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Abstract Intrinsically disordered proteins (IDPs) refer to

those proteins without fixed three-dimensional structures

under physiological conditions. Although experiments

suggest that the conformations of IDPs can vary from

random coils, semi-compact globules, to compact globules

with different contents of secondary structures, computa-

tional efforts to separate IDPs into different states are not

yet successful. Recently, we developed a neural-network-

based disorder prediction technique SPINE-D that was

ranked as one of the top performing techniques for disorder

prediction in the biannual meeting of critical assessment of

structure prediction techniques (CASP 9, 2010). Here, we

further analyze the results from SPINE-D prediction by

defining a semi-disordered state that has about 50 % pre-

dicted probability to be disordered or ordered. This semi-

disordered state is partially collapsed with intermediate

levels of predicted solvent accessibility and secondary

structure content. The relative difference in compositions

between semi-disordered and fully disordered regions is

highly correlated with amyloid aggregation propensity

(a correlation coefficient of 0.86 if excluding four charged

residues and proline, 0.73 if not). In addition, we observed

that some semi-disordered regions participate in induced

folding, and others play key roles in protein aggregation.

More specifically, a semi-disordered region is amyloido-

genic in fully unstructured proteins (such as alpha-

synuclein and Sup35) but prone to local unfolding that

exposes the hydrophobic core to aggregation in structured

globular proteins (such as SOD1 and lysozyme). A tran-

sition from full disorder to semi-disorder at about 30–40 Qs

is observed in the poly-Q (poly-glutamine) tract of hun-

tingtin. The accuracy of using semi-disorder to predict

binding-induced folding and aggregation is compared with

several methods trained for the purpose. These results

indicate the usefulness of three-state classification (order,

semi-disorder, and full-disorder) in distinguishing non-

folding from induced-folding and aggregation-resistant

from aggregation-prone IDPs and in locating weakly sta-

ble, locally unfolding, and potentially aggregation regions

in structured proteins. A comparison with five representa-

tive disorder-prediction methods showed that SPINE-D is

the only method with a clear separation of semi-disorder

from ordered and fully disordered states.

Keywords Intrinsically disordered proteins � Induced

folding � Amyloid formation � Poly-Q � SOD1

Introduction

The origin of protein aggregation and amyloid formation is

poorly understood for intrinsically disordered proteins

(IDPs) that do not have a fixed three-dimensional structure

in physiological conditions. Some IDPs are resistant to

protein aggregation while others are directly involved in

amyloid formation [1]. Similarly, some IDPs can have a

fixed structure under some physiological conditions, for

example, when interacting with other molecules (folders)

while others are so-called nonfolders that do not fold into a

unique structure under any known conditions [2]. What

makes some IDPs foldable or aggregation prone is an open
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question, although such divergent behaviors of IDPs are

likely related to their inherently diverse types of confor-

mations ranging from random coils, semi-compact glob-

ules, to compact globules with varying content of

secondary structures [2–4]. Differences in structural shapes

of IDPs led to proposed multi-state concepts such as

‘‘protein trinity’’ (order, collapsed, and extended disorder)

[5] and ‘‘protein quartet’’ (folded structure, molten globule,

pre-molten globule, and coil) [6]. The latter states have a

one-to-one correspondence to surface-molten solid,

ordered globule, disordered globule, and coil discovered

for a model three-helix bundle protein [7]. However, it is

not clear whether these states are discrete (i.e., separable)

or continuous (inseparable) based on sequence information

alone [8]. Clustering disordered sequences into groups was

not successful [9]. A neural network method [10] was

developed by iteratively partitioning disordered sequences

into separate ‘‘flavors’’ for different predictors. The

resulting three flavors of disorder, however, do not natu-

rally separate extended from collapsed disordered proteins.

All other methods developed so far ([50) are dedicated to a

two-state prediction of order and disorder [11].

Recently, we developed a sequence-based prediction

method with integrated neural networks for disorder

(SPINE-D) [12] that was ranked as one of the top five

performing methods according to area under the curve in

the critical assessment of structure prediction techniques

(CASP 9) [12, 13]. For a given protein sequence, SPINE-D

predicts the probability of each amino-acid residue in the

sequence to be disordered. Here, we found that defining a

semi-disordered state about the 50 % disorder probability

predicted by SPINE-D is useful for identifying semi-col-

lapsed and semi-structured regions compared with ordered

and fully disordered regions. The semi-disordered state is

associated with folders and aggregation-prone regions in

disordered proteins and weakly stable or locally unfolded

regions in structured proteins.

