Skip to main content
Log in

Cadmium Concentration in Mother’s Blood, Milk, and Newborn’s Blood and Its Correlation with Fatty Acids, Anthropometric Characteristics, and Mother’s Smoking Status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine cadmium concentration in mothers’ blood, milk, and newborns’ blood from Szczecin (Poland) as a result of environmental cadmium exposure and evaluate the correlation (1) between cadmium levels in analyzed matrices, (2) between cadmium and fatty acids in those matrices, and (3) between cadmium and some selected personal variables, such as anthropometric characteristics, mothers’ smoking status, and fruit and fish consumption by mothers. The concentration of cadmium in whole blood and milk of mothers and in the umbilical cord blood of newborns was determined by atomic absorption spectrometry with graphite furnace atomization and Zeeman correction. The fatty acid concentrations were determined by gas chromatography in our previous study. The mean concentrations of cadmium in maternal blood, newborn’s blood, and breast milk were 0.61 ± 0.62 μg/L, 0.05 ± 0.04 μg/L, and 0.11 ± 0.07 μg/L, respectively, and differed significantly between analyzed matrices. Cadmium concentrations in the umbilical cord blood were 15 % (range 0–83 %) of the concentration in maternal blood, whereas cadmium concentrations in breast milk constituted 35 % (range 3–142 %) of the concentration in mothers’ blood. No correlation was found between cadmium levels in three analyzed matrices. The correlation analysis revealed significant low positive correlation between maternal blood cadmium concentrations and concentrations of elaidic, oleic, and cis-vaccenic acids in mothers’ milk (correlation coefficients 0.30, 0.32, and 0.31, respectively). Mothers’ blood cadmium correlated with mothers’ age (r = −0.26, p = 0.03), maternal smoking before pregnancy (r = 0.55, p < 0.000), maternal smoking during pregnancy (r = 0.58, p < 0.000), and fruit consumption by mothers after delivery (r = −0.44, p = 0.003). Mothers’ height was the only variable that correlated significantly with breast milk cadmium levels. Newborns’ blood cadmium concentrations correlated significantly with mothers’ height (r = 0.28, p = 0.02), newborns’ birth weight (r = 0.26, p = 0.03), maternal smoking during pregnancy (r = 0.24, p = 0.048), and fish consumption by mothers after delivery (r = 0.37, p = 0.02). The concentrations of cadmium in Polish mother-newborn pairs are among the lowest in Europe and within the norms established by different institutions. The results of our study confirm the existence of effective partial barriers (such as the placenta and mammary gland) restricting cadmium passage from mother to newborn. The significant positive correlations between maternal blood Cd and concentrations of oleic, elaidic, and cis-vaccenic acids in breast milk might suggest the increased cadmium toxicity to infant, taking into consideration even low cadmium passage to milk. Maternal smoking during pregnancy increases both maternal and newborn’s blood cadmium level. Promotion of nonsmoking among pregnant women could substantially reduce prenatal and neonatal exposure to cadmium. Moreover, the results of our study point to the need of establishing complex biomonitoring of cadmium in mother-infant pairs in order to better protect children from this toxic and carcinogenic metal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ATSDR (2013) Agency for Toxic Substances and Disease Registry, 2013. The priority list of hazardous substances, 2013. U.S. Department of Health and Human Services, Public Health Services, Atlanta, GA ( http://www.atsdr.cdc.gov/spl/ )

  2. Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23:769–782

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, Rojas-García A (2013) Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ 454–455:562–577

    Article  PubMed  Google Scholar 

  4. Cao Y, Chen A, Radcliffe J, Dietrich KN, Jones RL, Caldwell K, Rogan WJ (2009) Postnatal cadmium exposure, neurodevelopment, and blood pressure in children at 2, 5, and 7 years of age. Environ Health Perspect 117:1580–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carageorgiou H, Katramadou M (2012) Aspects of cadmium neurotoxicity. In: Li YV, Zhang JH (eds) Metal ion in stroke, Springer Series in Translational Stroke Research. Springer Science + Business Media, New York, pp 703–749

