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Abstract

Background There is increasing interest in using admin-

istrative claims data for surveillance of surgical site

infections in THAs and TKAs, but the performance of

claims-based models for case-mix adjustment has not been

well studied. Performance of claims-based models can be

improved with the addition of clinical risk factors for

surgical site infections.

Questions/purposes We assessed (1) discrimination and

calibration of claims-based risk-adjustment models for

surgical site infections; and (2) the incremental value of

adding clinical risk factors to claims-based risk-adjustment

models for surgical site infections.

Patients and Methods Our study included all THAs and

TKAs performed at a large tertiary care hospital from

January 1, 2002 to December 31, 2009 (total n = 20,171

procedures). Revision procedures for infections were

excluded. Comorbidity data were ascertained through

administrative records and classified by the Charlson

comorbidity index. Clinical details were obtained from the

institutional joint registry and patients’ electronic health

records. Cox proportional hazards regression models were

used to estimate the 1-year risk of surgical site infections

with a robust sandwich covariance estimator to account for

within-subject correlation of individuals with multiple

surgeries. The performance of claims-based risk models

with and without the inclusion of four clinical risk factors

(morbid obesity, prior nonarthroplasties on the same joint,

American Society of Anesthesiologists score, operative

time) was assessed using measures of discrimination (C

statistic, Somers’ Dxy rank correlation, and the Nagelkerke

R2 index). Furthermore, calibrations of claims-based risk

models with and without clinical factors were assessed

graphically by plotting the smoothed trends between model

predictions and empirical rates from Kaplan-Meier.

Results Discrimination of the claims-based risk models

was moderate for the THA (C statistic = 0.662, Dxy =

0.325, R2 = 0.028) and TKA (C statistic = 0.621, Dxy =

0.241, R2 = 0.017) cohorts. Inclusion of four clinical risk

factors improved discrimination in both cohorts with sig-

nificant improvement in the C statistic in the THA cohort

(C statistic = 0.043; 95% CI, 0.012–0.074) and in the TKA

cohort (C statistic = 0.027; 95% CI, 0.007–0.047). Visual

inspection suggested that calibration of the claims-based

risk models was adequate and comparable to that of models

which included the four additional clinical factors.

Conclusions Claims-based risk-adjustment models for

surgical site infections in THA and TKA appear to be

adequately calibrated but lack predictive discrimination,

particularly with TKAs. The addition of clinical risk factors

improves the discriminative ability of the models to a

moderate degree; however, addition of clinical factors did

not change calibrations, as the models showed reasonable
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degrees of calibration. When used in the clinical setting,

the predictive performance of claims-based risk-adjustment

models may be improved further with inclusion of addi-

tional clinical data elements.

Introduction

THAs and TKAs are common procedures in the United

States [32]. Approximately 0.5% to 3% of patients under-

going THAs and TKAs develop surgical site infections [20,

22, 25, 26]. Variation in surgical site infections rates across

hospitals is partly attributable to differences in case mix

and partly to differences in prevention practices. Therefore,

these infection rates are considered an important hospital

quality measure and part of value-based purchasing

criteria.

Although there is widespread consensus that public

reporting of surgical site infections requires adjustment for

case-mix variability in patient populations across hospitals,

identifying the optimal approach to risk adjustment remains

a difficult process [2, 8]. Traditionally, a generic risk index

had been used to adjust for surgical site infection rates as part

of the CDC National Healthcare Safety Network (NHSN)

tracking system [10]. Procedure-specific versions have been

adopted by the CDC more recently and the new versions

include additional adjustors to better account for the case mix

of patients undergoing THA and TKA across hospitals [24].

However, participation in the NHSN tracking system is not

universal. In addition to the revised NHSN risk-adjustment

method, the utility of Medicare claims data for automated

surveillance of surgical site infections has been investigated

[9, 16]. In particular, the Yale New Haven Health Services

Corporation/Center for Outcomes Research and Evaluation

developed a hospital-level, risk-standardized complication-

rate measure for primary THAs and TKAs using 29 hierar-

chical condition-categories-defined comorbidities for case-

mix risk-adjustment [16]. In another study, Bozic et al. [5–7]

relied on the Medicare 5% claims data sample to develop

claims-data-based risk-prediction models for periprosthetic

joint infections. Medicare data-based analyses were based on

patient age, sex, and claims-based comorbidities and did not

include other significant clinical predictors of surgical site

infections, such as surgical history of the joint, the American

Society of Anesthesiologists (ASA) score, or immunosup-

pressed states [3, 4, 12, 14, 19, 25, 34].

The fundamental premise of all the efforts is that

administrative claims data are readily available, contain a

wealth of information, and can be used for surveillance of

surgical site infections using claims data-derived comor-

bidities as a case-mix adjustor and risk prediction.

