Skip to main content
Log in

Cytotoxicity of Zinc Oxide Nanoparticles on Antioxidant Enzyme Activities and mRNA Expression in the Cocultured C2C12 and 3T3-L1 Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao, J., & Castranova, V. (2011). Journal of Toxicology and Environmental Health B, 14, 593–632.

    Article  CAS  Google Scholar 

  2. Becheri, A., Durr, M., Nostro, P. L., & Baglioni, P. (2008). Journal of Nanoparticle Research, 10, 679–689.

    Article  CAS  Google Scholar 

  3. Nagarajan, P., & Rajagopalan, V. (2008). Science and Technology of Advanced Materials, 9, 035004.

    Article  Google Scholar 

  4. Qun, L., Shui-Lin, C., & Wan-Chao, J. (2007). Journal of Applied Polymer Science, 103, 412–416.

    Article  Google Scholar 

  5. Snyder-Talkington, B. N., Qian, Y., Castranova, V., & Guo, N. L. (2012). Journal of Toxicology and Environmental Health B, 15, 468–492.

    Article  CAS  Google Scholar 

  6. Li, C. H., Shen, C. C., Cheng, Y. W., Huang, S. H., Wu, C. C., Kao, C. C., Liao, Y. W., & Kang, J. J. (2012). Nanotoxicology, 6, 746–756.

    Article  CAS  Google Scholar 

  7. Umrani, D.R., & Paknikar, K.M. (2013). Nanomedicine, 1–16.

  8. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Free Radical Biology & Medicine, 51, 1872–1881.

    Article  CAS  Google Scholar 

  9. Sun, X., & Zemel, M. B. (2008). Journal of Nutritional Biochemistry, 19, 392–399.

    Article  CAS  Google Scholar 

  10. Muthuraman, P., Ramkumar, K., & Kim, D. H. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-1231-5.

    Google Scholar 

  11. Owen, J. B., & Butterfield, D. A. (2010). Methods in Molecular Biology, 648, 269–277.

    Article  CAS  Google Scholar 

  12. Weydert, C. J., & Cullen, J. J. (2010). Nature Protocols, 5, 51–66.

    Article  CAS  Google Scholar 

  13. Dawei, A. I., Zhisheng, W., & Anguo, Z. (2010). World Journal of Agricultural Sciences, 6, 149–153.

    Google Scholar 

  14. Pfaffl, M. W. (2001). Nucleic Acids Research, 29, e45.

    Article  CAS  Google Scholar 

  15. Van Tassel, K. A., & Goldman, R. (2011). Connecticut Law Review, 44, 481.

    Google Scholar 

  16. Shukla, R. K., Kumar, A., Gurbani, D., Pandey, A. K., Singh, S., & Dhawan, A. (2013). Nanotoxicology, 7, 48–60.

    Article  CAS  Google Scholar 

  17. Yakimovich, N. O., Ezhevskii, A. A., Guseinov, D. V., Smirnova, L. A., Gracheva, T. A., & Klychkov, K. S. (2008). Russian Chemical Bulletin, 57, 520–523.

    Article  CAS  Google Scholar 

  18. Shen, C., James, S. A., de Jonge, M. D., Turney, T. W., Wright, P. F., & Feltis, B. N. (2013). Journal of Toxicological Sciences, 136, 120–130.

    Article  CAS  Google Scholar 

  19. Guo, D., Bi, H., Liu, B., Wu, Q., Wang, D., & Cui, Y. (2013). Toxicology In Vitro, 27, 731–738.

    Article  CAS  Google Scholar 

  20. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). International Journal of Nanomedicine, 7, 845–857.

    CAS  Google Scholar 

  21. Cohen, G., Riahi, Y., & Sasson, S. (2011). Archives of Physiology and Biochemistry, 117, 131–139.

    Article  CAS  Google Scholar 

  22. Wang, H., & Joseph, J. A. (1999). Free Radical Biology and Medicine, 27, 683–694.

    Article  CAS  Google Scholar 

  23. Syama, S., Reshma, S. C., Sreekanth, P. J., Varma, H. K., & Mohanan, P. V. (2013). Toxicological & Environmental Chemistry, 95, 495–503.

    Article  CAS  Google Scholar 

  24. Fahmy, B., & Cormier, S. A. (2009). Toxicology In Vitro, 23, 1365–1371.

    Article  CAS  Google Scholar 

  25. Dröge, W. (2002). Physiological Reviews, 82, 47–95.

    Google Scholar 

  26. Peña-Orihuelaa, P., Camargoa, A., Rangel-Zuñigaa, O. A., Perez-Martineza, P., Cruz-Tenoa, C., Delgado-Listaa, J., Yubero-Serranoa, E. M., Paniaguaa, J. A., Tinahones, J., Malagon, M. M., Roche, H. M., Perez-Jimenez, F., & Lopez-Miranda, J. (2013). Journal of Nutritional Biochemistry, 24, 1717–1723.

    Article  Google Scholar 

  27. Sies, H. (1986). Angewandte Chemie International Edition, 25, 1058–1071.

    Article  Google Scholar 

  28. Seung Ho, L., Jae-Eun, P., Yu-Ri, K., Hee Ra, L., Sang Wook, S., & Meyoung-Kon, S. (2012). Molecular & Cellular Toxicology, 8, 113–118.

    Article  Google Scholar 

  29. Deisseroth, A., & Dounce, A. L. (1970). Physiological Reviews, 50, 319–375.

    CAS  Google Scholar 

  30. Okuno, Y., Matsuda, M., Kobayashi, H., Morita, K., Suzuki, E., Fukuhara, A., Komuro, R., Shimabukuro, M., & Shimomura, I. (2008). Biochemical and Biophysical Research Communications, 366, 698–704.

    Article  CAS  Google Scholar 

  31. Roberts, C. K., Won, D., Pruthi, S., Kurtovic, S., Sindhu, R. K., Vaziri, N. D., & Barnard, R. J. (2006). Journal of Applied Physiology, 100, 1657–1665.

    Article  CAS  Google Scholar 

  32. Faraci, F. M., & Didion, S. P. (2004). Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1367–1373.

    Article  CAS  Google Scholar 

  33. Moore, R. O., & Yontz, F. D. (1969). Journal of Nutrition, 98, 325–329.

    CAS  Google Scholar 

  34. Kao, Y.Y., Chen, Y.C., Cheng, T.J., Chiung, Y.M., & Liu, P.S. (2012). Toxicological Sciences, 125.

Download references

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, M., Veerappan, M. & Kim, D.H. Cytotoxicity of Zinc Oxide Nanoparticles on Antioxidant Enzyme Activities and mRNA Expression in the Cocultured C2C12 and 3T3-L1 Cells. Appl Biochem Biotechnol 175, 1270–1280 (2015). https://doi.org/10.1007/s12010-014-1351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1351-y

Keywords

Navigation