Results

Defining Semi-disorder

SPINE-D was trained by a large database of 4,229

(4,157 ? 72) non-redundant proteins with 90 % ordered

residues and 10 % disordered residues [12]. This unbal-

anced dataset led to a threshold of 0.06 for predicted

probability when optimized for the highest accuracy. That

is, residues are assigned as ordered if the predicted prob-

ability is less than 0.06 and residues are assigned as dis-

ordered if the predicted disorder probability is greater than

0.06. However, for a two-state classification, a perfect

threshold should be at a probability of 0.5 when there is an

equal probability of being ordered and disordered. To

change the low threshold of 0.06 to a more natural

threshold of 0.5 as required by CASP, we linearly scaled

from 0–0.06 to 0–0.5 and 0.06–1 to 0.5–1. The simple

linear scaling was employed because it is parameter free.

Such rescaled probability of SPINE-D was employed with

success for disorder prediction in CASP 9 [12, 13].

Separate scaling for ordered and disordered regions led

to an unintended discontinuity for the distribution of pre-

dicted disorder probabilities at the probability P = 0.5 as

shown in Fig. 1b for all three datasets SL477, DX4080, and

Control703 that respectively represent re-annotated disor-

dered proteins from Disprot [12, 14, 15], high-resolution

X-ray structures (ordered proteins) with residues without

coordinates as disordered residues [12], and a negative

control set of stably folded monomeric proteins without

cofactors and without missing coordinates (see materials

and methods). The distributions are based on predicted

disorder probabilities for all sequence regions of proteins

regardless if they were annotated or not annotated with

disorder or order. This discontinuity, not observed before
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Fig. 1 The distribution of disorder probability predicted by SPINE-D

at residue level before (a) and after scaling (b) and at long segment

level ([30 amino acid residues) (c) for three datasets (DX4080,

SL477, and Control703). The insert in (a) shows the fine detail around

the disorder probability of 0.06. The negative control set (stable

monomeric proteins) does not have a peak for fully disordered

residues or regions, indicating the usefulness of separating semi-

disorder from full disorder
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scaling (Fig. 1a), occurs because the population of amino

acid residues in an ordered region (0–0.06) is diluted into a

wider range between 0 and 0.5, while the population of

amino acid residues in the disordered region (0.06–1) is

concentrated to a narrower range between 0.5 and 1.

This population around P = 0.5 in Fig. 1b is not created

by isolated residues but mostly by segments in which all

residues have P around 0.5. In Fig. 1c, we counted the

number of long segments ([30 residues) within a given

disorder probability plus/minus 0.1. There is a significant

population with long sequence regions with semi-disor-

dered probability, separated from ordered (P * 0) and

fully disordered (P * 1) states. Based on Fig. 1c, we

define three states for residues: 0 B P \ 0.4 as the ordered

state, 0.4 B P B 0.7 as the semi-disordered state, and

0.7 \ P B 1 as the fully disordered state. The negative

control set (stable monomeric proteins) does not have a

peak for fully disordered residues or regions. This indicates

the usefulness of separating semi-disorder from full-dis-

order. This definition of three states is somewhat arbitrary.

We did not make any attempts to optimize the definition

for these states. A slightly different definition will not

significantly change the results presented here.

Although this population of the semi-disordered state

arose from separate linear scaling, rescaling the threshold

for order/disorder transition to 50 % probability itself is

physically meaningful. Thus, it is of interest to investigate

whether this semi-disordered state is a purely mathematical

artifact or a physically meaningful state for proteins.

Characterization of the Semi-disordered State

To characterize a semi-disordered state, we compare frac-

tions of secondary structures (helical and strand residues)

predicted by SPINE-X [16] and fractions of exposed resi-

dues predicted by Real-SPINE 3 [17] for long ordered,

semi-disordered, and fully disordered regions ([30 resi-

dues) of the proteins in the DX4080 set. Here, we

employed predicted secondary structures and solvent

accessibility for all proteins because not all proteins or

regions have structures to calculate secondary structure or

solvent accessibility. Figure 2 shows that ordered regions

occupy the upper left corner with low fraction of exposed

residues and high content of secondary structures while

fully disordered regions mostly locate at the bottom right

corner (highly exposed with little secondary structures).

The semi-disordered regions are located somewhat in

between. That is, it is semi-collapsed with some secondary

structures. Thus, a semi-disordered state correctly captures

protein regions that are semi-collapsed or semi-structured,

based on current state-of-the-art techniques for predicting

secondary structure and solvent accessibility.

The Semi-disordered State in Disordered Proteins

In order to have a better understanding of the above-defined

semi-disorder, it is necessary to investigate the occurrence

of the semi-disordered state in disordered proteins at the

individual protein level. Here, we defined a wholly disor-

dered protein as a protein without any predicted ordered

residues (i.e., only semi-disordered and fully disordered

residues). For convenience, we denote fo, fsd, and ffd as the

fraction of ordered residues, the fraction of semi-disordered

residues, and the fraction of fully disordered residues for a

given protein, respectively. fo ? fsd ? ffd = 1. For a pre-

dicted disordered protein, fo = 0 and fsd ? ffd = 1. Here,

we will analyze wholly disordered proteins in all three

datasets mentioned above. Fig. 3a shows a Gibbs-triangle

diagram where each protein is a point and the position of

the protein is determined by fo, fsd, and ffd. All predicted

disordered proteins (fo = 0 and fsd ? ffd = 1) are located

on the right edge of the triangle that mixes semi-disordered

and fully disordered residues in Fig. 3a.