However, claims data lack basic clinical details, and the

performance of comorbidities in predicting surgical site

infection risk may be compromised by the absence of

procedure- and patient-specific risk factors not adequately

captured in claims data. So far, the performance of claims-

based risk-adjustment models for surgical site infections

has not been tested against clinically derived risk models.

With this background, our objective was to evaluate the

calibration and discrimination of claims-based risk-adjust-

ment models and the incremental value of adding clinical

data to the claims-based models. The fundamental question

we sought to address was whether claims-based comorbid-

ities adequately capture case-mix for surgical site infections

in THAs and TKAs. Specifically, we sought to assess (1) the

discrimination and calibration of claims-based risk adjust-

ment models for surgical site infections, and (2) the

incremental value of adding clinical risk factors to claims-

based risk-adjustment models for surgical site infections.

Patients and Methods

This retrospective study included all patients who under-

went THA and TKA (primary and revision, excluding

revision for surgical site infections) at the Mayo Clinic in

Rochester Minnesota, between January 1, 2002 and

December 31, 2009. Patients who had denied authorization

for use of their medical records in research studies, those

who underwent hip hemiarthroplasty, partial knee

replacement procedures, and revision procedures for pros-

thetic joint infections were excluded from the study.

Patient comorbidities recorded at the index hospitaliza-

tion were identified using the ICD-9 diagnoses from index

admission and were classified using the Charlson comor-

bidity index [11]. Because the majority of surgeries were

the only encounter for referral patients operated on at our

institution, it was not possible to identify comorbidities

from previous (12-month) data. Perioperative and intra-

operative surgery-specific data were obtained from the

institutional total joint registry and electronic health

records and included four clinical risk factors previously

shown to be predictive of surgical site infections [4]. The

four factors were prior surgeries on the same joint, length

of operative time, ASA score, and morbid obesity. Elec-

tronic health records were used to capture patient height

and weight measurements and BMI at the time of surgery.

Morbid obesity was defined as having a BMI greater than

40 kg/m2.

The primary clinical endpoint for our study was surgical

site infections within 1 year after surgery. Potential surgical

site infections, including superficial and deep infections,

were identified using the total joint registry followup data

and the institutional Infection Control Database. Medical

records of all patients with potential surgical site infections
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were reviewed manually using a pretested data collection

form to validate diagnoses and collect required data ele-

ments so that infections could be classified according to

previously proposed criteria [4, 27, 28].

Descriptive statistics of study population baseline char-

acteristics were reported as mean ± SD or count

(percentage), as appropriate. Cox proportional hazards

regression model was used to test the association of claims-

based and clinical-based risk factors with 1-year postsurgical

risk of surgical site infections. Because data were expressed

at the joint level with some individuals having multiple

surgeries, a robust sandwich covariance estimator was used

to correct the working independence model for within-sub-

ject correlation. Multivariable claims-based risk models

were fit separately on the THA and TKA cohorts, using an a

priori set of predictor variables that included patient age, sex,

type of surgery (primary versus revision surgery), and 16

individual Charlson index comorbidities [5, 6, 9]. We then fit

a second set of models, which included the same claims-

based predictors and, additionally, four clinical predictors—

morbid obesity (BMI [ 40 kg/m2), prior surgeries on the

same joint, ASA score, and length of operative time.

Assessment of overall model performance was based on

predictive discrimination (that is, the model’s ability to

distinguish subjects who had surgical site infections from

those who did not) as measured by the concordance (C)

statistic, Somers’ Dxy rank correlation, and the Nagelkerke

R2 index. The C statistic from a Cox proportional hazards

model represents the proportion among all usable pairs of

patients in which the patient with longer observed survival

was predicted by the model. A pair of patients is consid-

ered usable if both subjects have surgical site infections but

at different times, or if one has a surgical site infection and

the other is censored at an equal or later followup time. A C

statistic of 0.5 corresponds to a noninformative model,

whereas a value of 1.0 corresponds to a perfectly dis-

criminating model. The R2 index is another unitless

measure of the model’s predictive ability, where higher

values indicate more variation in the survival outcome is

explained by the model. For internal validation of the

models, we used 200 bootstrap resamples (each selected

via random sampling with replacement from the original

cohort of an equal sample size) to estimate the bias

attributable to overfitting or overoptimism in each model

and then recalculated the measures of model performance

correcting for this bias. For formal comparison of the

performance of the claims-based model with and without

inclusion of the clinical predictors, we used an integrative

discrimination improvement to show how far, on average,

individuals were moving (in an appropriate direction)

along the continuum of predicted risk. The improved dis-

crimination, as a result of adding the four clinical

predictors to the model, was estimated separately in groups

of patients with and without surgical site infections. Higher

integrative discrimination improvement among patients

who had surgical site infections indicated improvement in

sensitivity, whereas a higher integrative discrimination

improvement among patients without surgical site infec-

tions indicated improvement in specificity [23]. These then

were combined to derive an aggregate estimate of inte-

grative discrimination improvement based on the equally

weighted sum of improvement, which was tested for sig-

nificance using a one sample t-test.

