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Abstract Recent electron microscopy (EM) imaging tech-
niques permit the automatic acquisition of a large number
of serial sections from brain samples. Manual segmenta-
tion of these images is tedious, time-consuming and requires
a high degree of user expertise. Therefore, there is con-
siderable interest in developing automatic segmentation
methods. However, currently available methods are com-
putationally demanding in terms of computer time and
memory usage, and to work properly many of them require
image stacks to be isotropic, that is, voxels must have the
same size in the X, Y and Z axes. We present a method that
works with anisotropic voxels and that is computationally
efficient allowing the segmentation of large image stacks.
Our approach involves anisotropy-aware regularization via
conditional random field inference and surface smoothing
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techniques to improve the segmentation and visualization.
We have focused on the segmentation of mitochondria and
synaptic junctions in EM stacks from the cerebral cor-
tex, and have compared the results to those obtained by
other methods. Our method is faster than other methods
with similar segmentation results. Our image regularization
procedure introduces high-level knowledge about the struc-
ture of labels. We have also reduced memory requirements
with the introduction of energy optimization in overlap-
ping partitions, which permits the regularization of very
large image stacks. Finally, the surface smoothing step
improves the appearance of three-dimensional renderings of
the segmented volumes.

Keywords Three-dimensional electron microscopy ·
Automatic image segmentation · cerebral cortex ·
Mitochondria · Synapses

Introduction

The availability of technologies such as combined
Focused Ion Beam milling/Scanning Electron Microscopy
(FIB/SEM) and Serial Block-Face Scanning Electron
Microscopy (SBFSEM) for the study of biological tissues
permits the automated acquisition of large numbers of serial
sections from brain samples (see for example (Denk and
Horstmann 2004; Knott et al. 2008; Merchan-Perez et al.
2009)). These three-dimensional samples contain invalu-
able structural information that must be extracted from the
stack of serial images. Electron micrographs of nervous tis-
sue typically show a large variety of structures, such as
neuronal and glial processes with their corresponding cyto-
plasmic organelles (e.g., vesicles, tubules, filaments and
mitochondria) and synapses. From a practical point of view,
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manual segmentation of these structures is a difficult and
time-consuming task that requires a high degree of exper-
tise. As a consequence, much effort has been devoted to the
development of automated algorithms.

Brain images produced by electron microscopy (EM) are
very complex and noisy with strong gray-level gradients that
do not always correspond to region boundaries. Moreover,
different neuronal structures may have similar local image
appearance. Hence, it is extremely difficult to develop a
fully automated segmentation algorithm. Although auto-
mated image processing techniques have addressed the
problem of membrane detection and dendrite reconstruc-
tion (Turaga et al. 2010), standard computer vision algo-
rithms used for the segmentation of textures (Haindl and
Mikes 2008) or natural images (Martin et al. 2001) per-
form poorly, and standard techniques for the segmentation
of biomedical images such as contour evolution (Jurrus et al.
2009) cannot handle the abundant image gradients.

Among the various structures visualized with EM, mito-
chondria and the synaptic junctions are of particular interest
to neuroscience. Indeed, most information in the mam-
malian nervous system flows though chemical synapses.
Thus, the quantification and measurement of synapses is a
major goal in the study of brain synaptic organization in
both health and disease (DeFelipe 2010). Mitochondria are
organelles that produce most of the cell’s supply of adeno-
sine triphosphate (ATP) which transports chemical energy
within cells for metabolism. In addition to supplying cellu-
lar energy, mitochondria are involved in many other crucial
cellular physiological tasks (e.g., McBride et al. 2006) and
their alterations have been associated with a number of dis-
eases such as Alzheimer’s disease (e.g., Santos et al. 2010).
Therefore, substantial effort has been put into develop-
ing methods for accurate segmentation of synapses and
mitochondria in the brain.

Although there are good practical synapse segmenta-
tion approaches relying on semi-automated tools (Morales
et al. 2011), recent research has focused on machine learn-
ing approaches to diminish the degree of user interaction.
(Becker et al. 2013) introduced a synaptic junction segmen-
tation approach specifically designed for isotropic resolu-
tion image stacks, that is, stacks where voxel dimensions
were identical in all X, Y and Z-axes. This method is
based on a boosting algorithm that discovers local con-
text cues related to the presence of the synaptic junction.
The local context around potential synapse-like regions is
also used in (Jagadeesh et al. 2013). However, the approach
of Jagadeesh et al. relies on a computationally demand-
ing set of image features that require up to 12 hours
of computing time in a 32-node cluster. An alternative
way of detecting synapses is by selectively staining them
with ethanolic phosphotungstic acid (Navlakha et al. 2013),
although this obscures other subcellular details and the

tissue preservation is not appropriate for detailed ultrastruc-
tural analysis. Finally, (Kreshuk et al. 2011) used the Ilastik
toolbox to segment synaptic junctions.

Several algorithms have been specifically designed to
segment mitochondria in EM images. A texton-based
approach comparing K-NN, SVM and AdaBoost classi-
fiers was proposed (Narasimha et al. 2009). Lucchi and
colleagues (Lucchi et al. 2012) later introduced an algo-
rithm using as input 3D supervoxels and assuming almost
isotropic image stacks. A different approach has been
presented by Giuly and colleagues (Giuly et al. 2012).
Their method performs the segmentation of mitochondria in
anisotropic stacks of images. However, it is computationally
very expensive and requires long processing times.

Consequently, our aim was to develop a method that
does not require isotropic voxels and that is computation-
ally efficient to allow the interactive segmentation of large
image stacks that are now available. Moreover, our approach
also involves image regularization and surface smoothing
techniques to improve the segmentation.