    Google Scholar 

  6. Kippler M, Tofail F, Hamadani JD, Gardner RM, Grantham-McGregor SM, Bottai M, Vahter M (2012) Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh. Environ Health Perspect 120:1462–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kippler M, Lönnerdal B, Goessler W, Ekström EC, Arifeen SE, Vahter M (2009) Cadmium interacts with the transport of essential micronutrients in the mammary gland—a study in rural Bangladeshi women. Toxicology 257:64–69

    Article  CAS  PubMed  Google Scholar 

  8. Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr 162:201–206

    Article  PubMed  Google Scholar 

  9. Durska G (2001) Levels of lead and cadmium in pregnant women and newborns and evaluation of their impact on child development. Ann Acad Med Stetin 47:49–60

    CAS  PubMed  Google Scholar 

  10. Kopp RS, Kumbartski M, Harth V, Brüning T, Käfferlein HU (2012) Partition of metals in the maternal/fetal unit and lead-associated decreases of fetal iron and manganese: an observational biomonitoring approach. Arch Toxicol 86:1571–1581

    Article  CAS  PubMed  Google Scholar 

  11. Needham LL, Grandjean P, Heinzow B, Jørgensen PJ, Nielsen F, Patterson DG Jr, Sjödin A, Turner WE, Weihe P (2011) Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol 45:1121–1126

    Article  CAS  PubMed  Google Scholar 

  12. Osman K, Akesson A, Berglund M, Bremme K, Schütz A, Ask K, Vahter M (2000) Toxic and essential elements in placentas of Swedish women. Clin Biochem 33:131–138

    Article  CAS  PubMed  Google Scholar 

  13. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, Samsioe G, Strömberg U, Skerfving S (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hallén IP, Jorhem L, Lagerkvist BJ, Oskarsson A (1995) Lead and cadmium levels in human milk and blood. Sci Total Environ 166:149–155

    Article  PubMed  Google Scholar 

  16. LaKind JS, Wilkins AA, Berlin CM (2004) Environmental chemicals in human milk: a review of levels, infant exposures and health, and guidance for future research. Toxicol Appl Pharmacol 198:184–208

    Article  CAS  PubMed  Google Scholar 

  17. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T (2001) Physiological aspects of human milk lipids. Early Hum Dev 65(Suppl):S3–S18

    Article  CAS  PubMed  Google Scholar 

  18. Mennitti LV, Oliveira JL, Morais CA, Estadella D, Oyama LM, Oller do Nascimento CM, Pisani LP (2015) Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem 26:99–111

    Article  CAS  PubMed  Google Scholar 

  19. Chao HH, Guo CH, Huang CB, Chen PC, Li HC, Hsiung DY, Chou YK (2014) Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr Neonatol 55:127–134

    Article  PubMed  Google Scholar 

  20. Ramirez DC, Gimenez MS (2002) Lipid modification in mouse peritoneal macrophages after chronic cadmium exposure. Toxicology 172:1–12

    Article  CAS  PubMed  Google Scholar 

  21. El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology 235:185–193

    Article  CAS  PubMed  Google Scholar 

  22. Murugavel P, Pari L (2007) Diallyl tetrasulfide protects cadmium-induced alterations in lipids and plasma lipoproteins in rats. Nutr Res 27:356–361

    Article  CAS  Google Scholar 

  23. Ohrvik H, Yoshioka M, Oskarsson A, Tallkvist J (2006) Cadmium-induced disturbances in lactating mammary glands of mice. Toxicol Lett 164:207–213

    Article  PubMed  Google Scholar 

  24. Grawé KP, Pickova J, Dutta PC, Oskarsson A (2004) Fatty acid alterations in liver and milk of cadmium exposed rats and in brain of their suckling offspring. Toxicol Lett 148:73–82

    Article  PubMed  Google Scholar 

  25. Abballe A, Ballard TJ, Dellatte E, di Domenico A, Ferri F, Fulgenzi AR, Grisanti G, Iacovella N, Ingelido AM, Malisch R, Miniero R, Porpora MG, Risica S, Ziemacki G, De Felip E (2008) Persistent environmental contaminants in human milk: concentrations and time trends in Italy. Chemosphere 73(1 Suppl):S220–S227