Wholly Disordered Proteins in the Monomer

Control Set

Most proteins in the monomer control set (in green)

locate near the line that mixes ordered and semi-disordered

residues and the majority of proteins in the control set
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Fig. 2 Ordered (green), semi-disordered (blue), and fully disordered

(red) regions in term of fraction of exposed residues (x-axis) and

fraction of residues with secondary structures (y-axis) based on

SPINE-D results of the DX4080 dataset. A residue is defined as

exposed if its predicted solvent accessibility is greater than 25 %.

Secondary structures and solvent accessibility are predicted by

SPINE-X and Real-SPINE 3, respectively (Color figure online)
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(674/703 = 96 %) are predicted to have more than 50 %

ordered residues. Such dominance of ordered residues over

semi- or fully disordered residues further validates the two-

state accuracy of SPINE-D in distinguishing ordered from

disordered residues. There are only two proteins with

fo = 0. One (PDB ID 2pne) is a snow flea antifreeze pro-

tein (sfAFP) predicted with ffd = 1 and fo = 0. The protein

unfolds at room temperature [18]. Its X-ray determined

structure is stabilized by two disulfide bonds and solved

only in the presence of the mirror image form of sfAFP

[19]. The second one is the antiviral lectin scytovirin (PDB

ID: 2qt4, fo = 0, fsd = 0.88, ffd = 0.12). As shown in

Fig. 3b, this protein is made of a long semi-disordered

region (except near the terminals) and is stabilized by five

disulfide bonds with little secondary structures (12 % in

short helices and 12 % short beta sheets) [20]. Thus, the

instability or marginal stability of these two proteins is

correctly predicted by SPINE-D: a fully disordered state

for sfAFP that has no stable structure at room temperature

(2pne) and a semi-disordered state for antiviral lectin

scytovirin that is stabilized by five disulfide bonds (2qt4A,

Fig. 3b). The existence of semi-disordered regions (also

fully disordered regions, to a much lesser extent) in some

stably folded monomeric proteins suggests that they can

participate in folding into unique structure in the presence

of sequence regions encoded for structures.

Wholly Disordered Proteins in the SL477 Set

In SL477, there are a total of 30 proteins predicted with

fo = 0. All but one are annotated as entirely disordered

proteins (without any ordered residues) by experimental

means [15]. Thus, there is excellent agreement between

predicted and annotated disordered proteins with fo = 0. The

only protein (DP00179) annotated with an ordered region has

about half of the residues annotated as ordered and about half

annotated as disordered. As shown in Fig. 3b, the annotated

ordered region of DP00179 (yeast protein IA3) is predicted

as semi-disordered and has a single helical structure stabi-

lized by its inhibiting target aspartic proteinase A [21]. That

is, predicted semi-disordered region has an exact match to

the induced folding region meaningfully separated from the

region that is fully disordered.

Wholly Disordered Proteins in the DX4080 Set

In DX4080, there are nine proteins with fo = 0. For eight

proteins (pdb ID:1meyG, 1ohhH, 1qqp4, 1urqA, 2pxbA,

2prgC, 3f5hB, and 3k29A), their structured regions all

contain long semi-disordered regions. One example

(2prgC) is shown in Fig. 3b, and the rest are shown in

Fig. 4. Only one protein, called vasopressin V1a receptor

(PDB ID: 1ytvN), contains a short fully disordered region

at the N-terminal that is folded into a turn after it binds to

maltose-binding periplasmic protein. Because SPINE-D

was trained to predict disorder at terminal regions, we

removed such effect (dashed line) by employing the

sequence that is made of three vasopressin V1a receptor

sequences and taking the result from the center sequence.

The terminal fully disordered region becomes semi-disor-

der. Thus, all structured regions are semi-disordered. These

nine proteins result from induced folding due to the pres-

ence of co-factors such as proteins, DNA, or ligands. That

is, induced folding occurs at predicted semi-disordered

regions for these proteins. This result further confirms the

accuracy of fo = 0 from SPINE-D predictions because all

these proteins should have been annotated as disordered

proteins (semi-disordered ? fully disordered) in an iso-

lated monomeric form. More importantly, the connection

between induced folding and semi-disordered regions is

consistent with what was found for two proteins in SL477.

