Skip to main content
Log in

Ca2+ Activated K Channels-New Tools to Induce Cardiac Commitment from Pluripotent Stem Cells in Mice and Men

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

EB:

Embryoid body

EBIO:

1-Ethyl-2-benzimidazolinone

ESC:

Embryonic stem cell

Hcn4:

Hyperpolarization-activated cyclic nucleotide-gated channel 4

iPSC:

Induced pluripotent stem cell

MEF:

Mouse embryonic fibroblast

NGFP:

Nanog-EGFP-iPSCs

SKCa:

Calcium activated potassium channel

TIPS:

Tail-tip murine fibroblast-derived iPS-cells

References

  1. Cingolani, L. A., Gymnopoulos, M., Boccaccio, A., Stocker, M., & Pedarzani, P. (2002). Developmental regulation of small-conductance Ca2± activated K+ channel expression and function in rat Purkinje neurons. Journal of Neuroscience, 22(11), 4456–4467.

    PubMed  CAS  Google Scholar 

  2. Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J. E., et al. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 395(6701), 503–507.

    Article  PubMed  CAS  Google Scholar 

  3. Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4), 661–680.

    Article  PubMed  CAS  Google Scholar 

  4. Perino, M. G., Yamanaka, S., Li, J., Wobus, A. M., & Boheler, K. R. (2008). Cardiomyogenic stem and progenitor cell plasticity and the dissection of cardiopoiesis. Journal of Molecular and Cellular Cardiology, 45(4), 475–494.

    Article  PubMed  CAS  Google Scholar 

  5. Bruce, S. J., Gardiner, B. B., Burke, L. J., Gongora, M. M., Grimmond, S. M., & Perkins, A. C. (2007). Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC Genomics, 8, 365. doi:10.1186/1471-2164-8-365.

    Article  PubMed  Google Scholar 

  6. Wiles, M. V., & Johansson, B. M. (1999). Embryonic stem cell development in a chemically defined medium. Experimental Cell Research, 247(1), 241–248. doi:10.1006/excr.1998.4353.

    Article  PubMed  CAS  Google Scholar 

  7. Sachlos, E., & Auguste, D. T. (2008). Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials, 29(34), 4471–4480.

    Article  PubMed  CAS  Google Scholar 

  8. Clarke, L., & van der Kooy, D. (2009). A safer stem cell: Inducing pluripotency. Nature Medicine, 15(9), 1001–1002. doi:10.1038/nm0909-1001.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi:10.1016/j.cell.2007.11.019.

    Article  PubMed  CAS  Google Scholar 

  11. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229. doi:10.1038/nature09747.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41. doi:10.1161/CIRCRESAHA.108.192237.

    Article  PubMed  CAS  Google Scholar 

  13. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  14. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 21(2), 183–186.

    Article  PubMed  CAS  Google Scholar 

  15. Kleger, A., Busch, T., Liebau, S., Prelle, K., Paschke, S., Beil, M., et al. (2007). The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cellular Signalling, 19(2), 367–377.

    Article  PubMed  CAS  Google Scholar 

  16. Kleger, A., Seufferlein, T., Malan, D., Tischendorf, M., Storch, A., Wolheim, A., et al. (2010). Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells. Circulation, 122(18), 1823–1836. doi:10.1161/CIRCULATIONAHA.110.971721.

    Article  PubMed  CAS  Google Scholar 

  17. Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.

    Article  PubMed  CAS  Google Scholar 

  18. Linta, L., Stockmann, M., Kleinhans, K. N., Bockers, A., Storch, A., Zaehres, H., et al. (2011). Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem Cells and Development. doi:10.1089/scd.2011.0026.

  19. Sommer, C. A., Stadtfeld, M., Murphy, G. J., Hochedlinger, K., Kotton, D. N., & Mostoslavsky, G. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.

    Article  PubMed  CAS  Google Scholar 

  20. Gauthaman, K., Fong, C. Y., & Bongso, A. (2010). Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion. Stem Cell Reviews, 6(1), 86–95.