    Article  CAS  PubMed  Google Scholar 

  26. Abdelouahab N, Huel G, Suvorov A, Foliguet B, Goua V, Debotte G, Sahuquillo J, Charles MA, Takser L (2010) Monoamine oxidase activity in placenta in relation to manganese, cadmium, lead, and mercury at delivery. Neurotoxicol Teratol 32:256–261

    Article  CAS  PubMed  Google Scholar 

  27. Adesiyan AA, Akiibinu MO, Olisekodiaka MJ, Onuegbu AJ, Adeyeye AD (2011) Concentrations of some biochemical parameters in breast milk of a population of Nigerian nursing mothers using hormonal contraceptives. Pak J Nutr 10:249–253

    Article  CAS  Google Scholar 

  28. Al-Saleh I, Shinwari N, Mashhour A, Mohamed Gel D, Rabah A (2011) Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 214:79–101

    Article  CAS  PubMed  Google Scholar 

  29. Björklund KL, Vahter M, Palm B, Grandér M, Lignell S, Berglund M (2012) Metals and trace element concentrations in breast milk of first time healthy mothers: a biological monitoring study. Environ Health 11:92

    Article  PubMed  PubMed Central  Google Scholar 

  30. Butler Walker J, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, Corriveau A, Weber JP, LeBlanc A, Walker M, Donaldson SG, Van Oostdam J (2006) Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res 100:295–318

    Article  CAS  PubMed  Google Scholar 

  31. Cardoso OO, Julião FC, Alves RI, Baena AR, Díez IG, Suzuki MN, Celere BS, Nadal M, Domingo JL, Segura-Muñoz SI (2014) Concentration profiles of metals in breast milk, drinking water, and soil: relationship between matrices. Biol Trace Elem Res 160:116–122

    Article  CAS  PubMed  Google Scholar 

  32. Coni E, Bocca B, Galoppi B, Alimonti A, Caro S (2000) Identification of chemical species of some trace and minor elements in mature breast milk. Microchem J 67:187–194

    Article  CAS  Google Scholar 

  33. Frković A, Kras M, Alebić-Juretić A (1997) Lead and cadmium content in human milk from the Northern Adriatic area of Croatia. Bull Environ Contam Toxicol 58:16–21

    Article  PubMed  Google Scholar 

  34. García-Esquinas E, Pérez-Gómez B, Fernández MA, Pérez-Meixeira AM, Gil E, de Paz C, Iriso A, Sanz JC, Astray J, Cisneros M, de Santos A, Asensio A, García-Sagredo JM, García JF, Vioque J, Pollán M, López-Abente G, González MJ, Martínez M, Bohigas PA, Pastor R, Aragonés N (2011) Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 85:268–276

    Article  PubMed  Google Scholar 

  35. García-Esquinas E, Pérez-Gómez B, Fernández-Navarro P, Fernández MA, de Paz C, Pérez-Meixeira AM, Gil E, Iriso A, Sanz JC, Astray J, Cisneros M, de Santos A, Asensio Á, García-Sagredo JM, García JF, Vioque J, López-Abente G, Pollán M, González MJ, Martínez M, Aragonés N (2013) Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health 13:841

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goudarzi MA, Parsaei P, Nayebpour F, Rahimi E (2013) Determination of mercury, cadmium and lead in human milk in Iran. Toxicol Ind Health 29:820–823

    Article  CAS  PubMed  Google Scholar 

  37. Gundacker C, Pietschnig B, Wittmann KJ, Salzer H, Stöger H, Reimann-Dorninger G, Schuster E, Lischka A (2007) Smoking, cereal consumption, and supplementation affect cadmium content in breast milk. J Expo Sci Environ Epidemiol 17:39–46

    Article  CAS  PubMed  Google Scholar 

  38. Gürbay A, Charehsaz M, Eken A, Sayal A, Girgin G, Yurdakök M, Yiğit Ş, Erol DD, Şahin G, Aydın A (2012) Toxic metals in breast milk samples from Ankara, Turkey: assessment of lead, cadmium, nickel, and arsenic levels. Biol Trace Elem Res 149:117–122

    Article  PubMed  Google Scholar 

  39. Honda R, Tawara K, Nishijo M, Nakagawa H, Tanebe K, Saito S (2003) Cadmium exposure and trace elements in human breast milk. Toxicology 186:255–259