Fig. 3 (a) The Gibbs triangle diagram of the fractions of residues in

three states (ordered, semi-disordered, fully disordered residues) for

all proteins in the three datasets as labeled. Each protein is a point and

its position is determined by three fractions of residues. (b) Disorder

probability profiles with zero ordered residues (fo = 0) for the chain

A of the PDB ID 2qt4 (2qt4A) in the control set, for DP00179 (chain

B in PDB ID 1DPJ) in SL477, and for chain C of PDB ID 2prg

(2prgC) in DX4080. The semi-disordered regions correspond to

structured regions (horizontal lines) stabilized by disulfide bonds

(2qt4A), by binding-induced folding (DP00179 and 2prgC). Only one

structured region of 2prgC bound with its target is visible in this

figure. The gray area indicates the region defined as semi-disordered
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Quantifying the Link Between Semi-disorder

and Induced Folding

The above result was based on a limited number of

examples. To quantify the relation between semi-disorder

and induced folding, we employ the ANCHOR dataset [22]

that is a collection of binding regions in disordered proteins

that fold upon binding. The dataset was divided into long

(28 complexes) and short (46 complexes) according to the

size of disordered regions (30 residues). In this dataset,

each residue is annotated as either in binding (positive) or

non-binding (negative) regions. To examine if a residue in

a semi-disordered state is a potential binding residue, we

define true positive (TP) if an annotated binding residue is

predicted as semi-disorder, true negative (TN) if a non-

binding residues is predicted as non-semi-disorder, false

positive (FP) if a non-binding residue is predicted as semi-

disorder, and false negative (FN) if a binding residue is

predicted as non-semi-disorder. This allows us to calculate

sensitivity [TP/(TP ? FN)], specificity [TN/(TN ? FP)],

and Matthews correlation coefficient MCC½ ¼ ðTP� TN�
FP� FNÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p

�
without any training. Here, we assess the performance on

the residue level, rather than on the region level to avoid

the difficulty of defining true/false negatives/positives at

the region level without introducing additional parameters.

Table 1 compares the results of SPINE-D with those

from ANCHOR [22] and MoRFpred [23], two recently

developed techniques that were trained to predict binding

in disordered regions. The accuracy of all three methods is

low with the average sensitivity and specificity (balanced

accuracy) between 56 and 72 %. MoRFpred, trained for the

short dataset, has the highest MCC value of 0.29 for the

short dataset while SPINE-D has the highest MCC value of

0.15 for the long dataset. The result confirms a weak but

positive association between a semi-disordered state and

the binding-induced folding region, for binding residues in

long disordered regions, in particular.

Semi-disorder and Protein Aggregation: Illustrative

Examples

The connection between semi-disorder and binding-

induced folding also suggests the potential role of semi-

disorder in protein aggregation because protein aggregation

can be viewed as ‘‘folding’’ coupled with self-association.

Here, we started with several known aggregation-prone

proteins to examine if there is a connection between semi-

disorder and aggregation.
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Fig. 4 Structured regions (blue bar) by induced folding of disordered

proteins are compared with their semi-disordered regions (probability

profile within the gray region) in eight additional proteins with

predicted fo = 0 in the DX4080 dataset (PDB IDs as labeled). Only

one structured region (1ytvN) corresponds to a fully disordered region

at the N-terminal end of chain N of 1ytv. But it is semi-disordered

after removing the terminal effect (dashed line). The N-terminal

region of chain G of 1mey (consensus zinc finger) does not have

coordinates but the same region in identical chains C and F does.

Thus, the whole chain G made of mostly the semi-disordered state can

be labeled as structured from residue 1 to 85 after binding with DNA

in a trimeric form (Color figure online)

Table 1 Predicting binding residues in short and long disordered regions (the short and long ANCHOR set) by ANCHOR, MoRFpred, and the

semi-disorder from SPINE-D

Short disordered region Long disordered region

Method Sensitivity Specificity MCC Sensitivity Specificity MCC

ANCHOR 0.64 0.71 0.14 0.45 0.66 0.06

MoRFpreda 0.50 0.94 0.29 0.17 0.94 0.10

SPINE-D 0.32 0.80 0.05 0.42 0.81 0.15

a MoRFpred failed to make predictions for 2 proteins in the short set
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Huntingtin

One example of protein aggregation involves the protein

huntingtin that contains a region with repeated glutamines

(Qs). Individuals with 37 or more glutamines in their hun-

tingtin protein are likely to develop Huntington’s disease

during their lifetime, and the severity of the disease is

monotonically related to the number of glutamines [24].

Figure 5 shows that as the number of glutamines increases

roughly beyond 20, there is a significant increase in fraction

of glutamines in the semi-disordered state along with a large

reduction in the average disorder probability for the gluta-

mines. That is, the poly-Q region experiences a transition

from a fully disordered state (0–24 glutamines) to [30 %

semi-disordered (35–100 glutamines), with a monotonic

increase in fraction of Qs in the semi-disordered state.

Alpha-Synuclein

Alpha-Synuclein, a classical example of IDPs, was recently

found to have a tetrameric structure for the first 100 residues

in physiological conditions [25, 26]. This induced folding

and/or aggregation-prone region corresponds to a semi-dis-

ordered region as shown in Fig. 6a. The separation of two

domains around residue 100 is consistent with compaction

ratios obtained from combined NMR experiments and rep-

lica exchange molecular dynamics simulations [27] as well

as the partial condensation in the central region (30–100)

from molecular dynamics simulation with restraints from

spin-label NMR experiments [28]. A compaction ratio was

defined as the average end-to-end distance relative to the

end-to-end distance calculated from random coil ensembles.

