Skip to main content
Log in

In Silico Prediction of the Effects of Nonsynonymous Single Nucleotide Polymorphisms in the Human Catechol-O-Methyltransferase (COMT) Gene

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Catechol-O-methyltransferase (COMT) enzyme performs transfer of methyl group to endogenous and exogenous catechol substrates. The COMT enzyme draws interest because of its association with psychiatric, neurological and cardiovascular diseases, and several cancers. Moreover, many prescribed drugs, supplements, and their metabolites are used as substrates of COMT enzyme. The human COMT gene has 226 nonsynonymous single nucleotide polymorphisms (nsSNPs) according to public databases. Uncovering of the molecular impacts of nsSNPs on COMT enzyme function and structure may provide standpoint on how COMT nsSNPs affect enzyme activity and contribute to disease development. Therefore, we aimed in this study to predict possible structural and functional damaging effects of all knowns nsSNPs in COMT gene by applying various bioinformatics tools. Two hundred and twenty-six nsSNPs were obtained from Ensembl, HGMD, ClinVar, and dbSNP databases. Twenty-eight nsSNPs were found to be high-risk changes for protein structure. Some of them were detected in extremely conserved sequences have functional and structural properties. Besides, high-risk nsSNPs were also uncovered to change properties of native COMT protein. Our findings demonstrated the significance of COMT high-risk nsSNPs on protein structure and function. We expect that our results will be helpful in future studies concerning experimental evaluation of the COMT gene polymorphisms and/or the association between COMT polymorphisms and disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mao, C., Wang, X.-W., Qiu, L.-X., Liao, R.-Y., Ding, H., & Chen, Q. (2010). Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: a meta-analysis of 25,627 cases and 34,222 controls. Breast Cancer Research and Treatment, 121(3), 719–725.

    CAS  PubMed  Google Scholar 

  2. Sak, K. (2017). The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols. Drug Metabolism Reviews, 49(1), 56–83.

    CAS  PubMed  Google Scholar 

  3. Hall, K. T., Loscalzo, J., & Kaptchuk, T. J. (2019). Systems pharmacogenomics—gene, disease, drug and placebo interactions: a case study in COMT. Pharmacogenomics, 20(7), 529–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brahe, C., Bannetta, P., Meera, K. P., Arwert, F., & Serra, A. (1986). Assignment of the catechol-O-methyltransferase gene to human chromosome 22 in somatic cell hybrids. Human Genetics, 74(3), 230–4.

    CAS  PubMed  Google Scholar 

  5. Winqvist, R., Lundstrom, K., Salminen, M., Laatikainen, M., & Ulmanen, I. (1991). Mapping of human catechol –O methyltransferase gene to 22q11.2 and detection of a frequent RFLP with BglI. Cytogenetics and Cell Genetics58(3–4), 2051.

  6. Tenhunen, J., Salminen, M., Lundström, K., Kiviluoto, T., Savolainen, R., & Ulmanen, I. (1994). Genomic organization of the human catechol-O-methyltransferase gene and its expression from two distinct promoters. European Journal of Biochemistry, 223(3), 1049–1059.

    CAS  PubMed  Google Scholar 

  7. Lundström, K., Tenhunen, J., Tilgmann, C., Karhunen, T., Panula, P., & Ulmanen, I. (1995). Cloning, expression and structure of catechol-O-methyltransferase. Biochimica et Biophysica Acta, 1251(1), 1–10.

    PubMed  Google Scholar 

  8. Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melén, K., & Julkunen, I., et al. (1995). Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34(13), 4202–4210.

    CAS  PubMed  Google Scholar 

  9. Matsumoto, M., Weickert, C. S., Beltaifa, S., Kolachana, B., Chen, J., & Hyde, T. M., et al. (2003). Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology, 28(8), 1521–1530.

    CAS  PubMed  Google Scholar 

  10. Bastos, P., Gomes, T., & Ribeiro, L. (2017). Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. In B. Nilius, P. de Tombe, T. Gudermann, R. Jahn, R. Lill, & O. H. Petersen (Eds.), Reviews of Physiology, Biochemistry and Pharmacology, Springer International Publishing, Cham, Switzerland, Vol. 173 (pp. 1–39).

  11. Robert, F., & Pelletier, J. (2018). Exploring the impact of single-nucleotide polymorphisms on translation. Frontiers in Genetics, 9, 507.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R., & Armean, I. M., et al. (2019). Ensembl 2019. Nucleic Acids Research, 47(D1), D745–D751.

