Skip to main content

Advertisement

Log in

Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultivations Monitorized by Flow Cytometry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two microalgae species (Scenedesmus obliquus and Neochloris oleoabundans) were cultivated in closed sleeve photobioreactors in order to select the best oil producer for further large-scale open raceway pond cultivations, aiming at biofuel production. Scenedesmus obliquus reached a higher maximum biomass concentration (1.41 g l−1) with a lower lipid content (12.8% w/w), as compared to N. oleoabundans [maximum biomass concentration of 0.92 g l−1 with 16.5% (w/w) lipid content]. Both microalgae showed adequate fatty acid composition and iodine values as substitutes for diesel fuel. Based on these results, N. oleoabundans was selected for further open raceway pond cultivations. Under these conditions, N. oleoabundans reached a maximum biomass concentration of 2.8 g l−1 with 11% (w/w) of lipid content. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional gravimetric lipid analysis was found for both microalgae, making this method a suitable and quick technique for the screening of microalgae strains for lipid production and optimization of biofuel production bioprocesses. Medium growth optimization for enhancement of microalgal oil production is now in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma, F. R., & Hanna, M. A. (1999). Bioresource Technology, 70, 1–15. doi:10.1016/S0960-8524(99)00025-5.

    Article  CAS  Google Scholar 

  2. Patil, V. (2008). Current Science, 92, 707.

    Google Scholar 

  3. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306. doi:10.1016/j.biotechadv.2007.02.001.

    Article  CAS  Google Scholar 

  4. Bligh, E. G., & Dyer, W. J. (1959). Journal of Biochemistry and Physiology, 37, 911–917.

    CAS  Google Scholar 

  5. Miao, X., & Wu, Q. (2006). Bioresource Technology, 97, 841–846. doi:10.1016/j.biortech.2005.04.008.

    Article  CAS  Google Scholar 

  6. Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68, 639–642. doi:10.1016/j.mimet.2006.11.008.

    Article  CAS  Google Scholar 

  7. de la Jara, A., Medonza, H., Martel, A., Molina, C., Nordströn, L., de la Rosa, V., & Díaz, R. (2003). Journal of Applied Phycology, 15, 433–438. doi:10.1023/A:1026007902078.

    Article  Google Scholar 

  8. Fowler, S. D., Brown, W. J., Warfel, J., & Greenspan, P. (1979). Journal of Lipid Research, 28, 1225–1232.

    Google Scholar 

  9. Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). The Journal of Cell Biology, 100, 965–973. doi:10.1083/jcb.100.3.965.

    Article  CAS  Google Scholar 

  10. Pulz, O. (2001). Applied Microbiology and Biotechnology, 57, 287–293. doi:10.1007/s002530100702.

    Article  CAS  Google Scholar 

  11. Tornabene, T. G. (1983). Enzyme and Microbial Technology, 5, 435–440. doi:10.1016/0141-0229(83)90026-1.

    Article  CAS  Google Scholar 

  12. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the US Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory, Golden, Colorado, USA.

  13. Bourrelly, P. (1972). Les algues vertes. Tome I, Editions N. Boubée & Cie, Paris.

  14. Bold, H. C. (1949). Bulletin of the Torrey Botanical Club, 76, 101–108. doi:10.2307/2482218.

    Article  Google Scholar 

  15. European Standard EN ISO 5509 (2000).

  16. European Standard EN 14214 (2003).

  17. da Silva, T. L., & Reis, A. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 875–887.

    Google Scholar 

  18. Yeung, P. K. K., & Wong, J. T. Y. (2003). Protoplasma, 220, 173–178. doi:10.1007/s00709-002-0039-2.

    Article  CAS  Google Scholar 

  19. Richmond (1986). Handbook of microalgal mass culture. Boca Raton: CRC.

    Google Scholar 

  20. Choi, K. J., Kakhost, Z., Barzana, E., & Karel, M. (1987). Food Technology, 11, 117–128.

    Google Scholar 

  21. Zhukova, N. V., & Titlyanov, E. A. (2006). Botanica Marina, 49, 339–346. doi:10.1515/BOT.2006.041.

    Article  CAS  Google Scholar 

  22. Xu, H., Miao, X., & Wu, Q. (2006). Journal of Biotechnology, 126, 499–507. doi:10.1016/j.jbiotec.2006.05.002.

    Article  CAS  Google Scholar 

  23. Nalewajko, C., & Voltolina, D. (1985). Canadian Journal of Fisheries and Aquatic Sciences, 43, 1163–1170.

    Article  Google Scholar 

  24. Chisti, Y. (2008). Trends in Biotechnology, 26, 351–352. doi:10.1016/j.tibtech.2008.04.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Doutora Narcisa Bandarra from IPIMAR for the fatty acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, T.L., Reis, A., Medeiros, R. et al. Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultivations Monitorized by Flow Cytometry. Appl Biochem Biotechnol 159, 568–578 (2009). https://doi.org/10.1007/s12010-008-8443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8443-5

Keywords

Navigation