The medium compaction ratio of about 0.5 for the N-terminal

and NAC regions indicates that they are semi-collapsed and

the high compaction ratio of about 0.8 for the C-terminal of

alpha-synuclein suggests that it is random-coil-like and

accessible. The accessible C-terminal is also consistent with

the fact that the region is not directly involved in the mech-

anism of aggregation and accessible to single-domain cam-

elid antibody [29], and its truncation promotes aggregation

[30]. That is, the amyloidogenic and induced-folding region

of alpha-synuclein is semi-disordered.

Yeast Sup35

The overlap between amyloidogenic and semi-disordered

regions in alpha-synuclein is further observed for amyloi-

dogenic yeast Sup35. In Fig. 6b, the disorder probability

profile for Sup35 predicted by SPINE-D is compared with
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disordered to a partially semi-disordered state. Fraction of glutamines

(Qs) in a semi-disordered state (fQ in red) and the average disorder

probability (P, in blue) in the poly-Q region as a function of the number

of glutamines in the poly-Q tract of huntingtin (Color figure online)
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Fig. 6 Semi-disordered state in unstructured (alpha-synuclein and

Sup35) and structured proteins (SOD1 and human lysozyme). Predicted

disordered probability profiles (P in red) compared with compaction

ratios for three different regions at normal pH from combined NMR

experiments and replica exchange molecular dynamics simulations of

alpha-synuclein (in blue) (a), the measured Cys accessibility profile

(scaled by the largest accessibility of 82.2 %, in blue) of yeast Sup 35

(b), root mean squared distance (RMSD) from native by molecular

dynamics simulations of SOD1 (c), and the unstructured regions in a

partially unfolded state detected by H/D exchange (blue) and the fibril

core region from proteolysis (orange) (d). In (c), open regions in blue

line correspond locally unfolded regions of SOD1. RMSD values are

rescaled and shifted to facilitate comparison. The gray bar indicates

the region defined as semi-disordered in disorder probability

(0.4 B P B 0.7) (Color figure online)
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the measured Cys accessibility profile of amyloid fibrils at

different substitution position in Sup35 [31]. The Cys

accessibility profile indicates that amyloid fibrils are made

of the N-terminal domain while the C-terminal domain

remains fully accessible. The amyloidogenic N-terminal

and accessible C-terminal domains of Sup35 match nicely

to the semi- and fully disordered regions identified by

SPINE-D.

Cu, Zn Superoxide Dismutase

The above results are for IDPs with predicted disorder

probabilities [0.5 for all residues. Does a semi-disordered

state play a role for aggregation of structured proteins?. In

Fig. 6c, we applied SPINE-D to Cu, Zn superoxide dis-

mutase (SOD1). ApoSOD1 has a well-defined crystal

structure but has locally unfolded regions in solution based

on experiments [32, 33] and simulations [34]. Such locally

unfolded regions from molecular dynamics simulations

[34] are in excellent agreement with semi-disordered

regions predicted from SPINE-D as shown in Fig. 6c.

Because stable, ordered regions are found in the fibrillar

core of wild-type SOD1 [35], its semi-disordered regions

play the key role for opening up the hydrophobic core for

aggregation [32, 33, 35].

Human Lysozyme

In Fig. 6d, the disordered probability profile is shown for

another structured protein: human lysozyme. Its semi-dis-

ordered regions (residues 39–52 and 67–75) are within the

unstructured region of a partially unfolded state detected by

H/D exchange (residues 36–102) [36] and the fibril core

region according to proteolysis (residues 32–108) [37].

Acylphosphate

As a control, we also examined the disorder probability

profile of acylphosphate from hyperthermophilic archaeon

Sulfolobus solfataricus (Sso AcP). This stable protein does

not have detectable aggregation except in the presence of a

mild destabilizing co-solvent such as 20 % trifluoroethanol

[38]. As shown in Fig. 7, this protein does not have any

semi- or fully disordered residues except in the terminal

regions. The unstructured region for the first 12 residues

from the NMR experiment [39], in close agreement with

the mix of semi- and fully disordered residues from 1 to 15

at the N-terminal from SPINE-D (or residues 1–12 after

removing terminal effect), was shown to play the key role

in promoting aggregation from protein engineering exper-

iments [40]. Thus, the semi-disordered state promotes

aggregation even for highly stable proteins that do not

aggregate under normal physiological conditions.