To assess calibration—the model’s ability to predict

accurately the subsequently observed surgical site infection

risk—the model survival predictions were binned into de-

ciles and plotted against empiric rates free of surgical site

infections, estimated using the Kaplan-Meier method. A

calibration curve based on a nonparametric, locally esti-

mated scatterplot smoothing estimator was used to show

how closely the predicted survival values related to the

observed frequency without surgical site infections. A

curve that deviated appreciably from the 45� line of iden-

tity (ideal calibration) would show evidence that the model

was miscalibrated. Data points to the right of the identity

line indicate overestimation of surgical site infection sur-

vival by the model (that is, the model would underestimate

the risk of surgical site infections developing), whereas

points to the left indicate underestimation. All analyses

were performed using SAS1 software, version 9.3 (SAS

Institute, Cary, NC, USA).

Our study included 9720 THAs (2515 revisions) in 8270

patients and 10,451 TKAs (1522 revisions) in 8253 patients

(Table 1). Overall, mean patient age (± SD) at the time of

surgery was 66.2 (± 12.6) years and patients who under-

went TKAs were slightly older. Less than 1
.
2 (45%) of the

patients were men. Mean operative time was longer for

revision procedures and ASA scores were slightly higher at

the time of revisions compared with primary procedures.

Mean BMI was slightly higher in patients who underwent

TKAs. The overall proportion of morbidly obese patients

(BMI [ 40 kg/m2) was 9% and there were more morbidly

obese patients (12%) in the primary TKA group. A total of

368 surgical site infections occurred during the 1-year

window after surgery. Of these, 192 were prosthetic joint

infections, as classified by the Infectious Diseases Society

of America criteria [27]. The 1-year cumulative incidences

of all surgical site infections were 1.31%, 2.83%, 1.88%,

and 2.98% for primary THA, revision THA, primary TKA,

and revision TKA, respectively.

Results

The adjusted hazard ratios for risk of surgical site infec-

tions were calculated for the claims-based and clinical
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multivariable models, separately for THAs and TKAs. Of

the 16 comorbidities included in the multivariable models

for patients who underwent THAs (Table 2), pulmonary

disease, mild liver disease, diabetes mellitus, and rheu-

matologic diseases were significantly associated with

surgical site infections, once adjustments were made for

patient age, sex, and revision status (the claims model). Of

the associated comorbidities, mild liver and rheumatologic

diseases were associated with surgical site infections when

further adjustments for the four clinical factors (the clinical

model) were performed. The four clinical factors contrib-

uted to the model, either in terms of individual effects (all

except operative time), and when tested as a combined

effect based on model-log likelihood (37.4; p \ 0.001). In

the TKA cohort (Table 3), renal disease was the only

comorbidity significantly associated with surgical site

infections in the claims and clinical models. In the clinical

model, morbid obesity was the only clinical predictor of

surgical site infections, although the overall contribution

from all four clinical factors was shown to be significant

based on log likelihood (17.0; p = 0.009).

As indicated by the performance statistics, the models

showed better performance in the THA cohort than the TKA

cohort (Table 4). The original fit of the claims-based THA

model, which included patient age, sex, surgery type (pri-

mary versus revision), and Charlson comorbidities, had a C

statistic of 0.662 (although an overfitting-corrected estimate

of 0.629 may provide a more accurate measure of the model

discrimination in our cohort). The C statistic increased to

0.706 (bias-corrected, 0.665) with the addition of the four

clinical risk factors (difference, 0.043; 95% CI, 0.012–

0.074; p = 0.006). The C statistic of 0.621 (bias-corrected,

0.585) from the claims-based TKA model improved signif-

icantly to 0.648 (bias-corrected, 0.606) with the addition of

Table 1. Baseline characteristics of study cohorts

Variable Primary THA

(n = 7205)

Revision THA

(n = 2515)

Primary TKA

(n = 8929)

Revision TKA

(n = 1522)

Total

(n = 20,171)

Age (mean years ± SD) 64.0 ± 14.1 66.5 ± 13.9 67.8 ± 10.5 67.1 ± 11.8 66.2 ± 12.6

Men, n (%) 3496 (49) 1117 (44) 3899 (44) 665 (44) 9177 (45)

Prior operation, n (%) 689 (10) 2514 (100) 2295 (26) 1522 (100) 7020 (35)

Operative time (mean minutes ± SD) 132.9 ± 56.3 194.2 ± 89.6 143.4 ± 60.7 182.6 ± 79.3 148.9 ± 68.5

ASA score, n (%)

1 353 (5) 68 (3) 161 (2) 29 (2) 611 (3)

2 4342 (61) 1311 (53) 5232 (60) 862 (58) 11747 (59)

3 2347 (33) 1074 (43) 3301 (38) 584 (39) 7306 (37)

4 60 (1) 31 (1) 50 (1) 12 (1) 153 (1)