    Article  CAS  PubMed  Google Scholar 

  40. Kantola M, Purkunen R, Kröger P, Tooming A, Juravskaja J, Pasanen M, Saarikoski S, Vartiainen T (2000) Accumulation of cadmium, zinc, and copper in maternal blood and developmental placental tissue: differences between Finland, Estonia, and St. Petersburg. Environ Res 83:54–66

    Article  CAS  PubMed  Google Scholar 

  41. Kantola M, Vartiainen T (2001) Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland. J Trace Elem Med Biol 15:11–17

    Article  CAS  Google Scholar 

  42. Koppen G, Den Hond E, Nelen V, Van De Mieroop E, Bruckers L, Bilau M, Keune H, Van Larebeke N, Covaci A, Van De Weghe H, Schroijen C, Desager K, Stalpaert M, Baeyens W, Schoeters G (2009) Organochlorine and heavy metals in newborns: results from the Flemish Environment and Health Survey (FLEHS 2002-2006). Environ Int 35:1015–1022

    Article  CAS  PubMed  Google Scholar 

  43. Kovar IZ, Strehlow CD, Richmond J, Thompson MG (1984) Perinatal lead and cadmium burden in a British urban population. Arch Dis Child 59:36–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krachler M, Rossipal E, Micetic-Turk D (1999) Trace element transfer from the mother to the newborn—investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr 53:486–494

    Article  CAS  PubMed  Google Scholar 

  45. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 61:238–247

    Article  CAS  PubMed  Google Scholar 

  46. Matos C, Moutinho C, Almeida C, Guerra A, Balcão V (2014) Trace element compositional changes in human milk during the first four months of lactation. Int J Food Sci Nutr 65:547–551

    Article  CAS  PubMed  Google Scholar 

  47. Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles MA, Yazbeck C (2012) Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother-child cohort study. Reprod Toxicol 34:622–627

    Article  CAS  PubMed  Google Scholar 

  48. Mokhtar G, Hossny E, el-Awady M, Zekry M (2002) In utero exposure to cadmium pollution in Cairo and Giza governorates of Egypt. East Mediterr Health J 8:254–260

    CAS  PubMed  Google Scholar 

  49. Parr RM, DeMaeyer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schöch G, Niinistö L, Pineda O, Vis HL, Hofvander Y, Omololu A (1991) Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biol Trace Elem Res 29:51–75

    Article  CAS  PubMed  Google Scholar 

  50. Plöckinger B, Dadak C, Meisinger V (1993) Lead, mercury and cadmium in newborn infants and their mothers. Z Geburtshilfe Perinatol 197:104–107

    PubMed  Google Scholar 

  51. Raghunath R, Tripathi RM, Sastry VN, Krishnamoorthy TM (2000) Heavy metals in maternal and cord blood. Sci Total Environ 250:135–141

    Article  CAS  PubMed  Google Scholar 

  52. Rahimi E, Hashemi M, Torki Baghbadorani Z (2009) Determination of cadmium and lead in human milk. Int J Environ Sc Tech 6:671–676

    Article  CAS  Google Scholar 

  53. Röllin HB, Kootbodien T, Channa K, Odland JØ (2015) Prenatal exposure to cadmium, placental permeability and birth outcomes in coastal populations of South Africa. PLoS One 10:e0142455

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rydzewska A, Król I (1996) Contents of zinc, copper and cadmium in milk of women living in Poznań. Ginekol Pol 67:125–128

    CAS  PubMed  Google Scholar 

  55. Schramel P, Hasse S, Ovcar-Pavlu J (1988) Selenium, cadmium, lead, and mercury concentrations in human breast milk, in placenta, maternal blood, and the blood of the newborn. Biol Trace Elem Res 15:111–124

    Article  CAS  PubMed  Google Scholar 

  56. Sikorski R, Paszkowski T, Radomański T Jr, Szkoda J (1989) Cadmium contamination of early human milk. Gynecol Obstet Invest 27:91–93