Semi-disorder and Protein Aggregation: Quantification

To quantify the relation between aggregation and semi-

disorder beyond above examples, we employed the Amy-

PDB dataset [41]. The AmyPDB dataset contains 31 amy-

loid families, including 25 amyloid precursors and 6 prions

[41]. Among them, 12 proteins have annotated amyloido-

genic regions: yeast prion protein (URE2), podospora small

s protein, human amyloid beta A4 protein (A4), atrial

natriuretic factor (ANF), apolipoprotein A-1 (APOA1), beta

2 microglobulin (B2MG), islet amyloid polypeptide (IAPP),

integral membrane protein 2B (ITM2B), lactadherin

(MFGM), major prion protein precursor (PrP), serum

amyloid A (SAA), and tau protein. This dataset of 12 pro-

teins was enlarged with four additional proteins shown in

Fig. 6. We define true positive if a residue annotated in

aggregation regions is predicted as semi-disorder, true

negative if a residue not in aggregation regions is predicted

as non-semi-disorder, false positive if a residue not in

aggregation regions is predicted as semi-disorder, and false

negative if a residue in aggregation region is predicted as

non-semi-disorder. This allows us to calculate sensitivity,

specificity, and MCC values as in the case of binding

prediction.

Table 2 compares the accuracy of SPINE-D with three

methods dedicated to predict protein aggregation. The

three methods are Fold-amyloid [42] based on expected
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hyperthermophilic archaeon Sulfolobus solfataricus (Sso AcP) pre-
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probability of hydrogen bonds formation and expected

packing density of residues, Waltz [43] based on the

sequence diversity of amyloid hexa-peptides, and Aggre-

scan [44] based on aggregation-propensity scale. The

accuracy of three methods (Fold-Amyloid, Aggrescan and

Waltz-Best performance) is poor with the average sensi-

tivity and specificity (balanced accuracy) around 50 % and

the MCC value between -0.04 and 0.01 for this dataset.

Only Waltz-high sensitivity and SPINE-D have some

ability to predict aggregation regions (MCC = 0.18 and

0.11, respectively). This highlights the challenge of pre-

dicting aggregation. The MCC value given by SPINE-D

can be improved from 0.11 to 0.15 if the definition of

aggregation-prone residues covers both semi-disorder and

full-order (0–0.7). This suggests the importance of both

ordered and semi-disordered regions in protein aggrega-

tion. We note that many methods for predicting protein

aggregations are built on the dataset of aggregation-prone

and non-aggregation peptides (for example, [45]). Such a

dataset is not useful for examining the relation between

semi-disorder and aggregation because SPINE-D is only

applicable to protein sequences.

Semi-disorder and Residue Aggregation Propensity

The role of semi-disorder in protein aggregation, however,

seems to contradict observed anti-correlation between dis-

order propensity and amyloid aggregation propensity of 20

amino-acid residue types [46, 47]. To explain this obser-

vation, we applied SPINE-D to 4080 non-redundant high-

resolution X-ray structures (DX4080) and obtained the

compositions of the 20 amino acid residues that are ordered

(0 B P \ 0.4), Co
r , semi-disordered (0.4 B P B 0.7), Csd

r ,

or fully disordered (0.7 \ P B 1), Cfd
r (r = 1,…20) to

compare with residue amyloid aggregation propensity from

empirical fit to experimental aggregation rates of unstruc-

tured polypeptide chains [46]. We confirmed the anti-cor-

relation between the propensities for full disorder

(Cfd
r � Co

r )/Co
r and the propensity for amyloid aggregation

with a correlation coefficient of -0.77. However, the amino

acid residues gained in changing from the fully disordered to

the semi-disordered state (Csd
r � Cfd

r )/Cfd
r is highly corre-

lated with amyloid aggregation propensity. As shown in

Fig. 8, the correlation coefficient is 0.86 without Pro and

four charged residues (Arg, Asp, Glu, and Lys) and 0.74 for

all residues. The highest enrichment of a residue in a semi-

disordered region over the fully disordered region is 185 %

for the strongest aggregation-prone residue Trp and more

than 100 % for the second and third strongest aggregation-

prone residues Phe and Cys. This strong positive correlation

supports the capability of semi-disordered regions to pro-

mote aggregation. Changing from the semi-disordered state

to the ordered one continues to enrich residues with high

amyloid aggregation propensity but with a much smaller

enrichment factor (36 % for Trp, 52 % for Phe, and 41 %

for Cys). The correlation coefficient is 0.79 for all 20 residue

types and 0.87 without Pro and charged residues. Thus, only

the fully disordered state is aggregation-resistant. Both

ordered and semi-disordered regions can participate in

aggregation as demonstrated in Figs. 6 and 7.

Discussion

The disorder probability predicted by SPINE-D was

rescaled for CASP 9 so that the threshold for disorder is at

50 % being disordered or ordered. Although the simple

linear scaling was somewhat arbitrary, the resulting pop-

ulation of semi-disordered residues appears to be physi-

cally meaningful. This is reflected from the fact that these

semi-disordered residues can be characterized as semi-

collapsed (according to predicted solvent accessible sur-

face area) and semi-structured (according to predicted

secondary structure content). Furthermore, the semi-disor-

dered regions made of semi-disordered residues are found

capable of induced folding and protein aggregation.