    Article  PubMed  CAS  Google Scholar 

  21. Kleger, A., Loebnitz, C., Pusapati, G. V., Armacki, M., Muller, M., Tumpel, S., et al. (2011). Protein kinase D2 is an essential regulator of murine myoblast differentiation. PLoS One, 6(1), e14599. doi:10.1371/journal.pone.0014599.

    Article  PubMed  Google Scholar 

  22. Liebau, S., Propper, C., Bockers, T., Lehmann-Horn, F., Storch, A., Grissmer, S., et al. (2006). Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. Journal of Neurochemistry, 99(2), 426–437.

    Article  PubMed  CAS  Google Scholar 

  23. Liebau, S., Vaida, B., Proepper, C., Grissmer, S., Storch, A., Boeckers, T. M., et al. (2007). Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. Journal of Neurochemistry, 101(5), 1338–1350.

    Article  PubMed  CAS  Google Scholar 

  24. Azoitei, N., Kleger, A., Schoo, N., Thal, D. R., Brunner, C., Pusapati, G. V., et al. (2011). Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation. Neuro-Oncology, 13(7), 710–724. doi:10.1093/neuonc/nor084.

    Article  PubMed  CAS  Google Scholar 

  25. Azoitei, N., Pusapati, G. V., Kleger, A., Moller, P., Kufer, R., Genze, F., et al. (2010). Protein kinase D2 is a crucial regulator of tumour cell-endothelial cell communication in gastrointestinal tumours. Gut, 59(10), 1316–1330. doi:10.1136/gut.2009.206813.

    Article  PubMed  CAS  Google Scholar 

  26. Liebau, S., Proepper, C., Schmidt, T., Schoen, M., Bockmann, J., & Boeckers, T. M. (2009). ProSAPiP2, a novel postsynaptic density protein that interacts with ProSAP2/Shank3. Biochemical and Biophysical Research Communications, 385(3), 460–465. doi:10.1016/j.bbrc.2009.05.098.

    Article  PubMed  CAS  Google Scholar 

  27. Liebau, S., Steinestel, J., Linta, L., Kleger, A., Storch, A., Schoen, M., et al. (2011). An SK3 channel/nWASP/Abi-1 complex is involved in early neurogenesis. PLoS One, 6(3), e18148. doi:10.1371/journal.pone.0018148.

    Article  PubMed  CAS  Google Scholar 

  28. Liebau, S., Vaida, B., Storch, A., & Boeckers, T. M. (2007). Maturation of synaptic contacts in differentiating neural stem cells. Stem Cells, 25(7), 1720–1729.

    Article  PubMed  CAS  Google Scholar 

  29. Liangzhi Xie, A.-P. Z., Zheng, L., & Zhou, W. (2006). Cell culture technology for pharmaceutical and cell-based therapies. Taylor & Francis Group. Boca Raton: CRC Press.

    Google Scholar 

  30. Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M., et al. (1997). Embryonic stem cells: A model to study structural and functional properties in cardiomyogenesis. Cardiovascular Research, 36(2), 149–162.

    Article  PubMed  CAS  Google Scholar 

  31. Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. The FASEB Journal, 19(6), 577–579. doi:10.1096/fj.03-1451fje.

    CAS  Google Scholar 

  32. Schulz, T. C., Palmarini, G. M., Noggle, S. A., Weiler, D. A., Mitalipova, M. M., & Condie, B. G. (2003). Directed neuronal differentiation of human embryonic stem cells. BMC Neuroscience, 4, 27.

    Article  PubMed  Google Scholar 

  33. Messana, J. M., Hwang, N. S., Coburn, J., Elisseeff, J. H., & Zhang, Z. (2008). Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2(8), 499–506.

    Article  PubMed  CAS  Google Scholar 

  34. Dhara, S. K., & Stice, S. L. (2008). Neural differentiation of human embryonic stem cells. Journal of Cellular Biochemistry, 105(3), 633–640.

