Set k = k+1 and go back to 2., if k is less than the total
number of iterations defined by the user.
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