Skip to main content
Log in

A Fungus Capable of Degrading Microcystin-LR in the Algal Culture of Microcystis aeruginosa PCC7806

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). Microbial degradation is considered an efficient method for eliminating cyanobacteria and MCs in environmental conditions. This study examines the ability of Trichaptum abietinum 1302BG, a white rot fungus, to degrade microcystin-LR in the harmful algal culture of Microcystis aeruginosa PCC7806. Results showed that microcystin-LR could not be detected by high-performance liquid chromatography after 12 h in algal culture incubated with the fungus. There were also high activities of catalase and peroxidase in algal culture incubated with the fungus. However, similar to the control, they decreased to normal levels after 72 h. Meanwhile, the micronucleus test in the toxicity studies revealed that the degraded algal culture had low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antoniou, M. G., Shoemaker, J. A., de la Cruz, A. A., & Dionysiou, D. D. (2008). LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon, 51, 1103–1118.

    Article  CAS  Google Scholar 

  2. Azevedo, S. M. F. O., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 181, 441–446.

    Article  Google Scholar 

  3. Brodkorb, T. S., & Legge, R. L. (1992). Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 3117–3121.

    CAS  Google Scholar 

  4. Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222–1227.

    Article  CAS  Google Scholar 

  5. Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72, 445–459.

    Article  CAS  Google Scholar 

  6. Chen, W., Song, L. R., Gan, N. Q., & Li, L. (2006). Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection. Environmental Pollution, 144, 752–758.

    Article  CAS  Google Scholar 

  7. Christoffersen, K., Lyck, S., & Winding, A. (2002). Microbial activity and bacterial community structure during degradation of microcystins. Aquatic Microbial Ecology, 27, 125–136.

    Article  Google Scholar 

  8. Cousins, I. T., Bealing, D. J., James, H. A., & Sutton, A. (1996). Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research, 30, 481–485.

    Article  CAS  Google Scholar 

  9. Ding, W. X., Shen, H. M., Zhu, H. G., & Ong, C. N. (1998). Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environmental Research, 78, 12–18.

    Article  CAS  Google Scholar 

  10. Harada, K., & Tsuji, K. (1998). Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment. Journal of Toxicology Toxin Review, 17, 385–403.

    CAS  Google Scholar 

  11. Hare, C. E., Demir, E., Coyne, K. J., Cary, S. C., Kirchman, D. L., & Hutchins, D. A. (2005). A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae, 4, 221–234.

    Article  Google Scholar 

  12. Hashimoto, E. H., Kato, H., Kawasaki, Y., Nozawa, Y., Tsuji, K., Hirooka, E. Y., & Harada, K. (2009). Further investigation of microbial degradation of microcystin using the advanced Marfey method. Chemical Research in Toxicology, 22, 391–398.

    Article  CAS  Google Scholar 

  13. Ho, L. N., Gaudieux, A. L., Fanok, S., Newcombe, G., & Humpage, A. R. (2007). Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon, 50, 438–441.

    Article  CAS  Google Scholar 

  14. Hyenstrand, P., Rohrlack, T., Beattie, K. A., Metcalf, J. S., Codd, G. A., & Christoffersen, K. (2003). Laboratory studies of dissolved radiolabelled microcystin-LR in lake water. Water Research, 37, 3299–3306.

    Article  CAS  Google Scholar 

  15. Garcia, F., Freile-Pelegrin, Y., & Robledo, D. (2007). Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology, 98, 1359–1365.

    Article  CAS  Google Scholar 

  16. Giannopotitis, C. N., & Ries, S. K. (1977). Superoxide dismutase in higher plants. Plant Physiology, 59, 309–314.

    Article  Google Scholar 

  17. Ji, Q., & Chen, Y. F. (1996). Vicia faba root tip micronucleus test on the mutagenicity of water-soluble contents of cigarette smoke. Mutation Research, 359, 1–6.

    Google Scholar 

  18. Jia, Y., Han, G. M., Wang, C. Y., Guo, P., Jiang, W. X., Li, X. N., & Tian, X. J. (2010). The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. Journal of Hazardous Materials, 183, 176–181.

    Article  CAS  Google Scholar 

  19. Jia, Y., Wang, Q., Chen, Z. H., Jiang, W. X., Zhang, P., & Tian, X. J. (2010). Inhibition of phytoplankton species by co-culture with a fungus. Ecological Engineering, 36, 1389–1391.

    Article  Google Scholar 

  20. Jones, G. J., & Orr, P. T. (1994). Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research, 28, 871–876.

    Article  CAS  Google Scholar 

  21. Kato, H., Imanishi, S. Y., Tsuji, K., & Harada, K. (2007). Microbial degradation of cyanobacterial cyclic peptides. Water Research, 41, 1754–1762.

    Article  CAS  Google Scholar 

  22. Lance, E., & Neffling, M. R. (2010). Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Environmental Pollution, 158, 674–680.

    Article  CAS  Google Scholar 

  23. Li, X. Y., & Liu, Y. D. (2003). Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 42, 85–89.

    Article  CAS  Google Scholar 

  24. Ma, T. H., & Xu, Z. D. (1995). The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation Research, 334, 185–195.

    CAS  Google Scholar 

  25. Mackintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatase 1 and 2A from both mammals and higher plants. FEBS Letters, 264, 187–192.

    Article  CAS  Google Scholar 

  26. Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.

    Article  CAS  Google Scholar 

  27. Puerto, M., Prieto, A. L., Pichardo, S., Moreno, I., Jos, A., Moyano, R., & Camean, A. M. (2009). Effects of dietary N-acetylcysteine on the oxidative stress induced in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Environmental Toxicology and Chemistry, 28, 1679–1686.

    Article  CAS  Google Scholar 

  28. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, P. S. (2009). Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. Journal of Hazardous Materials, 166, 1421–1428.

    Article  CAS  Google Scholar 

  29. Shedbalkar, U., Dhanve, R., & Jadhav, J. (2008). Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157, 472–479.

    Article  CAS  Google Scholar 

  30. Stanier, R. Y., & Kunisawa, R. (1971). Purification and properties of unicellular blue-green algae (Order Cchroococcales). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  31. Tsuji, K., Asakawa, M., Anzai, Y., Sumino, T., & Harada, K. (2006). Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere, 65, 117–124.

    Article  CAS  Google Scholar 

  32. Wang, H. Q. (1999). Clastogenicity of chromium contaminated soil samples evaluated by Vicia root-micronucleus assay. Mutation Research, 426, 147–149.

    Article  CAS  Google Scholar 

  33. Yin, L. Y., Huang, J. Q., Huang, W. M., Li, D. H., Wang, G. H., & Liu, Y. D. (2005). Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon, 46, 507–512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financial supported by Project of National Basic Research Program of China (2008CB418004) and National Science Foundation of China (30870419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjun Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y., Du, J., Song, F. et al. A Fungus Capable of Degrading Microcystin-LR in the Algal Culture of Microcystis aeruginosa PCC7806. Appl Biochem Biotechnol 166, 987–996 (2012). https://doi.org/10.1007/s12010-011-9486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9486-6

Keywords

Navigation