    CAS  PubMed  Google Scholar 

  13. Stenson, P. D., Mort, M., Ball, E. V., Shaw, K., Phillips, A. D., & Cooper, D. N. (2014). The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics, 133(1), 1–9.

    CAS  PubMed  Google Scholar 

  14. Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, 42, D980–D985.

    CAS  PubMed  Google Scholar 

  15. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids Research, 45(Database issue), D158–D169.

    Google Scholar 

  17. Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., & Costanzo, L. D., et al. (2019). Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research, 47(D1), D520–D528.

    Google Scholar 

  18. Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1), W452–W457.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Research, 39(17), e118.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., & Kang, D., et al. (2017). PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(Database issue), D183–D189.

    CAS  PubMed  Google Scholar 

  22. Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics, 16(Suppl 8), S1.

    PubMed  PubMed Central  Google Scholar 

  23. Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692–2701.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. González-Pérez, A., & López-Bigas, N. (2011). Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. American Journal of Human Genetics, 88(4), 440–449.

    PubMed  PubMed Central  Google Scholar 

  25. Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2.

    PubMed  PubMed Central  Google Scholar 

  26. Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., & Zendulka, J., et al. (2014). PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440.

    PubMed  PubMed Central  Google Scholar 

  27. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., & Bork, P., et al. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., & Pupko, T., et al. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R., & Wu, C. H. (2007). UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics, 23(10), 1282–1288.

    CAS  PubMed  Google Scholar 

  30. Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–W310.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(W1), W314–W319.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., & Sønderby, C. K., et al. (2019). NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 87(6), 520–527.

    CAS  Google Scholar 

  33. Venselaar, H., te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548.

    PubMed  PubMed Central  Google Scholar 

  34. Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., & Nam, H.-J., et al. (2017). MutPred2: Inferring the molecular and phenotypic impact of amino acid variants. BioRxiv 134981, https://doi.org/10.1101/134981.

  35. Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637.

    CAS  PubMed  Google Scholar 

  36. Klose, D. P., Wallace, B. A., & Janes, R. W. (2010). 2Struc: the secondary structure server. Bioinformatics, 26(20), 2624–2625.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB Viewer (Deep View). Briefings in Bioinformatics, 2(2), 195–197.

    CAS  PubMed  Google Scholar 

  38. Ng, P. C., & Henikoff, S. (2006). Predicting the effects of amino acid substitutions on protein function. Annual Review of Genomics and Human Genetics, 7(1), 61–80.

    CAS  PubMed  Google Scholar 

  39. Singh, R. K., & Mahalingam, K. (2017). In silico approach to identify non-synonymous SNPs in human obesity related gene, MC3R (melanocortin-3-receptor). Computational Biology and Chemistry, 67, 122–130.

    PubMed  Google Scholar 

  40. Singh, H. B., Deka, D., Das, D., & Borbora, D. (2017). Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in the human Quinone Oxidoreductase 1 (NQO1). Meta Gene, 11, 127–135.

    Google Scholar 

  41. Pires, A. S., Porto, W. F., Franco, O. L., & Alencar, S. A. (2017). In silico analyses of deleterious missense SNPs of human apolipoprotein E3. Scientific Reports, 7(1), 2509.

    PubMed  PubMed Central  Google Scholar 

  42. Yilmaz, A. (2015). Bioinformatic analysis of GJB2 gene missense mutations. Cell Biochemistry and Biophysics, 71(3), 1623–1642.

    CAS  PubMed  Google Scholar 

  43. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., & Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75(5), 807–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rutherford, K. J., Alphandery, E., McMillan, A., Dagget, V., & Parson, W. W. (2008). The V108M mutation decreases the structural stability of catechol-O-methyltransferase. Biochimica Et Biophysica Acta, 1784(7–8), 1098–1105.

    CAS  PubMed  Google Scholar 

  45. Doyle, A. E., Goodman, J. E., Silber, P. M., & Yager, J. D. (2004). Catechol-O-methyltransferase low activity genotype (COMTLL) is associated with low levels of COMT protein in human hepatocytes. Cancer Letters, 214(2), 189–195.

    CAS  PubMed  Google Scholar 

  46. Shield, A. J., Thomae, B. A., Eckloff, B. W., Wieben, E. D., & Weinshilboum, R. M. (2004). Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Molecular Psychiatry, 9(2), 151–160.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akin Yilmaz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, A., Çetin, İ. In Silico Prediction of the Effects of Nonsynonymous Single Nucleotide Polymorphisms in the Human Catechol-O-Methyltransferase (COMT) Gene. Cell Biochem Biophys 78, 227–239 (2020). https://doi.org/10.1007/s12013-020-00905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00905-6

Keywords

Navigation