Skip to main content

Advertisement

Log in

Enhanced Medial Collateral Ligament Healing Using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1 × 106 or high dose 4 × 106 MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1β, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frank, C., McDonald, D., & Shrive, N. (1997). Collagen fibril diameters in the rabbit medial collateral ligament scar: a longer term assessment. Connective Tissue Research, 36(3), 261–269.

    Article  CAS  PubMed  Google Scholar 

  2. Frank, C., McDonald, D., Bray, R., Rangayyan, R., Chimich, D., & Shrive, N. (1992). Collagen fibril diameters in the healing adult rabbit medial collateral ligament. Connective Tissue Research, 27(4), 251–263.

    CAS  PubMed  Google Scholar 

  3. Nakamura, N., Hart, D., Boorman, R., et al. (2000). Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. Journal of Orthopaedic Research, 18(4), 517–523.

    Article  CAS  PubMed  Google Scholar 

  4. Caplan, A. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213(2), 341–347.

    Article  CAS  PubMed  Google Scholar 

  5. Caplan, A. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.

    Article  CAS  PubMed  Google Scholar 

  6. Caplan, A. (2005). Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Engineering, 11(7–8), 1198–1211.

    Article  CAS  PubMed  Google Scholar 

  7. Groh, M., Maitra, B., Szekely, E., & Koc, O. (2005). Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 33(8), 928–934.

    Article  CAS  PubMed  Google Scholar 

  8. Singer, N., & Caplan, A. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annual Review of Pathology, 6, 457–478.

    Article  CAS  PubMed  Google Scholar 

  9. Prockop, D., & Oh, J. (2012). Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Molecular Therapy, 20(1), 14–20.

    CAS  PubMed  Google Scholar 

  10. Nemeth, K., Leelahavanichkul, A., Yuen, P., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim, J., & Hematti, P. (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology, 37(12), 1445–1453.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maggini, J., Mirkin, G., Bognanni, I., et al. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 5(2), e9252.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Zhang, Q., Su, W., Shi, S., et al. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells, 28(10), 1856–1868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mosser, D. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology, 73(2), 209–212.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez, F., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    Article  CAS  PubMed  Google Scholar 

  16. Gordon, S., & Martinez, F. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593–604.

    Article  CAS  PubMed  Google Scholar 

  17. Kanaya, A., Deie, M., Adachi, N., Nishimori, M., Yanada, S., & Ochi, M. (2007). Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy, 23(6), 610–617.

    Article  PubMed  Google Scholar 

  18. Chong, A., Ang, A., Goh, J., et al. (2007). Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. Journal of Bone and Joint Surgery (American), 89(1), 74–81.

    Article  Google Scholar 

  19. Awad, H., Butler, D., Boivin, G., et al. (1999). Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Engineering, 5(3), 267–277.

    CAS  PubMed  Google Scholar 

  20. Lim, J., Hui, J., Li, L., Thambyah, A., Goh, J., & Lee, E. (2004). Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy, 20(9), 899–910.

    PubMed  Google Scholar 

  21. Gulotta, L., Kovacevic, D., Ehteshami, J., Dagher, E., Packer, J., & Rodeo, S. (2009). Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. American Journal of Sports Medicine, 37(11), 2126–2133.

    Article  PubMed  Google Scholar 

  22. Chamberlain, C., Crowley, E., & Vanderby, R. (2009). The spatio-temporal dynamics of ligament healing. Wound Repair and Regeneration, 17(2), 206–215.

    PubMed Central  PubMed  Google Scholar 

  23. Augello, A., Tasso, R., Negrini, S., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35(5), 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  24. Lanz, T., Opitz, C., Ho, P., et al. (2010). Mouse mesenchymal stem cells suppress antigen-specific Th-cell immunity independent of indoleamine 2,3-dioxygenase 1 (IDO1). Stem Cells and Development, 19(5), 657–668.

    Article  CAS  PubMed  Google Scholar 

  25. Karlsson, H., Samarasinghe, S., Ball, L., et al. (2008). Mesenchymal stem cells exert differential effects on alloantigen- and virus-specific T-cell responses. Blood, 112(3), 532–541.

    Article  CAS  PubMed  Google Scholar 

  26. Griffin, M., Ryan, A., Alagesan, S., Lohan, P., Treacy, O., & Ritter, T. (2013). Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunology and Cell Biology, 91(1), 40–51.

    CAS  PubMed  Google Scholar 

  27. Zangi, L., Margalit, R., Reich-Zeliger, S., et al. (2009). Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells, 27(11), 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  28. Schu, S., Nosov, M., O’Flynn, L., et al. (2012). Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 16(9), 2094–2103.

    Article  CAS  PubMed  Google Scholar 

  29. Camp, D., Loeffler, D., Farrah, D., Borneman, J., & LeWitt, P. (2009). Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson’s disease. Journal of Neuroinflammation, 6, 17.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106(13), 4057–4065.

    Article  CAS  PubMed  Google Scholar 

  31. Gebler, A., Zabel, O., & Seliger, B. (2012). The immunomodulatory capacity of mesenchymal stem cells. Trends in Molecular Medicine, 18(2), 128–134.

    Article  CAS  PubMed  Google Scholar 

  32. Xie, J., Wang, C., Yin, L., Xu, C., Zhang, Y., & Sung, K. (2013). Interleukin-1 beta influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts. International Orthopaedics, 37(3), 495–505.

    Article  PubMed  Google Scholar 

  33. Wang, Y., Tang, Z., & Xue, R. (2011). Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study. Journal of Orthopaedic Research, 29(7), 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  34. Riley, G., Harrall, R., Constant, C., Chard, M., Cawston, T., & Hazleman, B. (1994). Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Annals of the Rheumatic Diseases, 53(6), 359–366.

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, P., & Maffulli, N. (2005). Tendon injury and tendinopathy: healing and repair. Journal of Bone and Joint Surgery (American), 87(1), 187–202.

    Article  Google Scholar 

  36. Sahin, H., Tholema, N., Petersen, W., Raschke, M., & Stange, R. (2012). Impaired biomechanical properties correlate with neoangiogenesis as well as VEGF and MMP-3 expression during rat patellar tendon healing. Journal of Orthopaedic Research, 30(12), 1952–1957.

    Article  CAS  PubMed  Google Scholar 

  37. Peterson, W., Pufe, T., Pfrommer, S., & Tillmann, B. (2005). Overload damage to the achilles tendon: the importance of vascularization and angiogenesis. Orthopade, 34(6), 533–542.

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR059916. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Vanderby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saether, E.E., Chamberlain, C.S., Leiferman, E.M. et al. Enhanced Medial Collateral Ligament Healing Using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile. Stem Cell Rev and Rep 10, 86–96 (2014). https://doi.org/10.1007/s12015-013-9479-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9479-7

Keywords

Navigation