Material & Methods

For the development of our segmentation algorithm we have
used FIB/SEM image stacks that have been acquired in
our laboratory from the rat somatosensory cortex (Merchan-
Perez et al. 2009; Anton-Sanchez et al. 2014). The resolu-
tion was always the same in the X and Y axes and ranged
from 3.7 nm per pixel to 14.7 nm per pixel. Resolution in
the Z axis, equivalent to section thickness, was in all cases
20 nm per pixel. The stacks were thus anisotropic, that is,
they did not have the same resolution in all three axes. Our
segmentation algorithm has been specifically designed to
take anisotropy into account, and we define the anisotropy
factor as:

ρ = Voxel size in the Z axis

Voxel size in the X (or Y) axis
(1)

Thus, our stacks had anisotropy factors ranging from 5.41
to 1.36. To make our method comparable to others, we used
an additional stack of SBFSEM images available online
with an anisotropy factor ρ = 5.

Description of the Segmentation Algorithm

Our algorithm learns to detect and segment potentially
any type of structure from the visual information in
a stack of FIB/SEM or SBFSEM images, although
in this work we have focused on synaptic junctions
and mitochondria. To this end, the algorithm must be
trained by providing samples of segmented structures.
The user provides these samples in an interactive way
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using an in-house application we have developed: first,
a few voxels are manually labeled as mitochondria, for
example, using standard tools such as the two or three-
dimensional brush. The system then performs an automatic
segmentation based on the training given, thus provid-
ing visual feedback. The user then refines the training by
labeling new samples in the areas where the automatic seg-
mentation is wrong. This procedure is repeated until the
results are satisfactory (see Fig. 1).

Our automatic segmentation algorithm has three steps:
feature extraction, voxel-wise classification and regularization.
An optional fourth step, smoothing, enhances the visual
appearance of the segmentation when it is rendered in 3D.

Feature Extraction

Feature extraction is performed on all voxels in the stack.
The features of a voxel are a vector of real numbers that
concisely describe the relevant visual information in the
vicinity of that voxel. A feature extractor is a function from
the space of EM stacks to the space of feature stacks. We
have developed two feature extractors, F2D and F3D, which
aggregate visual information around each voxel at several
scales, and are rotationally invariant and robust to the noise
present in EM images. F3D is a feature extractor that takes
into account three-dimensional neighborhoods around each
voxel. It is adequate for isotropic stacks. F2D, on the other
hand, extracts a feature vector for each pixel in an image
of the stack considering visual information of a neighbor-
hood of the pixel in that slice and ignoring the information
in other slices. F2D is a feature extractor that is suitable for
anisotropic stacks. In the paragraphs that follow, we first
describe F2D and then introduce F3D as a generalization.

F2D works on each image of the stack separately. Hence
we only consider a single image I in the following descrip-
tion. F2D first applies a set of linear operators (zero, first
and second order derivatives) to the smoothed image I at
several scales. Thus, the set of linear operators at a scale σ is{

Gσ ∗, σ · Gσ ∗ ∂

∂x
, σ · Gσ ∗ ∂

∂y
, σ 2 · Gσ ∗ ∂2

∂x2
, σ 2

· Gσ ∗ ∂2

∂xy
, σ 2 · Gσ ∗ ∂2

∂y2

}
, (2)

where Gσ is a Gaussian filter of radius σ and ∗ is the con-
volution operator. The response to these operators will be
noted as s00, s10, s01, s20, s11 and s02 (note that the subscripts
denote the order of the derivatives). With these responses to
the filters at a scale σ , we can compute a partial feature vec-
tor for the pixels of I at that scale. This partial feature vector
has four components:{
s00,

√
s2

10 + s2
01, λ1, λ2

}
, (3)

where s00 is the smoothed image,
√

s2
10 + s2

01 is the gra-
dient magnitude and λ1 and λ2 are the first and second
eigenvalues of the Hessian matrix, that are computed as

λ1 = 1

2

(
s20 + s02 +

√
(s20 + s02)

2 + 4s2
11

)
, (4)

λ2 = 1

2

(
s20 + s02 −

√
(s20 + s02)

2 + 4s2
11

)
. (5)

Figure 2 shows the components of a partial feature vector at
a fixed scale for all the pixels in a single image.

The complete feature vector for each pixel is the con-
catenation of several partial feature vectors. We apply this
procedure at n different scales {σ0, . . . , σn−1}, producing a
feature vector with 4n components for each pixel in I . The
set of scales should match the size of the structures that have
to be detected in the images. In practice, the user only sets
the initial scale σ0, which we call the base scale, and the rest
of scales are given by σi = 2

1
2 iσ0. For example, if we use

n = 4 scales and set the smallest scale to σ0 = 4 pixels, our
feature vectors will have 16 dimensions and they will range
from 4 to 11.31 pixels in scale.