BMI* (mean kg/m2 ± SD) 29.7 ± 6.3 29.0 ± 6.0 32.2 ± 6.7 31.8 ± 6.3 30.9 ± 6.6

Morbid obesity*, n (%) 476 (7) 123 (5) 1069 (12) 158 (10) 1826 (9)

Comorbidities�, n (%)

Myocardial infarction 539 (7) 212 (8) 821 (9) 97 (6) 1669 (8)

Congestive heart failure 669 (9) 243 (10) 988 (11) 124 (8) 2024 (10)

Peripheral vascular disease 717 (10) 200 (8) 1011 (11) 100 (7) 2028 (10)

Cerebrovascular disease 928 (13) 268 (11) 1368 (15) 158 (10) 2722 (13)

Dementia 69 (1) 25 (1) 77 (1) 11 (1) 182 (1)

Pulmonary disease 1059 (15) 315 (13) 1695 (19) 217 (14) 3286 (16)

Ulcers 636 (9) 187 (7) 1092 (12) 135 (9) 2050 (10)

Mild liver disease 230 (3) 85 (3) 446 (5) 41 (3) 802 (4)

Severe liver disease 53 (1) 23 (1) 137 (2) 8 (1) 221 (1)

Diabetes mellitus 1087 (15) 320 (13) 1829 (20) 271 (18) 3507 (17)

Diabetes with organ damage 300 (4) 73 (3) 564 (6) 55 (4) 992 (5)

Hemiplegia 68 (1) 21 (1) 98 (1) 7 (0) 194 (1)

Renal disease 879 (12) 274 (11) 1267 (14) 149 (10) 2569 (13)

Metastatic tumors 407 (6) 96 (4) 559 (6) 59 (4) 1121 (6)

Rheumatologic disease 564 (8) 266 (11) 797 (9) 136 (9) 1763 (9)

Cancer 1613 (22) 389 (15) 2331 (26) 248 (16) 4581 (23)

* BMI defined using actual patient height and weight measurements at time of surgery. Morbid obesity = BMI [ 40 kg/m2; �Comorbidities

defined per the Charlson comorbidity index; ASA = American Society of Anesthesiologists.
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the four clinical risk factors (difference, 0.027; 95% CI,

0.007–0.047; p = 0.009). Furthermore, adding the four

clinical factors to the claims-based model translated to an

improvement in the integrative discrimination improvement

among patients who had THA (integrative discrimination

improvement, 0.37%; 95% CI, 0.12–0.62; p = 0.003), par-

ticularly for the subgroup with surgical site infections (that

is, improvement in sensitivity) (Fig. 1). In contrast, the

integrative discrimination improvement was not signifi-

cantly improved in the models for TKA (Fig. 2), neither in

the overall patient group nor in the subset of patients with

surgical site infections.

The claims-based models appeared reasonably cali-

brated and the addition of clinical factors did not result in

noticeable improvement in calibration in either THA

(Fig. 3) or TKA (Fig. 4). Visual inspection of the empirical

free-of-surgical site infections rates by prediction deciles

and the calibration curve from a nonparametric locally

estimated scatterplot smoothing estimator suggested no

clear signs of miscalibration in either the claims-based or

the clinical models. The calibration curves of the two

models looked fairly similar. The models appeared to be

reasonably calibrated without noticeable improvement

once the clinical factors were added to the models.

Table 2. Hazard ratios for 1-year risk of surgical site infections in

THA

Factor Hazard ratio (95% CI)**

Claims model Claims + clinical

model

Age (per 10 years

increase)

0.91 (0.82–1.02) 0.89 (0.79–1.01)

Male gender 0.89 (0.64–1.23) 0.86 (0.62–1.19)

Prior hip replacement 2.25 (1.65–3.08)* 1.14 (0.65–2.00)

Myocardial infarction 1.01 (0.55–1.86) 0.99 (0.55–1.80)

Congestive heart failure 1.13 (0.62–2.05) 1.07 (0.61–1.89)

Peripheral vascular disease 0.70 (0.38–1.27) 0.71 (0.39–1.28)

Cerebrovascular disease 1.06 (0.66–1.72) 1.01 (0.63–1.63)

Dementia 1.28 (0.31–5.24) 1.22 (0.30–5.04)

Pulmonary disease 1.56 (1.03–2.36)* 1.43 (0.95–2.14)

Ulcers 0.91 (0.54–1.55) 0.89 (0.53–1.51)

Mild liver disease 2.78 (1.62–4.75) * 2.41 (1.41–4.13)*

Severe liver disease 0.59 (0.14–2.45) 0.68 (0.17–2.73)

Diabetes Mellitus 1.56 (1.02–2.38)* 1.22 (0.79–1.89)

Diabetes with organ

damage

1.17 (0.57–2.39) 1.22 (0.60–2.50)

Hemiplegia 1.15 (0.26–5.07) 1.11 (0.25–4.97)