    Article  PubMed  CAS  Google Scholar 

  35. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.

    Article  PubMed  CAS  Google Scholar 

  36. Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.

    Article  PubMed  CAS  Google Scholar 

  37. Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 41(12), 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  38. Pick, M., Stelzer, Y., Bar-Nur, O., Mayshar, Y., Eden, A., & Benvenisty, N. (2009). Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells, 27(11), 2686–2690.

    Article  PubMed  CAS  Google Scholar 

  39. Marchetto, M. C., Yeo, G. W., Kainohana, O., Marsala, M., Gage, F. H., & Muotri, A. R. (2009). Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One, 4(9), e7076.

    Article  PubMed  Google Scholar 

  40. Bondue, A., Lapouge, G., Paulissen, C., Semeraro, C., Iacovino, M., Kyba, M., et al. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell, 3(1), 69–84.

    Article  PubMed  CAS  Google Scholar 

  41. Moskowitz, I. P., Kim, J. B., Moore, M. L., Wolf, C. M., Peterson, M. A., Shendure, J., et al. (2007). A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell, 129(7), 1365–1376.

    Article  PubMed  CAS  Google Scholar 

  42. Ching, Y. H., Ghosh, T. K., Cross, S. J., Packham, E. A., Honeyman, L., Loughna, S., et al. (2005). Mutation in myosin heavy chain 6 causes atrial septal defect. Nature Genetics, 37(4), 423–428.

    Article  PubMed  CAS  Google Scholar 

  43. Christoffels, V. M., Smits, G. J., Kispert, A., & Moorman, A. F. (2010). Development of the pacemaker tissues of the heart. Circulation Research, 106(2), 240–254.

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Frigola, C., Shi, Y., & Evans, S. M. (2003). Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expression Patterns, 3(6), 777–783.

    Article  PubMed  CAS  Google Scholar 

  45. Mommersteeg, M. T., Hoogaars, W. M., Prall, O. W., de Gier-de, V. C., Wiese, C., Clout, D. E., et al. (2007). Molecular pathway for the localized formation of the sinoatrial node. Circulation Research, 100(3), 354–362.

    Article  PubMed  CAS  Google Scholar 

  46. Stieber, J., Herrmann, S., Feil, S., Loster, J., Feil, R., Biel, M., et al. (2003). The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15235–15240.

    Article  PubMed  CAS  Google Scholar 

  47. Bettiol, E., Sartiani, L., Chicha, L., Krause, K. H., Cerbai, E., & Jaconi, M. E. (2007). Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation, 75(8), 669–681. doi:10.1111/j.1432-0436.2007.00174.x.

    Article  PubMed  CAS  Google Scholar 

  48. Taha, M. F., & Valojerdi, M. R. (2008). Effect of bone morphogenetic protein-4 on cardiac differentiation from mouse embryonic stem cells in serum-free and low-serum media. International Journal of Cardiology, 127(1), 78–87. doi:10.1016/j.ijcard.2007.04.173.

    Article  PubMed  Google Scholar 

  49. Takei, S., Ichikawa, H., Johkura, K., Mogi, A., No, H., Yoshie, S., et al. (2009). Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. American Journal of Physiology. Heart and Circulatory Physiology, 296(6), H1793–H1803. doi:10.1152/ajpheart.01288.2008.

    Article  PubMed  CAS  Google Scholar 

  50. Gissel, C., Doss, M. X., Hippler-Altenburg, R., Hescheler, J., & Sachinidis, A. (2006). Generation and characterization of cardiomyocytes under serum-free conditions. Methods in Molecular Biology, 330, 191–219. doi:10.1385/1-59745-036-7:191.

    PubMed  CAS  Google Scholar 

  51. Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J., & Keller, G. (2005). Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13170–13175. doi:10.1073/pnas.0501672102.

    Article  PubMed  CAS  Google Scholar 

  52. Tran, T. H., Wang, X., Browne, C., Zhang, Y., Schinke, M., Izumo, S., et al. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells, 27(8), 1869–1878. doi:10.1002/stem.95.