F3D is a generalization of F2D for isotropic image
stacks. As in F2D, the set of linear operators with the zero,
first and second order derivatives at a given scale σ ,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gσ ∗, σ · Gσ ∗ ∂

∂x
, σ · Gσ ∗ ∂

∂y
, σ · Gσ ∗ ∂

∂z
,

σ 2 · Gσ ∗ ∂2

∂x2
, σ 2 · Gσ ∗ ∂2

∂xy
, σ 2 · Gσ ∗ ∂2

∂xz
,

σ 2 · Gσ ∗ ∂2

∂y2
, σ 2 · Gσ ∗ ∂2

∂yz
, σ 2 · Gσ ∗ ∂2

∂z2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (6)

Fig. 1 Workflow of the segmentation algorithm. The input stack of serial images is subjected to four successive steps, two of which can be
interactively modified by the user
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Fig. 2 Feature extraction from
a single image. In this example,
feature extraction has been
performed at a scale
σ = 4 pixels. The resulting
partial feature vector has four
components: the smoothed
image (a), the gradient
magnitude (b), and the first (c)
and second eigenvalues (d) of
the Hessian matrices. Feature
extraction is also performed at
several other scales (not shown)
to obtain the complete feature
vector

is applied to the stack obtaining the responses{
sijk : i + j + k ≤ 2

}
, where i, j and k indicate the order

of the derivatives in the X, Y and Z axes. The partial feature
vector for each voxel of the stack at a given scale is
{
s000,

√
s2

100 + s2
010 + s2

001, λ1, λ2, λ3

}
, (7)

where the first component is the smoothed image, the sec-
ond one is the magnitude of the gradient, and λ1, λ2 and λ3

are the eigenvalues of the Hessian matrix
⎛
⎝s200 s110 s101

s110 s020 s011

s101 s011 s002

⎞
⎠ . (8)

Again, the complete feature vector for each voxel is the
concatenation of the partial feature vectors at several scales.

Classification

A classifier uses the feature vectors to determine the prob-
ability that a voxel belongs to each label. This classifier
has to be trained with labeled data to learn the relationship
between feature vectors and labels. Here we briefly present
how the classifier is trained and how a trained classifier can
be used with new unclassified data.

Our classifier learns the probability distribution P(yi |
fi(x)) of the label yi for the pixel i given the observed

feature vector fi(x). We use the Bayes’ rule to express this
distribution as a product

P(yi | fi(x)) ∝ p(fi(x) | yi)P (yi), (9)

where the conditional p(fi(x) | yi) is the probability den-
sity of the feature vector for voxels with label yi and P(yi)

is the prior probability of a pixel having the label yi . We
model the conditional distribution as a Gaussian,

p(fi(x) | y)= 1√
(2π)k

∣∣�y

∣∣ exp

(
− 1

2

(
fi(x)−μy

)T
�−1

y

(
fi(x) − μy

))
,

(10)

where the parameters μy and �y are the mean vector and
the covariance matrix of the feature vectors for voxels with
the label y, and k is the dimension of the feature vector.

In the training step these parameters are estimated from
training data. The user manually labels a few voxels of the
stack. During training, the voxels labeled with label y are
used to estimate μy , i.e., the mean of the feature vectors of
voxels labeled as y, and �y , i.e., the covariance matrix of
these feature vectors.

When the dimension of the feature vectors is large, the
training data often falls in a proper subspace of the com-
plete k-dimensional feature space producing a singular or
near singular covariance matrix �y . We avoid this problem
by first performing Principal Component Analysis (PCA)-
based dimensionality reduction on the cloud of all feature
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vectors . The dimensionality after the PCA is established to
retain 99 % of variance.

P(y) is the a priori probability of the label y. It is learned
from the user-provided data in the training step. In short,
the training step consists of estimating the parameters μy

and �y of the conditional distribution (after a PCA-based
dimensionality reduction) and the prior P(y) from the user-
provided data with the interactive tool.

Once the classifier is trained, it processes every voxel in
the EM stack. For each voxel i with feature vector fi(x),
the probability P(yi | fi(x)) is computed for every label yi .
This results in a probability map that maps every voxel to
the probabilities of belonging to each label. As an example,
see Fig. 3a, b.

In preliminary experiments, we tested other classifiers
such as support vector machines. Although these methods
improve the results obtained with the Gaussian classifier,
their performance is only marginally better at the expense
of much higher computational time (in the order of hours
vs. seconds), which makes them unsuitable for operation in
real time.

Regularization

If voxels are assumed to be independent of each other,
it is possible to segment the stack by simply assigning

to each voxel i the label y∗ with higher probability, i.e.,
y∗ = argmaxyP (y | x). However, this offers far from opti-
mal results, since the resulting segmentation is noisy, and it
shows many sparse pixels, grainy regions and small holes
(Fig. 3c, d).

Therefore, we have to assume some degree of probabilis-
tic dependency between neighboring voxels of the stack. We
have modeled this dependency by means of a conditional
random field (CRF). A CRF models the distribution P(Y |
x) between the set of observed variables x (i.e., the pixel
values of the stack of images) and the hidden variables Y =
{y1, . . . , yN } (i.e., the segmentation labels) in such a way
that Y conditioned on x holds the Markov property P(yi |
x, Y−i ), where Y−i is the set of label variables without yi ,
and N(i) are the neighboring voxels of voxel i. The neigh-
borhood function N defines a graph (V , E) with the set of
voxels V as nodes and the set of arcs E as given by the pair
of voxels related by N . The graph constructed in this way is
known as the CRF graph. The Hammersley–Clifford theo-
rem states that the distribution of a CRF can be written as a
Gibbs measure,

P(Y | x; θ) = 1

Z(x, θ)

∏
c∈C

	c(Yc, xc)

= 1

Z(x, θ)
e− ∑

c∈C θc·φc(Yc,xc), (11)

Fig. 3 Classification and
regularization of a single image.
(a) and (b): Probability maps
obtained by a Gaussian classifier
that has been trained with the
features extracted from the same
image that is shown in Figure 2.
The pixel-wise probability of
belonging to the label
”Mitochondrion” is shown in (a)
and the pixel-wise probability of
belonging to the label ”Synaptic
junction” is shown in (b).
(c): preliminary segmentation
before regularization, where
each pixel has simply been
given the label with highest
probability (Mitochondria, gray;
Synaptic junctions, white). Note
the sparse pixels scattered
throughout the image, the small
holes in some of the segmented
objects and the jagged edges.
(d): Final segmentation after
regularization via CRF energy
minimization. Most sparse
pixels have disappeared and
edges show a smoother
appearance
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where Z(x, θ) is the partition function, C is the set of cliques
in the CRF graph and Yc is the set of variables from Y
related to clique c.