Renal Disease 1.21 (0.76–1.90) 1.13 (0.73–1.77)

Metastatic tumors 1.33 (0.70–2.55) 1.26 (0.67–2.38)

Rheumatologic disease 2.01 (1.32–3.05)* 1.89 (1.24–2.88)*

Cancer 1.18 (0.79–1.76) 1.20 (0.80–1.79)

Morbid obesity 2.09 (1.29–3.38)*

Prior operation 1.99 (1.15–3.46)*

ASA

1 1.0 (reference)*

2 2.46 (0.61–9.93)

3 4.80 (1.18–19.61)

4 1.92 (0.17–21.64)

Operative time (per 10

minutes)

1.01 (0.98–1.03)

* Significant at an alpha level of 0.05; **estimates derived from

multivariable Cox regression models with and without clinical risk

factors; ASA = American Society of Anesthesiologists.

Table 3. Hazard ratios for 1-year risk of surgical site infections in

TKA

Factor Hazard ratio (95% CI)

Claims model Claims + clinical

model

Age (per 10 years increase) 0.76 (0.67–0.86)* 0.77 (0.66–0.89)*

Male gender 1.14 (0.86–1.51) 1.17 (0.88–1.56)

Prior knee replacement 1.64 (1.17–2.30)* 1.57 (1.02–2.42)*

Myocardial infarction 1.14 (0.69–1.89) 1.08 (0.66–1.78)

Congestive heart failure 1.61 (1.00–2.58) 1.49 (0.93–2.38)

Peripheral vascular disease 0.93 (0.58–1.47) 0.93 (0.59–1.48)

Cerebrovascular disease 1.02 (0.69–1.52) 1.00 (0.67– .49)

Dementia – –

Pulmonary disease 0.96 (0.67–1.38) 0.90 (0.62–1.30)

Ulcers 1.07 (0.70–1.65) 1.06 (0.70–1.63)

Mild liver disease 1.61 (0.93–2.79) 1.55 (0.90–2.69)

Severe liver disease 1.55 (0.66–3.63) 1.51 (0.63–3.60)

Diabetes mellitus 0.86 (0.57–1.30) 0.73 (0.48–1.11)

Diabetes with organ

damage

0.84 (0.43–1.64) 0.81 (0.41–1.60)

Hemiplegia 1.64 (0.62–4.37) 1.68 (0.63–4.50)

Renal Disease 1.72 (1.14–2.62)* 1.67 (1.10–2.55)*

Metastatic tumors 1.37 (0.78–2.42) 1.37 (0.78–2.42)

Rheumatologic disease 0.98 (0.61–1.57) 1.00 (0.62–1.60)

Cancer 1.10 (0.77–1.57) 1.10 (0.77–1.58)

Morbid obesity 1.78 (1.21–2.61)*

Prior operation 1.06 (0.73–1.52)

ASA

1 1.0 (reference)

2 1.00 (0.36–2.82)

3 1.39 (0.47–4.11)

4 2.27 (0.46–11.15)

Operative time (per 10

minutes)

1.00 (0.98–1.02)

* Significant at an alpha level of 0.05; **estimates derived from

multivariable Cox regression models with and without clinical risk

factors; ASA = American Society of Anesthesiologists.
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Discussion

There is increasing interest in using administrative-claims

data for surveillance of surgical site infections but the

performance of claims-based models for case-mix adjust-

ment has not been well studied. In a large cohort of patients

who underwent total joint replacement at one tertiary care

institution, we examined the predictive performance of

claims data-based comorbidities as a case-mix adjustor for

surgical site infections and the incremental value of adding

clinical risk factors. Our findings suggest that the claims-

based risk-adjustment models for surgical site infections

are well calibrated but lack predictive discrimination.

Discrimination can be improved by the addition of clinical

risk factors.

Our study results should be interpreted in light of some

potential limitations. First, our study was confined to pro-

cedures performed at one hospital, which can restrict power

Table 4. Performance of claims-based risk-prediction models

Performance statistic THA TKA

Claims model Claims + clinical

model

Claims model Claims + clinical

model

Model accuracy index (original/bias-corrected)

C statistic 0.662/0.629 0.706/0.665 0.621/0.585 0.648/0.606

Somers’ Dxy statistic 0.325/0.258 0.411/0.330 0.241/0.169 0.295/0.212

R2 (%) 0.028/0.013 0.042/0.021 0.017/0.007 0.023/0.009

Comparison of models (improvement, 95% CI or p value)

Difference in C statistic 0.043 (0.012–0.074)* 0.027 (0.007–0.047)*

Difference in log-likelihood 37.4 (p \ 0.001) 17.0 (p = 0.009)

Integrated discrimination improvement

in subjects with surgical site infection

0.36% (0.11%–0.61%) 0.09% (�0.02% to 0.20%)

Integrated discrimination improvement

subjects without surgical site infection

0.01% (�0.01% to 0.03%) 0.00% (�0.01% to 0.02%)

Aggregate integrated discrimination

improvement (equal-weighting of two

groups)

0.37% (0.12%–0.62%) 0.09% (�0.02% to 0.21%)

* CIs calculated using the jackknife.