This article established a quantitative connection

between semi-disorder and induced folding. Previously, the

observed connection between induced folding and a dip in

disorder probability [48, 49] has motivated development of

neural network-based alpha-MoRF predictors [50] and

SVM-based MoRF-predictor [23] with predicted disorder

Table 2 Predicting residues in aggregation regions for 12 proteins in the AmyPDB dataset and 4 proteins from Fig. 6

Method Sensitivity Specificity MCC

Fold-amyloid 0.16 0.81 -0.03

Aggrescan 0.23 0.76 -0.01

Waltz-best perform (high sensitivity)a 0.14 (0.54) 0.93 (0.66) 0.01 (0.18)

SPINE-D (order?semi-disorder)b 0.38 (0.84) 0.73 (0.32) 0.11 (0.15)

a Two options in Waltz server were used: best performance and high sensitivity (in parentheses)
b Results from SPINE-D are obtained by employing predicted semi-disordered residues in aggregation regions. The numbers in parentheses are

resulted from assigning both ordered and semi-disordered residues (0–0.7) as aggregation prone
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as input (trained on short disorder-to-ordered transitions).

ANCHOR, on the other hand, predicts binding residues in

disordered regions by predicting the inter-protein interac-

tion strength based on the average composition of amino

acid residues in globular proteins [22]. This study provides

an alternative approach to characterize induced folding in

the absence of specific training (Table 1).

The connection between semi-disorder and induced

folding, however, is more complicated than simply

assigning semi-disordered regions as induced folding, the

assumption made in Table 1. It is complicated because a

semi-disordered region may be folded by interacting with

itself or other molecules (induced folding), but induced

folding regions do not have to be semi-disordered. They

can be made of ordered residues that are too few to sta-

bilize a solid-like structure by themselves [51] or consist of

fully disordered residues that fold in the presence of a

perfectly matching partner. This explains the low accuracy

in direct assignment of semi-disorder as induced folding

shown in Table 1. Such low accuracy is also observed in

other techniques, indicating room for further improvement

by more specific training with SPINE-D output as input.

The ability of semi-disordered regions to aggregate is

confirmed by enrichment of aggregation-prone residues in

semi-disordered regions, relative to that in fully disordered

regions. It is also evidenced by the overlap between known

amyloidogenic and semi-disordered regions for 18 proteins

studied here. Recently, Sikirzhytski et al. [52] showed that a

de novo designed fibrillogenic polypeptide YE8 is made of a

largely semi-disordered region from the SPINE-D predic-

tion. Thus, for IDPs, it is the absence or existence of semi-

disorder that leads to some IDPs being resistant to protein

aggregation while others being aggregation-prone [1]. For

structured proteins, aggregation can occur at either semi-

disordered or ordered regions, or both. This is because both

regions are enriched with amino-acid residues with high

propensity for aggregation as shown in Fig. 8. Semi-disor-

dered regions in structured proteins, however, are induced to

fold by other structure-encoded regions. Thus, they are

likely the weakly stable part of protein structures. Such

instability is confirmed by the overlap between the semi-

disordered regions and locally unfolded regions in SOD1

(Fig. 6c), human lysozyme (Fig. 6d), and Sso AcP (Fig. 7).

This instability of semi-disorder can initiate aggregation in

structured proteins by local unfolding [53] (or as meta-stable

states/regions [54–56]) and exposes self-complementary

amyloidogenic segments protected by evolution [57].

The ability of using semi-disorder alone to predict

aggregation, however, is weak as shown in Table 2. This

reflects the complex interplay between inter and intraprotein

interactions. Not all predicted semi-disordered regions are

amyloidogenic. For example, the APOA1 protein has two

long semi-disordered regions (Residues 25–107 and

153–226). This protein is a six-helix bundle in which helices

1 and 2 (25–107, the amyloidogenic region) are slightly

more accessible than helix 4 (153–226). The former has a

residue solvent accessibility (RSA) of 0.57 for 57 exposed

residues (RSA [ 0.25) compared with 0.52 in the second

region with the same number of exposed residues. Non-

amyloidogenic semi-disordered regions may also exist

simply because the method was not trained to predict

amyloid formation. Our sequence-based prediction relies

mostly on local sequence interactions. Nonlocal interactions

(interactions between residues that are not sequence

neighbors) determine the winner of the competition between

intramolecular (folding or misfolding) and inter-molecular

interactions (aggregation). Incorporation of both inter and

intra molecular interactions and combining the detection of

the semi-disordered state with the models based on physi-

cochemical properties, neural networks, and structural pro-

files [57–61] will likely lead to further improvement in

accuracy of predicting amyloidogenic regions.