    Article  PubMed  CAS  Google Scholar 

  53. Pfaff, N., Lachmann, N., Kohlscheen, S., Sgodda, M., Arauzo-Bravo, M. J., Greber, B., et al. (2011). Efficient hematopoietic redifferentiation of induced pluripotent stem cells derived from primitive murine bone marrow cells. Stem Cells and Development. doi:10.1089/scd.2011.0010.

  54. Bar-Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell, 9(1), 17–23. doi:10.1016/j.stem.2011.06.007.

    Article  PubMed  CAS  Google Scholar 

  55. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855. doi:10.1038/nbt.1667.

    Article  PubMed  CAS  Google Scholar 

  56. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2), 228–240.

    Article  PubMed  CAS  Google Scholar 

  57. Stocker, M. (2004). Ca(2+)-activated K+ channels: Molecular determinants and function of the SK family. Nature Reviews Neuroscience, 5(10), 758–770.

    Article  PubMed  CAS  Google Scholar 

  58. Herrmann, S., Fabritz, L., Layh, B., Kirchhof, P., & Ludwig, A. (2011). Insights into sick sinus syndrome from an inducible mouse model. Cardiovascular Research, 90(1), 38–48. doi:10.1093/cvr/cvq390.

    Article  PubMed  CAS  Google Scholar 

  59. Xue, T., Cho, H. C., Akar, F. G., Tsang, S. Y., Jones, S. P., Marban, E., et al. (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111(1), 11–20. doi:10.1161/01.CIR.0000151313.18547.A2.

    Article  PubMed  Google Scholar 

  60. Liebau, S., Tischendorf, M., Ansorge, D., Linta, L., Stockmann, M., Weidgang, C., et al. (2011). An inducible expression system of the calcium-activated potassium channel 4 to study the differential impact on embryonic stem cells. Stem Cells Int, 2011, 456815. doi:10.4061/2011/456815.

    PubMed  Google Scholar 

  61. Miake, J., Marban, E., & Nuss, H. B. (2002). Biological pacemaker created by gene transfer. Nature, 419(6903), 132–133. doi:10.1038/419132b.

    Article  PubMed  CAS  Google Scholar 

  62. Lieu, D. K., Chan, Y. C., Lau, C. P., Tse, H. F., Siu, C. W., & Li, R. A. (2008). Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm, 5(9), 1310–1317. doi:10.1016/j.hrthm.2008.05.010.

    Article  PubMed  Google Scholar 

  63. Kleger, A., Liebau, S., Lin, Q., von Wichert, G., & Seufferlein, T. (2011). The impact of bioactive lipids on cardiovascular development. Stem Cells Int, 2011, 916180. doi:10.4061/2011/916180.

    PubMed  Google Scholar 

  64. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801. doi:10.1126/science.1172482.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ralf Köhntop, Clair Weidgang and Sabine Seltenheim for excellent technical assistance. Alexander Kleger is supported by a fellowship provided by the Medical Faculty of Ulm University (Bausteinprogramm, L.SBR.0011). Main part of this study was funded by the Deutsche Forschungsgemeinschaft (DFG) (S.L., T.B. SFB 497) and (DFG BO1718/4-1) to S.L. and T.B. Part of this work was funded by a grant of the DFG Priority Program 1356 to M.Z. and a grant from the DFG to C.B. (BR-2891/4-1). M.W. is supported by “Deutsche Stiftung für Herzforschung” Projekt Nr. F/08/07 (BIOCARD). B. F. was supported by a grant of the DFG (FL 276/3-3) and a grant of the EU FP7 consortium CardioCell No223372.

Conflict of Interest Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Liebau or Alexander Kleger.