Fig. 1 For patients who had THAs, improvement with the addition of

clinical risk factors is reflected by predicted values and a regression

line above the 45� line of identity (ie, no change) in patients with

surgical site infections (SSI) or below this line in patients without

surgical site infections.

Fig. 2 For patients who had TKAs, improvement with the addition of

clinical risk factors is reflected by predicted values and a regression

line above the 45� line of identity (ie, no change) in those with

surgical site infections (SSI) or below this line in those without

surgical site infections.
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and generalizability of findings to other institutions.

However, this is also a strength of the study because con-

founding by unknown and known healthcare delivery

factors, such as infection-prevention practices, is mini-

mized. Ideally, future multicenter studies will take into

account hospital-level healthcare delivery factors when

assessing the performance of risk prediction models. Sec-

ond, our method for ascertainment of comorbidities and

surgical site infections outcomes is different than those of

previous analyses. Similar to other investigators [5–7, 9,

16], we relied on electronically available administrative

data to ascertain comorbidities but our time window was

limited to the index hospitalization. This is in contrast to a

Medicare study which ascertained comorbidities from the

1-year period before admission [16]. Therefore, we may

have under-ascertained some comorbidities. Despite this, a

qualitative comparison of the prevalence of comorbidities

revealed minimal differences. In addition, the types of

comorbidities we included are different from other claims-

based analyses [5–7, 16]. For example, the Centers for

Medicare & Medicaid Services complication measure [16]

grouped comorbidities using 29 condition categories,

whereas the analyses by Bozic et al. [5–7] were based on

the Elixhauser method. Other important differences in our

study include the exclusion criteria, outcome definitions,

and the time for ascertainment of surgical site infections.

Fig. 3A–B The calibration plots show the observed versus predicted

probability of surgical site infections (SSI) for THAs using the (A)

claims-based model and (B) the claims + clinical risk factors model.

The dots represent Kaplan-Meier (K-M) survival estimates with the

vertical bars showing the respective 95% CIs.

Fig. 4A–B The calibration plots show the observed versus predicted

probability of surgical site infections (SSI) for TKAs using the (A)

claims-based model and (B) the claims + clinical risk factors model.

The dots represent Kaplan-Meier (K-M) survival estimates with the

vertical bars showing the respective 95% CIs.
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Despite these differences in methods, unique strengths of

our study are complete ascertainment and chart review-

based validation of all surgical site infection outcomes,

which minimized measurement bias. Owing to active fol-

lowup of patients through the institutional total joint

registry, we were able to identify all surgical site infections

during the 1 year after surgery. In addition, partly because

of the availability of unique institutional resources, we

were able to ascertain and examine difficult to obtain

clinical risk factors known to be associated with surgical

site infections. This rarely is possible in other settings.

Finally, although our cohorts are large, it is questionable

whether the number of surgical site infections is adequate

to ensure a reliable model of this many candidate predictor

variables and avoid overfitting. We assessed this using

internal validation and found a modest amount of overfit-

ting based on model C statistics which were overoptimistic

by approximately 0.03 to 0.04. Since overfitting tends to

produce overestimated effects, we estimated the calibration

slope in the bootstrap procedure and found that model

accuracy would benefit from some shrinkage in these

regression coefficients (by approximately 20% to 25%)

which further suggests overspecification in the modeling.

Our results indicate that the discrimination (ability to

separate patients who do and do not experience surgical

site infections) of claims-based models is poor (bias-cor-

rected C statistics, 0.629 for THA and 0.585 for TKA), but

substantially improved with the addition of four well-

established clinical risk factors for surgical site infections,

particularly in patients who underwent THA. Nevertheless,

discrimination of the clinical models remained modest

(bias-corrected C statistics were less than 0.7), suggesting

that other clinical risk factors could be incorporated to risk-

adjustment models of surgical site infections to further

improve prediction.

