Skip to main content
Log in

In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muthuraman P, Kim DH (2015) In vitro toxicity of zinc oxide nanoparticles: a review. J Nanoparticle Res 17:158

    Article  Google Scholar 

  2. Jae-Hyun L, Yong-Min H, Young-wook J, Jung-wook S, Jung-tak J, Ho-Taek S, Sungjun K, Eun-Jin C, Ho-Geun Y, Jin-Suck S, Jinwoo C (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  Google Scholar 

  3. Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–1992

    Article  CAS  PubMed  Google Scholar 

  4. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanoparticle Res 10: 679–689.

  5. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study Sci. Technol Adv Mater 9:035004

    Article  Google Scholar 

  6. Snyder-Talkingtona BN, Qiana Y, Castranovaa V, Guob NL (2012) New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of Co-culture and bioinformatics. J Toxicol Environ Health B 15:468–492

    Article  Google Scholar 

  7. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103

    Article  PubMed  PubMed Central  Google Scholar 

  8. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192

    CAS  PubMed  Google Scholar 

  9. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  CAS  PubMed  Google Scholar 

  12. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to the different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  PubMed  Google Scholar 

  13. Farnebo M, Bykov VJ, Wiman KG (2010) The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 396:85–89

    Article  CAS  PubMed  Google Scholar 

  14. Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M (2011) Anticancer activity of noscapine, an opioid alkaloid in combination with cisplatin in human non-small cell lung cancer. Lung Cancer 71:271–282

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang X, Guo Y, Nakamura K, Huang H, Hamblin M, Chang L, Villacorta L, Yin K, Ouyang H, Zhang J (2010) Nitroalkenes induce rat aortic smooth muscle cell apoptosis via activation of caspase-dependent pathways. Biochem Biophys Res Commun 397:239–244

    Article  CAS  PubMed  Google Scholar 

  16. Ahamed M, Akhtar MJ, Siddiqui J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress-mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    Article  CAS  PubMed  Google Scholar 

  17. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  18. Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL, Wang W (2011) Disulfiram modulated ROS-MAPK and NFkappaB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 104:1564–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muthuraman P, Inho H (2014) Application of cell co-culture system to study fat and muscle cells. Appl Microbiol Biotechnol 98:7359–7364

    Article  Google Scholar 

  20. Ravikumar S, Muthuraman P (2014) Cortisol effect on heat shock proteins in the C2C12 and 3T3-L1 cells. In Vitro Cell Dev Bio Anim 50:581–586

    Article  CAS  Google Scholar 

  21. Muthuraman P, Jeong Eun P, Eunjung K (2014) Aspartame downregulates 3T3-L1 differentiation. In Vitro Cell Dev Bio Anim 50:851–857

    Article  Google Scholar 

  22. Muthuraman P, Ramkumar K, Kim DH (2014) Analysis of the dose-dependent effect f zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl Biochem Biotechnol 174:2851–2863

    Article  CAS  PubMed  Google Scholar 

  23. Muthuraman P, Kim DH, Muthuviveganandavel V, Vikramathithan J, Ravikumar S (2015) Differential bio-potential of ZnS nanoparticles to normal MDCK cells and cervical carcinoma hela cells. J Nanosci Nanotechnol 15:1–8

    Article  Google Scholar 

  24. Muthuraman P, Muthuviveganandavel V, Kim DH (2015) Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 175:1270–1280

    Article  Google Scholar 

  25. Muthuraman P, Enkhtaivan G, Bhupendra M, Chandrasekaran M, Rafi N, Kim DH (2015) Investigation of the role of aspartame in apoptosis process in Hela cells. Saudi Journal of Biological Sciences. DOI: org/10.1016/j.sjbs.2015.06.01.

  26. Muthuraman P (2014) Effect of cortisol on caspases in the co-cultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 173:980–988

    Article  CAS  PubMed  Google Scholar 

  27. Tassel KAV, Goldman RH (2011) The growing consumer exposure to nanotechnology in the everyday product: regulating innovative technologies in light of lessons from the past. Conn Law Rev 44:481

    Google Scholar 

  28. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Guo D, Wang X, Wang H, Jiang H, Chen B (2010) The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res Lett 5:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hackenberg S, Scherzed A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2010) Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro. Int J Oncol 37:1583–1590

    CAS  PubMed  Google Scholar 

  31. Wu YN, Yang LX, Shi XY, Li IC, Biazik JM, Ratinac KR, Chen DH, Thordarson P, Shieh DB, Braet F (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32:4565–4573

    Article  CAS  PubMed  Google Scholar 

  32. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882–890

    Article  CAS  Google Scholar 

  33. Nair S, Sasidharan A, Divya Rani VV, Menon D, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:S235–S241

    Article  CAS  PubMed  Google Scholar 

  34. Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z (2009) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanoparticle Res 12:1645–1654

    Article  Google Scholar 

  35. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192

    CAS  PubMed  Google Scholar 

  37. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS (2010) Signaling gene cascade in silver nanoparticle-induced apoptosis. Colloids Surf B Biointerfaces 77:240–245

    Article  CAS  PubMed  Google Scholar 

  39. Compton MM (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 11:105–119

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Perez Y, Chirino YI, Osornio-Vargas AR, Morales-Barcenas R, Gutierrez-Ruiz C, Vazquez-Lopez I, Garcia-Cuellar CM (2009) DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 278:192–200

    Article  CAS  PubMed  Google Scholar 

  41. Cohen G, Riahi Y, Sasson S (2011) Lipid peroxidation of polyunsaturated fatty acids in normal and obese adipose tissues. Arch Physiol Biochem 117:131–139

    Article  CAS  PubMed  Google Scholar 

  42. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  43. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Joseph JA (1999) Structure-activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med 27:683–694

    Article  CAS  PubMed  Google Scholar 

  45. Dawei A, Zhisheng W, Anguo Z (2010) Protective effects of nano-ZnO on the primary culture mice intestinal epithelial cells in vitro against oxidative injury. World J Agric Sci 6:149–153

    Google Scholar 

  46. Syamaa S, Reshmaa SC, Sreekanthb PJ, Varmab HK, Mohanana PV (2013) Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicol Environ Chem 95:495–503

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by KU Research Professor Program, Konkuk University, Seoul, South Korea.

This research work was supported by the KU Brain Pool (2015-2016) of Konkuk University, Seoul, Republic of Korea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuraman Pandurangan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, M., Pandurangan, M. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells. Biol Trace Elem Res 172, 148–154 (2016). https://doi.org/10.1007/s12011-015-0562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0562-6

Keywords

Navigation