In other words, the Gibbs measure expresses the distribu-
tion as the product of potentials 	c (note that the potentials
are not required to be probability distributions) depending
on subsets of the complete set of random variables. The
product of all potentials can be written as a weighted sum of
factors using the minus logarithm,

− log
∏
c∈C

	c(Yc, xc) =
∑
c∈C

θc · φc(Yc, xc). (12)

that, when written for a fixed observation x, is known as the
energy of the labeling and denoted as E(Y). This energy is
a map from the space of labelings to the real numbers. For
improbable labelings the energy gives large values, whereas
for good, probable labelings it provides lower values.

Finding the best segmentation with the probability distri-
bution of the CRF, that models some degree of dependency
among neighboring voxels, requires maximizing the prob-
ability P(Y | x; θ) for a fixed observation x. This is
equivalent to minimizing the energy E(Y).

Figure 4 depicts the factor graph of our CRF. The factor
graph is a bipartite graph that shows the random variables
of the CRF graph as circles, as well as the potentials as little
black squares. A potential depends on the random variables

Fig. 4 Factor graph for the CRF. The random variables are inside cir-
cle nodes. Black squares represent potentials depending on the random
variables they are connected to. The energy of the CRF is the sum of
all potentials. This figure shows only a fragment of a 2D CRF, but the
generalization to 3D is straightforward

that it is connected to. Therefore, the given factor graph
represents the following factorization of our distribution:

P(Y | x; θ)= 1

Z(x, θ)
exp

⎛
⎝−

∑
i∈V

θi · φi(yi , x) −
∑

(i,j)∈E

θij · φij (yi , yj )

⎞
⎠

(13)

There are two kinds of potentials in this graph. The first
kind of potential is associated with the terms φi(yi, x). We
will call them unary terms, since they only depend on a
single variable yi for a fixed observation in the energy
function. The second kind of potential is related to the
terms φij (yi, yj ). In an analogous way, we will call them
pair-wise terms, since they depend on pairs of label vari-
ables.

Training a CRF consists of determining its parameters θ .
This tends to be a complex task, especially if the CRF has
many parameters, as in our case. We therefore need to sim-
plify it further. A very common and reasonable assumption
is that the CRF is translation and orientation invariant, and
as a consequence all of the parameters for a kind of term
(unary or pairwise) share the same value. This would lead
to the energy function:

θ1

∑
i∈V

φi(yi, x) + θ2

∑
(i,j)∈E

φij (yi, yj ). (14)

Unfortunately, in non-isotropic stacks we cannot assume
orientation invariance. Usually, the stack has a lower reso-
lution in the Z axis than in the X and Y axes. Therefore, we
must treat the pair-wise terms that are oriented in the Z axis
in a different way. We divide the set E into two disjoint
subsets, EXY and EZ , for the edges oriented along the X
and the Y axes and for the edges oriented along the Z axis,
respectively. The energy is now:

θ1

∑
i∈V

φi(yi, x) + θ ′
XY

∑
(i,j)∈EXY

φij (yi, yj )

+ θ ′
Z

∑
(i,j)∈EZ

φij (yi, yj ). (15)

Finally, since we are interested in the minimum energy, we
can multiply the energy by 1

θ1
and the solution remains

unchanged:∑
i∈V

φi(yi, x) + θXY

∑
(i,j)∈EXY

φij (yi, yj )

+ θZ

∑
(i,j)∈EZ

φij (yi, yj ). (16)

This energy has only two parameters, θXY and θZ , which
control the strength of the regularization in the XY plane
and in the Z axis. In an anisotropic stack we can assume that
θXY and θZ are related by the expression θZ = θXY

ρ
, and
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Fig. 5 Segmentation of a whole stack of serial images after the
regularization step. Mitochondria are shown in purple and synaptic
junctions are shown in green

only one of them needs to be estimated by cross-validation
or manually by the user. The manual estimation is further
facilitated by the fact that the CRF offers good results for a
large range of parameter values.

The unary and pair-wise terms have to be defined in
such a way that they provide lower values for good, prob-
able inputs. The unary terms φi(yi, x) are responsible for
introducing the observed data into the energy value. It is
customary to define the unary terms as the minus loga-
rithm of the probability that our trained classifier provides:
φi(yi, x) = − log P(yi | fi(x)). This definition is justified
since, in the absence of the pair-wise terms, the CRF would
lead to the segmentation given by the classifier acting on
each voxel separately.

Fig. 6 Regularization in overlapping partitions. Example of partition
of a full stack into two disjoint substacks A and B and two overlap-
ping substacks A’ and B’. Once the regularization has been performed
in A’, only voxels belonging to A are updated. Then, regularization
is performed in B’ and only voxels belonging to B are updated. This
procedure prevents the appearance of regularization artifacts in the
boundary between A and B

Fig. 7 Example of a smoothed surface that meets the constraints
imposed by the segmentation. The red and blue dots indicate the pixels
that are inside and outside the object, respectively. The green and blue
contours are the maximum and minimum area contours, respectively.
Although there are infinite contours that would lie between them, we
look for the smoothed minimum curvature contour depicted in red

The role of the pair-wise terms φij (yi, yj ) is twofold.
First, they regularize the segmentation results by penalizing

Fig. 8 Example of a branching mitochondrion. A large branching
mitochondrion is shown before (a) and after smoothing (b)
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the change of labels between neighboring voxels. This pre-
vents the occurrence of isolated pixels and small holes that
could appear (Fig. 3c, d). Second, they serve to introduce
some extent of high-order knowledge about the structure
of the stack. For example, we could impose the condition
that synaptic junctions and mitochondria cannot touch each
other, by setting a very large penalty to that label change in
our experiments.