Surgical site infections, particularly, prosthetic joint

infections, cause substantial patient morbidity and mortal-

ity, and contribute to arthroplasty-related healthcare costs

[21, 35]. Although the overall incidence of surgical site

infections is low, the absolute number is expected to

increase in the future owing to increased volume of total

joint replacement procedures and growth in the proportion

of high-risk patients. Numerous surgical site infections

potentially are preventable through effective management

of patient risk factors and implementation of hospital-based

infection-prevention practices. Surveillance of surgical site

infections rates is considered an important quality measure

for hospital profiling and future value-based purchasing

and pay-for-performance programs. However, not all

patients have the same baseline risk for surgical site

infections and hospitals and surgeons differ in the case mix

of their patients. Therefore, risk adjustment for case-mix

differences is an essential component of comparisons of

surgical site infections across hospitals. Apart from issues

related to case-mix adjustment, risk prediction of surgical

site infections for an individual patient can define specific

prevention strategies. Reliance on claims data is becoming

increasingly popular because the data are readily available

and offer the ability to conduct surveillance activities with

minimal additional data-collection requirements. However,

many of the strong predictors of surgical site infections in

total joint replacement are intrinsic patient factors and/or

surgical factors that are not adequately captured in claims

data. Coupled with the inadequacy of claims data in terms

of completeness and coding errors, there are concerns

regarding the potential consequences of using claims data

for case-mix adjustment in surveillance of surgical site

infections in total joint replacement [15, 29]. Therefore, it

is important that the findings of claims-based analyses are

validated against high-quality, clinically derived data,

because prior studies of various medical conditions and

cardiac procedures indicate that the concordance between

administrative claims data and medical-record documen-

tation may vary substantially, and adding clinical data to

claims data can significantly improve risk prediction and

also alter performance ratings of hospitals [13, 17, 30].

Our analyses are an external assessment of claims-based

risk models for surgical site infections in one hospital,

focusing on two important measures of predictive perfor-

mance [33]. Discrimination is the ability of a model, using

a set of predictor variables, to accurately separate patients

who did and did not experience surgical site infections. The

C statistic is the standard approach to quantifying dis-

crimination, where a value of 0.5 indicates that

discrimination is no better than chance, whereas larger

values indicate better discrimination. We found the dis-

crimination of claims-based models (especially in TKA) to

be lacking, with a bias-corrected C statistic of approxi-

mately 0.6. This may be attributable to two factors: lack of

prediction of the claims-based risk models and/or a more

homogeneous case mix in our cohort (that is, low vari-

ability of known and unknown risk factors for surgical site

infections and consequently, patients being more alike).

Only a few of the claims-based comorbidities in our study

were found to be significantly associated with surgical site

infections, indicating lack of model prediction. Surpris-

ingly, three of four clinically well-recognized risk factors

for surgical site infections [1] were not found to be pre-

dictive for surgical site infections among patients who

underwent TKA. Furthermore, our study cohort possibly

had a more severe case mix and was more homogeneous

than other large multicenter cohorts—in terms of risk

factors and rate of surgical site infections—such as the

Medicare population. Nevertheless, it is not fair to discard

claims-based models based on the low C statistic in one

external dataset, plus the C statistic is only one of many
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discrimination measures. The integrative discrimination

improvement analysis indicates substantial improvement in

risk classification among individuals with surgical site

infections in the THA cohort. Although the average inte-

grative discrimination improvement of 0.36% in patients

with surgical site infections seems like a negligible

amount, one must consider this is on a scale of absolute

risk and generally the overall risk of surgical site infections

is low (approximately 1.7%). Additional studies are war-

ranted to document how comorbidities and clinical risk-

factor profiles vary across hospitals and the implications

for hospital performance profiling, if any.

To our knowledge, no previous claims-based analyses

reported on the performance of the prediction models used,

therefore, it is not possible to compare our findings with

previously published analyses. Furthermore, study defini-

tions of comorbidities are not alike, except in one study [9].

Although the prevalence of some more common comor-

bidities and the risk estimates appear to be comparable,

there are important differences. For example, the relatively

low prevalence of dementia and congestive heart failure

may be a reflection of the younger patients and higher

proportion of women in our cohort compared with the

Medicare datasets. Furthermore, residual confounding is a

potential limitation with ICD-based comorbidity definitions

owing to coding inaccuracy, completeness, and absence of

severity information [18]. An important unexpected finding

of our study is that the risk factors for surgical site infec-

tions and performance of prediction and risk-adjustment

models may differ depending on type of joint replacement

surgery. This was suggested previously [31] and deserves

further investigation. If true, analyses of outcome data for

surgical site infections from combined cohorts should be

stratified by surgery type.

In terms of calibration (agreement between observed

and predicted outcomes of surgical site infections), it is

encouraging that calibration of claims-based models

appeared adequate in THA and TKA cohorts, indicating

that the predicted probabilities of surgical site infections

from the claims-based models were fairly agreeable with

the observed rates of surgical site infections. The addition

of the four clinical risk factors provided little incremental

improvement. However the relatively low incidence of

surgical site infections combined with a lack of predictive

discrimination resulted in a rather narrow and skewed

spread of the 10-decile risk groups from these models. A

model that is well calibrated across the entire range of

predictions is particularly important in hospital profiling.

For example, if the calibration of a surgical site infections

model is poor in the most at-risk patients, then a hospital

with a worse case mix can be unfairly labeled a poor

performer. Our study is limited to one institution and fur-

ther validation studies in larger, multicenter datasets are

needed to better scrutinize the implications of calibration

for hospital profiling. Further validation studies are war-

ranted to determine how well claims-based and clinical

models perform as a case-mix adjustor across hospitals.