    Article  CAS  PubMed  Google Scholar 

  57. Stasiuk E, Przybyłowski P, Rój A (2011) Lead and cadmium content in women milk and other milk. Zeszyty Naukowe/Uniwersytet Ekonomiczny w Poznaniu 214:216–222

    Google Scholar 

  58. Stawarz R, Formicki G, Massányi P (2007) Daily fluctuations and distribution of xenobiotics, nutritional and biogenic elements in human milk in Southern Poland. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1169–1175

    Article  CAS  PubMed  Google Scholar 

  59. Turan S, Saygi S, Kiliç Z, Acar O (2001) Determination of heavy metal contents in human colostrum samples by electrothermal atomic absorption spectrophotometry. J Trop Pediatr 47:81–85

    Article  CAS  PubMed  Google Scholar 

  60. Turconi G, Guarcello M, Livieri C, Comizzoli S, Maccarini L, Castellazzi AM, Pietri A, Piva G, Roggi C (2004) Evaluation of xenobiotics in human milk and ingestion by the newborn—an epidemiological survey in Lombardy (Northern Italy). Eur J Nutr 43:191–197

    Article  CAS  PubMed  Google Scholar 

  61. Ursinyova M, Masanova V (2005) Cadmium, lead and mercury in human milk from Slovakia. Food Addit Contam 22:579–589

    Article  CAS  PubMed  Google Scholar 

  62. Vidal AC, Semenova V, Darrah T, Vengosh A, Huang Z, King K, Nye MD, Fry R, Skaar D, Maguire R, Murtha A, Schildkraut J, Murphy S, Hoyo C (2015) Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol Toxicol 16:20

    Article  PubMed  PubMed Central  Google Scholar 

  63. Winiarska-Mieczan A (2014) Cadmium, lead, copper and zinc in breast milk in Poland. Biol Trace Elem Res 157:36–44

    Article  CAS  PubMed  Google Scholar 

  64. Baranowska-Bosiacka I, Kosińska I, Jamioł D, Gutowska I, Prokopowicz A, Rębacz-Maron E, Goschorska M, Olszowski T, Chlubek D (2015) Environmental lead (Pb) exposure versus fatty acid content in blood and milk of the mother and in the blood of newborn children. Biol Trace Elem Res. doi:10.1007/s12011-015-0482-5

    Google Scholar 

  65. Stoeppler M, Brandt K (1980) Contribution to automated trace analysis. Part V. Determination of cadmium in whole blood and urine by electrothermal atomic-absorption spectrophotometry. Fres J Anal Chem 300:372–380

    Article  CAS  Google Scholar 

  66. Klopov VP (1998) Levels of heavy metals in women residing in the Russian Arctic. Int J Circumpolar Health 57(Suppl 1):582–585

    PubMed  Google Scholar 

  67. Sakamoto M, Chan HM, Domingo JL, Kubota M, Murata K (2012) Changes in body burden of mercury, lead, arsenic, cadmium and selenium in infants during early lactation in comparison with placental transfer. Ecotoxicol Environ Saf 84:179–184

    Article  CAS  PubMed  Google Scholar 

  68. Occupational Safety and Health Administration DoL (2003) Occupational safety and health standards: toxic and hazardous substances: cadmium. Code of Federal Regulations 29:135–229.CFR 1910.1027

  69. Wilhelm M, Ewers U, Schulz C (2004) Revised and new reference values for some trace elements in blood and urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health 207:69–73

    Article  CAS  PubMed  Google Scholar 

  70. Wilhelm M, Schulz C, Schwenk M (2006) Revised and new reference values for arsenic, cadmium, lead, and mercury in blood or urine of children: basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health 209:301–305

    Article  CAS  PubMed  Google Scholar 

  71. Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M, Human Biomonitoring Commission of the German Federal Environment Agency (2011) Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int J Hyg Environ Health 215:26–35

    Article  Google Scholar 

  72. World Health Organization (WHO) (1989) Cadmium. In: Toxicological evaluation of certain food additives and contaminants. Geneva, World Health Organization: 163-219 (WHO Food Additives Series, N°24)