Therefore, the pair-wise terms are assigned as follows.
A low penalty 1 is given to pairs of labels that are allowed
to be neighbors. Second, a very high penalty ∞ is assigned
to pairs of labels that cannot be adjacent (e.g., synaptic
junctions and mitochondria). Third, no penalty is given
for pairs of neighboring pixels with the same label. The

distance matrix between labels background (bg), synaptic
junction (syn) and mitochondria (mit) is therefore:

bg syn mit

bg

syn

mit

⎛
⎝ 0 1 1

1 0 ∞
1 ∞ 0

⎞
⎠ .

Once we have defined our energy, we need to find the
segmentation that minimizes the energy function, Y∗ =
argminYE(Y). This is in general an NP-hard optimiza-
tion problem. However, it is known that when the terms
are up to order two, i.e., there are only pair-wise (order 2)
and unary (order 1) terms, the number of labels is two

ba

dc

Fig. 9 Metrics obtained by cross-validation for several values of the parameters σ0 and θXY . (a) TPR vs. σ0 for different values of θXY . (b) FPR,
(c) ACC and (d) JAC
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Fig. 10 Segmentation of
mitochondria in a
700 × 700 × 50 stack of EM
serial images. The left column
shows four individual, non-
consecutive images from the
stack. The second column shows
ground truth data, manually
segmented by an expert. The
two rightmost columns show the
results obtained with our
algorithm using a base scale
σ0 = 6 and two different sets of
regularization parameters θXY

and θZ .

and the pair-wise terms are submodular, i.e., φ(yi, yi) +
φ(yj , yj ) ≤ φ(yi, yj ) + φ(yj , yi), then a max-flow/min-
cut algorithm finds the global optimum of the energy in
polynomial time.

Unfortunately, when there are more than two labels, the
max-flow algorithm is no longer applicable. Instead, we
have to rely on approximate energy minimization using the
αβ-swap algorithm from (Boykov et al. 2001). Figure 3c, d
shows the segmentation of a single image after the αβ-swap
regularization. Figure 5 shows the segmentation of a whole
stack of serial EM images.

The graph-cut techniques needed for regularization
require a considerable amount of computer memory. For a

reasonably sized stack, the required memory usage usually
becomes too big. Therefore we need to regularize parts of
the full stack separately and merge them together at the end.

A simple approach is to divide the stack into disjoint,
i.e., non-overlapping substacks and regularize them sep-
arately. This method works well for the inner areas of
each substack, but it looks jumpy in their boundaries, since
the CRF does not have enough context to determine the
correct labels. This is visually noticeable as abrupt ter-
minations of mitochondria and synaptic junctions at these
boundaries.

The solution to this problem consists of extending
each substack with a margin, effectively making the new

Table 1 Comparative results for mitochondria detection performed by our algorithm with two different sets of regularization parameters, by
Ilastik (Sommer et al. 2011), and by the Cytoseg process, according to (Giuly et al. 2012)

Method TPR FPR ACC JAC VOE

Ours, σ0 = 6; θXY = 10; θZ = 2 0.78 0.018 0.96 0.68 8.26 %

Ours, σ0 = 6; θXY = 20; θZ = 4 0.81 0.024 0.96 0.67 2.51 %

Cytoseg 0.80 0.02 0.97 N/A N/A

Ilastik 0.77 0.02 0.96 0.66 5.45 %
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extended substacks overlap with their neighbors. The reg-
ularization is then applied to the extended substacks, but
only the results obtained in the original substack volume are
preserved in the final segmentation (Fig. 6).

Determining the optimal size of the margin is a problem
beyond the scope of this paper. However, we have found
that a margin of 10 voxels in each direction offers very good
results in practice.

da

eb

fc

Fig. 11 Simultaneous segmentation of mitochondria and synaptic junctions. Metrics obtained by cross-validation for several values of the
parameters σ0 and θXY . ACC, TPR, and JAC are shown for mitochondria (a–c) and synaptic junctions (d–f)
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Finally, the size of the substacks is limited by the avail-
able memory. As a rule of thumb, the regularization process
takes 5 or 6 times the memory used by the original substack
being regularized.

Segmentation Smoothing

The segmentation we obtain consists of hard label assign-
ments to each voxel of the stack. This is suitable for
several tasks such as counting of labeled objects or the esti-
mation of the volume of the segmented objects, but presents
disadvantages concerning the visualization of their surfaces.
We use the marching cubes algorithm to extract the surfaces
of the objects from the labels in the segmentation volume.
This process not only produces unpleasant and unnatural
renderings, but also biases the area estimates. Therefore
we need to smooth the surfaces, but at the same time we
want to preserve the constraints imposed by the labels in
the segmentation volume. Among the infinite surfaces that
meet these constraints, we compute the surface that mini-
mizes curvature (see Fig. 7). To this end, we have adapted
the method described by (Lempitsky 2010) to anisotropic
stacks.