Additional information

Martin Müller and Marianne Stockmann contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

FACS controls. (A-B) Unstained negative controls for control (A) and EBIO treated (B) CRG8 cultures at day 4+10+2 for FACS analyses were performed with cells labeled with secondary antibodies. No primary antibodies were added. (AVI 8.46 mb)

Supplementary Figure 2

Morphology of different murine iPSCs and expression of pluripotency markers. (A) Nanog-GFP (NGFP) cells exhibit typical ES cell colony morphology. Nanog positivity is shown via the endogenous EGFP reporter signal (green) (B) NGFP cells stain positive for SSEA1 (red). Nanog-EGFP (green). (C) TiPS cells exhibit typical ES cell colony morphology and (D) stain positive for SSEA1 (red). Scale bars, 10 μm. (AVI 8.09 mb)

Supplementary Figure 3

TiPS cells express SKCas on protein level. Immunocytochemistry of SKCa proteins. 48 hours after plating, undifferentiated NGFP cells were co-stained for F-actin (green), the indicated SKCa subtype (red); Scale bars, 5μm. (AVI 8.38 mb)

Supplementary Figure 4

SKCa-activation inhibits proliferation of murine iPSCs. (A) Monolayer assay of iPSCs. Undifferentiated iPSCs were cultured in leukemia inhibitory factor-containing medium. After seeding equal numbers of cells (5000 cells/cm2), EBIO was added and replaced every other day. (B-C) Proliferation/viability assay of EBIO-treated (EBIO) and untreated (Con) iPSCs. (B, NGFP and C, TiPS). (D) SKCa-activation induces G1 arrest in NGFP iPSCs cells and diminishes cells in S phase. Representative cell-cycle distribution blots are shown. (E) Quantification of cell cycle analysis data. (PDF 35 kb)

Supplementary Figure 5

SKCa-activation induces cardiac pacemaker-like cells from mouse iPSCs. NGFP (left column) and TIPS cells (right column) (A) 4-day-old (4d) EBs were plated and assayed as indicated. EB outgrowths were analyzed for mRNA levels. qPCR for Mesp1 (B) and Nkx2.5 (C). (D-E) Expression of early and mature pacemaker-like cell genes in control and EBIO-treated variants shown for Isl1 (D) and Cx30.2 (E) (n = 3). (PDF 29 kb)

Supplementary Figure 6

SKCa-activation induces cardiac pacemaker-like cells from mouse iPSCs (TiPS cells). (A) 4-day-old (4d) EBs were plated and assayed as indicated. EBIO was withdrawn on day 10. Culture days after EBIO removal are refereed as day 4+10. EB outgrowths were analyzed for mRNA levels and immunocytochemistry. (B-C) Induction of the cardiac marker gene Myh6 (B) and pacemaker gene (C, Hcn4) in TIPS cells. (D) Induction of HCN4 protein expression upon SKCa-activation and enhanced cardiac differentiation upon SKCa-activation in TiPS cells. Immunocytochemistry for HCN4 (red) and α-actinin (green) at day 4+10 cultures. Scale bars, 20 μm. (PDF 327 kb)

Supplementary Figure 7

SKCa-activation induces cardiac differentiation and pacemaker specification under virtually serum-free conditions in murine iPSCs. (A) 4-day-old (4d) EBs derived from NGFP iPSCs were plated and assayed as indicated. EBIO was withdrawn on day 10. Culture days after EBIO removal are refereed as day 4+10. (B-C) Induction of cardiac and pacemaker genes after SKCa-activation. qPCR for Myh6 (B) and Hcn4 (C) expression (n = 4). (D) Induction of the cardiac protein α-actinin and the pacemaker protein Hcn4 after SKCa-activation by EBIO-treatment. Immunocytochemistry for α-actinin (green) and Hcn4 (red) at indicated time points (n = 3). Scale bars, 20 μm. (PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Stockmann, M., Malan, D. et al. Ca2+ Activated K Channels-New Tools to Induce Cardiac Commitment from Pluripotent Stem Cells in Mice and Men. Stem Cell Rev and Rep 8, 720–740 (2012). https://doi.org/10.1007/s12015-011-9324-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9324-9

Keywords

Navigation