  73. Pawlas N, Strömberg U, Carlberg B, Cerna M, Harari F, Harari R, Horvat M, Hruba F, Koppova K, Krskova A, Krsnik M, Li YF, Löfmark L, Lundh T, Lundström NG, Lyoussi B, Markiewicz-Górka I, Mazej D, Osredkar J, Pawlas K, Rentschler G, Spevackova V, Spiric Z, Sundkvist A, Tratnik JS, Vadla D, Zizi S, Skerfving S, Bergdahl IA (2013) Cadmium, mercury and lead in the blood of urban women in Croatia, the Czech Republic, Poland, Slovakia, Slovenia, Sweden, China, Ecuador and Morocco. Int J Occup Med Environ Health 26:58–72

    Article  PubMed  Google Scholar 

  74. Rossipal E, Krachler M (1998) Pattern of trace elements in human milk during the course of lactation. Nutr Res 18:11–24

    Article  CAS  Google Scholar 

  75. Rodriguez Rodriguez EM, Delgado Uretra E, Diaz Romero C (1999) Concentrations of cadmium and lead in different types of milk. Z Lebensm Unters Forsch A 208:162–168

    Article  CAS  Google Scholar 

  76. Baranowska I (1994) The concentration of some trace elements in human milk. Pol J Environ Stud 3:5–8

    CAS  Google Scholar 

  77. European Environment Agency (2015) Air quality in Europe—2015 report. doi:10.2800/62459

  78. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12

    Article  CAS  PubMed  Google Scholar 

  79. European Environment Agency (2015) Change in cadmium emissions. http://www.eea.europa.eu/data-and-maps/daviz/change-in-cadmium-emissions-2#tab-chart_3. Accessed 4 March 2016

  80. European Environment Agency (2015) Cadmium (Cd): annual mean concentrations in Europe. http://www.eea.europa.eu/themes/air/interactive/cd. Accessed 4 March 2016

  81. Eik Anda E, Nieboer E, Dudarev AA, Sandanger TM, Odland JØ (2007) Intra- and intercompartmental associations between levels of organochlorines in maternal plasma, cord plasma and breast milk, and lead and cadmium in whole blood, for indigenous peoples of Chukotka, Russia. J Environ Monit 9:884–893

    Article  CAS  PubMed  Google Scholar 

  82. Vigeh M, Yokoyama K, Ramezanzadeh F, Dahaghin M, Sakai T, Morita Y, Kitamura F, Sato H, Kobayashi Y (2006) Lead and other trace metals in preeclampsia: a case-control study in Tehran, Iran. Environ Res 100:268–275

    Article  CAS  PubMed  Google Scholar 

  83. Lin CM, Doyle P, Wang D, Hwang YH, Chen PC (2011) Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med 68:641–646

    Article  CAS  PubMed  Google Scholar 

  84. Rudge CV, Röllin HB, Nogueira CM, Thomassen Y, Rudge MC, Odland JØ (2009) The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J Environ Monit 11:1322–1330

    Article  CAS  PubMed  Google Scholar 

  85. Kippler M, Hoque AM, Raqib R, Ohrvik H, Ekström EC, Vahter M (2010) Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett 192:162–168

    Article  CAS  PubMed  Google Scholar 

  86. Aspenström-Fagerlund B, Ring L, Aspenström P, Tallkvist J, Ilbäck NG, Glynn AW (2007) Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes. Toxicology 237:12–23

    Article  PubMed  Google Scholar 

  87. Adam KM, Abdaltam SA, Noreldeen AM, Alseed WA (2015) Relationship between maternal blood lead, cadmium, and zinc levels and spontaneous abortion in Sudanese women. Public Health Research 5:171–176

    Google Scholar 

  88. dell’Omo M, Muzi G, Piccinini R, Gambelunghe A, Morucci P, Fiordi T, Ambrogi M, Abbritti G (1999) Blood cadmium concentrations in the general population of Umbria, central Italy. Sci Total Environ 226:57–64

    Article  PubMed  Google Scholar 

  89. Sirivarasai J, Kaojaren S, Wananukul W, Srisomerang P (2002) Non-occupational determinants of cadmium and lead in blood and urine among a general population in Thailand. Southeast Asian J Trop Med Public Health 33:180–187

    CAS  PubMed  Google Scholar 

  90. Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T, Kong Q, Wang H (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481