First, we build a vector of constraints {vi}Ni=1 ∈ {−1, 1}N
such as vi = 1 if the voxel i is inside an object and vi = −1
if it is outside an object, i.e., if it has the background label.
We find a real-valued vector {fi}Ni=1 ∈ R

N such that fi >

0 if vi = 1 and fi < 0 if vi = −1 and its zero-levelset
is smooth. In a continuous setting we would minimize the
functional

f ∗ = arg min
f

∫



(
∂2f

∂x2

)2

+
(

∂2f

∂y2

)2

+
(

∂2f

∂z2

)2

dV. (17)

The minimization of the above functional smooths the seg-
mentation result. In an anisotropic discrete setting, the
smoothing problem becomes

f ∗ = min
f

∑
i

(
fNx(i) + fN−x(i) − 2fi

)2

+ (
fNy(i) + fN−y(i) − 2fi

)2

+
(
fNz(i) + fN−z(i) − 2fi

)2

ρ4
, (18)

subject to

vi · fi ≥ mi ∀i, (19)

where N[−]d(i) is the neighbor of i in the direction (−)d ,
and {mi}Ni=1 is a vector of margins imposing the deviations
from zero of f at each point. mi is 0 if i is at the boundary
of an object (i.e., if vi and vj for any of the neighbors j of i

have different values) and 1 everywhere else. Here we have
included factor ρ in the second derivative along the Z-axis
to account for the anisotropy of the stack.

The Eqs. (18) and (19) constitute a convex quadratic pro-
gram that can be solved with the Jacobi method with a
slight modification to include the constraints in the algo-
rithm (Lempitsky 2010). Figure 8 shows a mitochondrion
before and after smoothing with this method.

Note that this smoothing only affects the estimated sur-
faces and, therefore, the rendering of these surfaces. The
segmentation volume and the numerical results extracted
from it are not affected by this procedure. Therefore, the
quantitative comparisons offered in the Section “Results”
are computed with no smoothing.

Results

As explained in the previous section, we conceived our
algorithm to be used interactively. However, to evaluate its
performance we have used two datasets that have been fully
segmented manually. We need these manual segmentations
as ground-truth data to validate our results and compare
them to others. Moreover, given that we have enough train-
ing data, we use them to find optimum values for the base
scale σ0 and the regularization term σXY .

We have used several voxel-based metrics to evaluate the
quality of the segmentations. Voxel-based metrics measure
the error rates in voxel classification taking into account true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN) classifications.

– True positive rate (TPR):

TPR = TP

TP + FN
(20)

– False positive rate (FPR):

FPR = FP

FP + TN
(21)

– Accuracy (ACC):

ACC = TP + TN

TP + TN + FP + FN
(22)

– Jaccard index (JAC):

JAC = TP

TP + FP + FN
(23)

– Volume error (VOE):

VOE = |FP − FN|
TP + FN

(24)

Unless otherwise stated, all running times were obtained
on a Linux system with an Intel Xeon at 2.40GHz with no
GPU processing. Our algorithm is mostly implemented in
Python using the NumPy library. The inner parts of the CRF
regularization are written in C++. Our implementation runs
in a single thread.
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Fig. 12 Simultaneous
segmentation of mitochondria
and synaptic junctions. The left
column shows the original
images; the center left column is
the ground-truth; the center right
column is the result obtained
with Ilastik; the right column is
the result of our algorithm with
parameters σ0 = 2; θXY = 4;
θZ = 2.94. The first row shows
a full slice. The second and third
rows show zoomed regions of
different slices for detail

Our method
EM serial images Ground-truth Ilastik ( σ0 = 2; θXY = 4)

Mitochondria Segmentation

We used a stack of serial EM images from the mouse
cerebellum to test our method for the segmentation of mito-
chondria. This stack is available online in the Cell Centered
Database1 with ID 8192. We have selected this stack to
make our method comparable with Cytoseg, an automatic
segmentation tool proposed by (Giuly et al. 2012). These
researchers provide the raw images as well as a manual seg-
mentation of mitochondria at the Cytoseg web page.2 The
stack has a size of 700×700×50 voxels and a voxel size of
10×10×50 nm (anisotropy factor ρ = 5). We have applied
our method to automatically detect the mitochondria in this
stack.

The stack was divided into 5 sets of 10 images and
we used 5-fold cross-validation to estimate the quality of
the segmentation for different pairs of values of σ0 and
θXY . Values of σ0 ranged from 2 to 20 and values of θXY

ranged from 0 to 20. Figure 9 plots the TPR, FPR, ACC
and JAC metrics obtained. The curves show that the base
scale for feature extraction σ0 is much more critical for the
quality of the segmentations than the regularization
penalty θXY . In fact, the regularization penalty is almost
irrelevant for the quantitative measurements, but it is much
more important in the visual or qualitative results (see
Fig. 10).

From the results of the cross-validation process, we
choose σ0 = 6 as it offers a good trade-off between the
considered metrics. For the regularization parameter θXY ,

1http://ccdb.ucsd.edu
2https://code.google.com/p/cytoseg/

we select two different values: 10 and 20. The parameter
θZ = θXY

ρ
is set to 2 and 4, respectively.

After choosing the parameters, we apply our segmenta-
tion algorithm to the full stack. We used the last 10 slices of
the stack for training. The results obtained with our method
are similar to those obtained with the Cytoseg process (see
Table 1). However, Cytoseg (Giuly et al. 2012) required
80 minutes of processing time for a stack of 350 × 350 × 30
according to their paper, while our algorithm took 53.8 sec-
onds for the segmentation of a 700×700×50 stack (training
takes 9.6 seconds and the complete stack labeling, including
CRF regularization, 44.2 seconds).

We also applied the software Ilastik ((Sommer et al.
2011), www.ilastik.org) to segment mitochondria in this
dataset. The quantitative results obtained in Ilastik (see
Table 1) are comparable to those of the other methods. How-
ever, Ilastik took 56.5 minutes for processing the full stack
using 8 threads, resulting in a total of 452 minutes of CPU.
This is about 500 times slower than our method.