One interesting question is the relationship between

predicted semi-disorder/disorder with energetically frus-

trated regions in proteins. Ferreiro et al. [62] found that

some proteins contain highly frustrated interactions near

binding sites that are less frustrated upon complex
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formation. Although this local frustration index [63] is

limited to proteins with known structures and yet to be

applied to induced-folding proteins, it is likely that induced

folding corresponds to the transition from frustrated

(unable to fold) to minimally frustrated (foldable) inter-

actions. Interestingly, local frustrated regions correspond to

flexible regions that are described by temperature B-factor

and simulated results of root-mean-squared fluctuation

[64]. Similar result is obtained in Fig. 6 except that semi-

disorder corresponds to locally unfolded regions where

root-mean-squared fluctuation is significantly larger than

what typically observed in structured proteins. That is,

semi-disorder and full-disorder likely have strongly frus-

trated interactions. The quantitative relation between pre-

dicted disordered probability and flexibility can be

examined by correlating disorder probabilities with tem-

perature B-factors from X-ray structure determination. For

a dataset of high-resolution and non-redundant 766 protein

structures collected by Yuan et al. [65], we found that the

average correlation coefficient for these 766 proteins given

by SPINE-D is 0.39 ± 0.19. Thus, there is a positive

relationship between protein disorder and structural flexi-

bility, despite that SPINE-D was not trained for tempera-

ture B-factor prediction.

This study highlights the ability of SPINE-D in sepa-

rating semi-disorder from ordered and fully disordered

states. It would be of interest to know if other methods

have similar capability. We selected six representative

methods that cover three categories of disorder prediction

methods, including: methods that only use amino acid

propensity/energy associated with disorder, e.g., IUPred

short/long disorder predictor [66]; method based on

machine learning approaches, e.g., Dispro [67], Disopred2

[68] and meta servers that combine multiple disorder pre-

dictors, e.g., MD [69] and MFDp [70]. The distributions of

predicted disorder probabilities for the SL477 dataset are

shown in Fig. 9a. All have two state distributions. It is clear

that SPINE-D is unique because its training on an unbal-

anced dataset requires rescaling the disorder probability.

As an illustrative example, we apply these five techniques

(IU-short and IU-long have similar results, only IU-long is

shown) to Sup 35. As Fig. 9b shows, all these methods do

not have a clear separation into two domains at residue

100, unlike SPINE-D predictions and experimental Cys

accessibility.

Materials and Methods

Datasets

In addition to DX4080 [non-redundant, high-resolution

(\2 Å) X-ray structures, 25 % sequence identity or less

between each other], we employed the SL dataset of 477

non-redundant proteins (25 % sequence identity cutoff)

that was built by re-annotating manually annotated disor-

dered proteins in the Disprot database so that it includes

reliable disorder and order contents [15]. This dataset

contains fully disordered proteins based on various exper-

imental methods. The sequences in SL477 are 25 %

sequence identity or less from the sequences in DX4080.

As a control, we built a set of stably folded monomeric

proteins by searching the PDB based on the following

criteria: (a) X-ray determined structures without DNA,

RNA, hybrid or other ligands; (b) having only one chain

(both biological assembly and asymmetric unit); (c) high

resolution (B3.0 Å) with size C50 residues; and d) no

missing residues (except terminal regions) or abnormal

amino acid types. A total of 703 proteins are obtained after

removing redundant chains at 30 % sequence identity.

SPINE-D Server

SPINE-D is a neural-network-based predictor trained on a

non-redundant set of 4157 X-ray structures and 72 fully

disordered proteins from the Disprot database v5.0 [14]. It
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only requires an input of protein sequence is available at

http://sparks-lab.org. For huntingtin, the calculation was

started with three Qs and the sequence profile of the middle

Q is employed to expand the poly-Q tract. More method-

ology details can be found in Ref. [12].

Amino-Acid Composition Calculations

Application of SPINE-D to DX4080 leads to residues in

ordered (P \ 0.4), semi-disordered (0.4 B P B 0.7), and

fully disordered (P [ 0.7) sets. The fractions of each residue

type in these three states (amino-acid compositions) are

obtained as Co
r , Csd

r , Cfd
r (r = 1,…,20), respectively. Relative

composition differences between semi-disorder and full-

disorder [(Csd
r � Cfd

r )/Cfd
r ] and between order and semi-dis-

order [(Co
r � Csd

r )/Csd
r ] are compared with experimentally

measured aggregation propensity. We would like to

emphasize that all analyses are not from annotated disorder/

ordered regions, secondary structure, or ASA, but are based

on predicted disorder probabilities, predicted secondary

structure, and predicted solvent-accessible surface area

because secondary structure, solvent accessibility, and semi-

disorder annotation are unknown for unstructured regions.

Other Methods

We have used five representative on-line servers for gener-

ating disorder predictions: Dispro from http://www.ics.uci.

edu/*baldig/dispro.html; DISOPRED2 from http://bioinf.cs.ucl.

ac.uk/disopred/; MD from http://www.predictprotein.org/;

IUpred Long/short from http://iupred.enzim.hu/; and MFDp

from http://biomine-ws.ece.ualberta.ca/MFDp.html.
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