    Article  PubMed  Google Scholar 

  91. Al-Saleh I, Shinwari N, Mashhour A, Rabah A (2014) Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. Int J Hyg Environ Health 217:205–218

    Article  CAS  PubMed  Google Scholar 

  92. Sun H, Chen W, Wang D, Jin Y, Chen X, Xu Y (2014) The effects of prenatal exposure to low-level cadmium, lead and selenium on birth outcomes. Chemosphere 108:33–39

    Article  CAS  PubMed  Google Scholar 

  93. Mørck TA, Nielsen F, Nielsen JK, Jensen JF, Hansen PW, Hansen AK, Christoffersen LN, Siersma VD, Larsen IH, Hohlmann LK, Skaanild MT, Frederiksen H, Biot P, Casteleyn L, Kolossa-Gehring M, Schwedler G, Castaño A, Angerer J, Koch HM, Esteban M, Schoeters G, Den Hond E, Exley K, Sepai O, Bloemen L, Joas R, Joas A, Fiddicke U, Lopez A, Cañas A, Aerts D, Knudsen LE (2015) The Danish contribution to the European DEMOCOPHES project: a description of cadmium, cotinine and mercury levels in Danish mother-child pairs and the perspectives of supplementary sampling and measurements. Environ Res 141:96–105

    Article  PubMed  Google Scholar 

  94. Nishijo M, Nakagawa H, Honda R, Tanebe K, Saito S, Teranishi H, Tawara K (2002) Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup Environ Med 59:394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Odland JO, Nieboer E, Romanova N, Thomassen Y, Lund E (1999) Blood lead and cadmium and birth weight among sub-arctic and arctic populations of Norway and Russia. Acta Obstet Gynecol Scand 78:852–860

    Article  CAS  PubMed  Google Scholar 

  96. Zhang YL, Zhao YC, Wang JX, Zhu HD, Liu QF, Fan YG, Wang NF, Zhao JH, Liu HS, Ou-Yang L, Liu AP, Fan TQ (2004) Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: a study on healthy pregnant women in China. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2507–2515

    Article  PubMed  Google Scholar 

  97. Dwivedi D, Jain M, Jain S (2013) An association between maternal lead and cadmium levels and birth weight of the babies in North Indian population. Open J Obstet Gynecol 3:331–336

    Article  Google Scholar 

  98. Salpietro CD, Gangemi S, Minciullo PL, Briuglia S, Merlino MV, Stelitano A, Cristani M, Trombetta D, Saija A (2002) Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med 30:395–399

    Article  CAS  PubMed  Google Scholar 

  99. Johnston JE, Valentiner E, Maxson P, Miranda ML, Fry RC (2014) Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS One 9:e109661

    Article  PubMed  PubMed Central  Google Scholar 

  100. Galicia-García V, Rojas-López M, Rojas R, Olaiz G, Ríos C (1997) Cadmium levels in maternal, cord and newborn blood in Mexico City. Toxicol Lett 91:57–61

    Article  PubMed  Google Scholar 

  101. Kim H, Lee HJ, Hwang JY, Ha EH, Park H, Ha M, Kim JH, Hong YC, Chang N (2010) Blood cadmium concentrations of male cigarette smokers are inversely associated with fruit consumption. J Nutr 140:1133–1138

    Article  CAS  PubMed  Google Scholar 

  102. Örün E, Yalçın SS, Aykut O, Orhan G, Morgil GK, Yurdakök K, Uzun R (2011) Breast milk lead and cadmium levels from suburban areas of Ankara. Sci Total Environ 409:2467–2472

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Baranowska-Bosiacka.

Ethics declarations

The protocol of the study was approved by the Bioethical Committee of the Pomeranian Medical University (decision reference number BN-001/02/07).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olszowski, T., Baranowska-Bosiacka, I., Rębacz-Maron, E. et al. Cadmium Concentration in Mother’s Blood, Milk, and Newborn’s Blood and Its Correlation with Fatty Acids, Anthropometric Characteristics, and Mother’s Smoking Status. Biol Trace Elem Res 174, 8–20 (2016). https://doi.org/10.1007/s12011-016-0683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0683-6

Keywords

Navigation