Other methods for mitochondria segmentation are even
less suitable for large anisotropies. Supervoxel segmenta-
tion with learned shape features (Lucchi et al. 2012) aims
to learn non-local shapes of the target objects to segment.
They use a combination of supervoxels, 3D ray features
and structured prediction. 3D ray features are specially
affected by anisotropy since both the edge detector and
the length of the rays are highly dependent on the ori-
entation. The achievable segmentation accuracy —i.e., the
highest accuracy that can be achieved using supervoxels
assuming perfect classification of each supervoxel— drops
significantly with anisotropy. Moreover, the structured pre-
diction requires training with a large portion of the stack
fully labeled in order to infer the terms of the pairwise

http://ccdb.ucsd.edu
https://code.google.com/p/cytoseg/
www.ilastik.org
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Table 2 Quantitative results
for the simultaneous
segmentation of mitochondria
and synaptic junctions

Method TPR FPR ACC JAC VOE

Ours, mit-vs-rest,σ0 = 1, θXZ = 4, θZ = 2.94 0.84 0.02 0.97 0.60 15.72 %

Ours, syn-vs-rest,σ0 = 1, θXZ = 4, θZ = 2.94 0.60 0.004 0.99 0.26 87.17 %

Ours, mit-vs-rest,σ0 = 2, θXZ = 4, θZ = 2.94 0.78 0.014 0.97 0.63 0.01 %

Ours, syn-vs-rest,σ0 = 2, θXZ = 4, θZ = 2.94 0.42 0.004 0.99 0.23 24.00 %

Ilastik, mit-vs-rest 0.68 0.009 0.97 0.61 21.58 %

Ilastik, syn-vs-rest 0.36 0.002 0.99 0.29 41.43 %

interaction. As a consequence of these factors, the method
from (Lucchi et al. 2012) required more training data (half
of the stack) to work properly, and provided rather unsat-
isfactory results with low Jaccard indices (< 0.48). The
running times were also higher (> 21 minutes) due mainly
to the cost of extraction of the ray features.

Mitochondria and Synaptic Junctions Segmentation

For this test we used a stack of 366×494×213 voxels and a
voxel size of 14.7×14.7×20 nm (ρ = 1.36) acquired from
the rat somatosensory cortex. We used the first 100 slices of
the stack to estimate the parameters of the algorithm with
5-fold cross-validation. The results of the cross-validation
are plotted in Fig. 11. Again, the base scale σ0 had a critical
impact on performance, whereas the regularization penalty
θXY only caused subtle variations. Note that we were seg-
menting three different classes (background, mitochondria
and synapses) and therefore we measured the quality of seg-
mentations with mitochondria-vs-rest and synapses-vs-rest
metrics, i.e., considering one of the classes as foreground
and the rest as background.

From the results of cross-validation, we chose σ0 = 1
and σ0 = 2 as a trade-off value that worked reasonably
well for both mitochondria and synaptic junctions. We set
θXY = 4 and θZ = θXY

ρ
= 2.94. The training was per-

formed using 11 evenly distributed slices of the stack and it
took 3.27 seconds to complete. The segmentation of the full
stack (213 serial images) took 10.15 minutes (48.31 seconds
for the classification step and the rest for regularization).
Figure 12 shows the results of our algorithm and Ilastik.
Table 2 compares the quantitative performance of both

algorithms. The Ilastik performance results were obtained
using a very similar manual segmentation to the one used
with our algorithm. The results obtained with both methods
were similar when considering the numerical performance,
with ours being marginally better. However, Ilastik took
56 minutes with 8 threads to train and segment the full stack,
making our method 45 times faster. Visual appearance of
the final segments were also much better in our case thanks
to the regularization procedure (see Fig. 12).

Running Time Comparison

Table 3 summarizes running times for our experiments in
both datasets. Our method runs much faster compared to
the others with similar or better performance. Cytoseg and
learned shape features are specialized in mitochondria seg-
mentation; thus, we only report results in the first dataset for
those methods.

There is an important difference in running times for our
method in both datasets (2.15 vs. 15.9). This large difference
is due to the regularization with > 2 labels, where a single
graph-cut is inviable and iterative, slower algorithms such
as αβ-swap are required.

Counting Structures

Estimating the number of structures from the results of
an automatic segmentation process is still an open prob-
lem with plenty of ongoing research. As an approximate,
simple solution, it is commonly assumed that each con-
nected component of the segmentation is one structure.
This is the approach we use. Despite its simplicity, it has

Table 3 Absolute and normalized running times for different methods. Absolute times are given in seconds of CPU (s·CPU), and normalized

times (in parentheses) are given in seconds of CPU per megavoxel
(

s·CPU
Megavoxel

)

Method CCDB-8192 Mit&Syn

Cytoseg (Giuly et al. 2012) 4800 (192.08) N/A

Ilastik (Sommer et al. 2011) 14216 (568.87) 27112 (704)

Learned shape features (Lucchi et al. 2012) 1380 (55.22) N/A

Ours 53.8 (2.15) 612.27 (15.9)



248 Neuroinform (2016) 14:235–250

cba

Fig. 13 Count estimations for varying thresholds. (a) shows estimations in the number of mitochondria for the CCDB-8192 dataset.
(b) and (c) show estimations in the number of mitochondria and synaptic junctions respectively in the Mit&Syn dataset

several drawbacks, namely, a group of structures close to
each other often merge in a single connected component,
and large structures are sometimes split into two or more
connected components. Also, when spatial regularization is
not present, false positive detections result in many small
connected components that bias the counting estimations.
To alleviate these problems, we discard the connected com-
ponents smaller than a given threshold. Setting the threshold
is not trivial, as it might greatly affect the counts depending
on the quality of the segmentation. A good segmentation is
expected to be more robust to different thresholds than a bad
one, i.e., estimations should be close to the real value and
should be stable for a large range of thresholds.

Figure 13 shows count estimations for different thresh-
olds with both Ilastik and our method. The regularization
makes our method more robust: it reduces the number of
small components and the estimations of our method are
closer to the ground-truth for a wider range of thresholds.
Table 4 gives numerical assessment of this idea. It shows
the absolute value of the deviations of the estimations from
the ground-truth averaged over all thresholds in the range
T = [10, 2000] ⊂ Z:

1

|T |
∑
t∈T

∣∣#CC[size≥t] − GT
∣∣ , (25)

where #CC[size≥t] is the number of connected components
with size ≥ t , and GT is the real count. Table 4 shows that
our method has smaller errors than Ilastik for all datasets
and considered structures.

Discussion

Concerning the segmentation of mitochondria, Lucchi and
colleagues (Lucchi et al. 2012) have recently used ray
descriptors and the gray-level histogram as the key fea-
tures to classify 3D image supervoxels. The result of this
classification is further regularized using graph cuts to
minimize an energy function involving learned potentials.
They used stacks of FIB/SEM images from the hippocam-
pus and striatum that had isotropic resolution. In their
method, isotropy is an essential requirement for the com-
putation of the 3D supervoxel over-segmentation. Alterna-
tively, Giuly and colleagues (Giuly et al. 2012) segment
mitochondria in anisotropic stacks of images obtained by
SBFSEM. They use a random forest classifier to label 2D
image patches. The result of this initial segmentation is fur-
ther refined using 2D contour classification across images
and 3D level-set surface evolution. Their method, how-
ever, is computationally intensive, requiring long processing
times

Regarding synapses, the popular Ilastik toolbox (Sommer
et al. 2011) used by (Kreshuk et al. 2011) to segment synap-
tic junctions uses a random forest classifier with a set of
differential image features. They use a simple regularization
strategy based on Gaussian smoothing. Overall, the result-
ing algorithm is also very demanding in terms of computing
power.

Our method does not require isotropic voxels so it can
be applied to image stacks that have been acquired with
different resolution in the X, Y and Z axes. The results
obtained with our method were similar or better than those

Table 4 Average absolute error of estimations of the number of mitochondria and synaptic junctions over all thresholds in the range
[10, 2000] voxels

Method CCDB-8192 Mit&Syn, Mit Mit&Syn, Syn

Ilastik (Sommer et al. 2011) 12.12 68.44 166.17

Ours 10.71 54.97 161.76
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obtained with the Cytoseg process (Giuly et al. 2012) for
mitochondria only, and to those obtained with Ilastik for
both mitochondria only and simultaneous mitochondria and
synaptic junctions. Other approaches such as the one from
(Lucchi et al. 2012) are not ready to work with anisotropic
stacks and therefore our method outperforms them. Unlike
Cytoseg, that focuses on mitochondria segmentation, our
method is not tied to a specific type of cellular structure
but can be used to segment a variety of structures. When
compared to Ilastik we obtained better visual results thanks
to the regularization and surface smoothing techniques
described above.

Moreover, our method is much faster than any other
approach we have tried. The speed up comes from the
Gaussian classifier, that can be trained in O(Nk2 + k3),
being N the number of data points and k the dimension
of the feature space. For comparison, the complexity of
training random forests is O(MNkd), being M the num-
ber of trees and d the average depth of the trees. We found
in our experiments that the classifier was the main bot-
tleneck of the Ilastik approach. In our approach the most
expensive computation was the regularization step, which
Ilastik omits. On the other hand, we found no significant
difference in speed for feature extraction, taking only a
small fraction of the total processing time in all compared
methods.

For the case of segmentation of 2 labels, a speed of
2.15 seconds per megavoxel in a single thread is fast enough
to enable interactive segmentation of the large image stacks
that are now available, providing real-time feedback to the
user. Of course, parallelization of the proposed approach
is straightforward, and it would make it even faster. To
our knowledge, no other previous work provides state-
of-the-art performance while running in an interactive
setting.

Conclusions

We have presented an algorithm that can be trained to
segment a variety of structures in anisotropic EM stacks.
In this work we have focused on its capabilities for the
segmentation of synaptic junctions and mitochondria. It fea-
tures some important properties that are not available in
other methods in the literature. It uses a graph cut-based
image regularization procedure that not only provides bet-
ter segmentations, but also introduces high level knowledge
about the structure of labels. We have solved the limita-
tion of graph cuts in terms of memory requirements with
the introduction of energy optimization in overlapping par-
titions. This allows the regularization of very large stacks.
The surface smoothing step introduces smoothness pri-
ors on the segmentation that improves the appearance of

three-dimensional renderings of the segmented volumes.
Finally, and most importantly, we have also shown that
our approach is much faster than any other competing
method with a state-of-the-art quantitative segmentation
performance.

Information Sharing Statement

The automatic segmentation method described in this paper
is available as a plugin of the imaging processing software
Espina. The software and instructions for installing it can be
found at http://cajalbbp.cesvima.upm.es/espina.

This software provides an efficient multi-thread imple-
mentation of the presented algorithm together with an
intuitive user interface. After activating the Automatic Seg-
mentation plugin, the user has to segment a few voxels of the
target objects manually and receives almost real-time feed-
back of the results. Additional manual segmentations can be
performed until the user is satisfied with the final results.
Quantitative data regarding the segmented objects are then
obtained with standard Espina tools.
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