The addition of clinical risk factors to claims models can

significantly improve discrimination, which suggests that if

used in the clinical setting, a higher degree of accuracy in

predicting surgical site infections risk is achievable.

Claims-based risk-adjustment models for surgical site

infections appeared to be well calibrated in our large cohort

of patients who underwent total joint replacements; how-

ever, the models lacked strong predictive discrimination.

Our findings underscore the importance of external vali-

dation studies to better understand the validity and

generalizability of claims-based risk models for surveil-

lance of surgical site infections in total joint replacements,

and how they can be interpreted when assessing case-mix

adjustment and risk prediction in the clinic.

References

1. Aggarwal VK, Tischler EH for Workgroup 1 (Leaders: Lautenbach

C, Williams GR Jr; Delegates: Abboud JA, Altena M, Bradbury T,

Calhoun J, Douglas D, Del Gaizo DJ, Font-Vizcarra L, Huotari K,

Kates S, Koo KH, Mabry TM, Moucha CS, Palacio JC, Peel TN,

Poolman RW, Robb WJ 3rd, Salvagno R, Seyler T, Skaliczki G,

Vasarhelyi EM, Watters WC 3rd). Mitigation and Education. In:

Parvizi J, Gehrke T, eds. Proceedings of the International Consensus

Meeting on Periprosthetic Joint Infection. Available at: http://www.

msis-na.org/wp-content/themes/msis-temp/pdf/ism-periprosthetic-

joint-information.pdf. Accessed November 14, 2014.

2. Anderson DJ, Chen LF, Sexton DJ, Kaye KS. Complex surgical

site infections and the devilish details of risk adjustment:

important implications for public reporting. Infect Control Hosp

Epidemiol. 2008;29:941–946.

3. Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM,

Harmsen WS, Osmon DR. Risk factors for prosthetic joint infec-

tion: case-control study. Clin Infect Dis. 1998;27:1247–1254.

4. Berbari EF, Osmon DR, Lahr B, Eckel-Passow JE, Tsaras G,

Hanssen AD, Mabry T, Steckelberg J, Thompson R. The Mayo

prosthetic joint infection risk score: implication for surgical site

infection reporting and risk stratification. Infect Control Hosp

Epidemiol. 2012;33:774–781.

5. Bozic KJ, Lau E, Kurtz S, Ong K, Berry DJ. Patient-related risk

factors for postoperative mortality and periprosthetic joint

infection in medicare patients undergoing TKA. Clin Orthop

Relat Res. 2012;470:130–137.

6. Bozic KJ, Lau E, Kurtz S, Ong K, Rubash H, Vail TP, Berry DJ.

Patient-related risk factors for periprosthetic joint infection and

postoperative mortality following total hip arthroplasty in

Medicare patients. J Bone Joint Surg Am. 2012;94:794–800.

7. Bozic KJ, Ong K, Lau E, Berry DJ, Vail TP, Kurtz SM, Rubash

HE. Estimating risk in Medicare patients with THA: an electronic

risk calculator for periprosthetic joint infection and mortality.

Clin Orthop Relat Res. 2013;471:574–583.

8. Brandt C, Hansen S, Sohr D, Daschner F, Ruden H, Gastmeier P.

Finding a method for optimizing risk adjustment when comparing

surgical-site infection rates. Infect Control Hosp Epidemiol.

2004;25:313–318.

Volume 473, Number 5, May 2015 Claims Models for Surgical Site Infections 1785

123

http://www.msis-na.org/wp-content/themes/msis-temp/pdf/ism-periprosthetic-joint-information.pdf
http://www.msis-na.org/wp-content/themes/msis-temp/pdf/ism-periprosthetic-joint-information.pdf
http://www.msis-na.org/wp-content/themes/msis-temp/pdf/ism-periprosthetic-joint-information.pdf


9. Calderwood MS, Kleinman K, Bratzler DW, Ma A, Bruce CB,

Kaganov RE, Canning C, Platt R, Huang SS, Centers for Disease

Control and Prevention Epicenters Program; Oklahoma Founda-

tion for Medical Quality. Use of Medicare claims to identify US

hospitals with a high rate of surgical site infection after hip

arthroplasty. Infect Control Hosp Epidemiol. 2013;34:31–39.

10. CDC Centers for Disease Control and Prevention. National

Healthcare Safety Network (NHSN). Available at: http://www.

cdc.gov/nhsn/. Accessed November 11, 2014.

11. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new

method of classifying prognostic comorbidity in longitudinal

studies: development and validation. J Chron Dis. 1987;40:373–

383.

12. Dowsey MM, Choong PF. Obesity is a major risk factor for

prosthetic infection after primary hip arthroplasty. Clin Orthop

Relat Res. 2008;466:153–158.

13. Fonarow GC, Pan WQ, Saver JL, Smith EE, Reeves MJ, Brod-

erick JP, Kleindorfer DO, Sacco RL, Olson DM, Hernandez AF,

Peterson ED, Schwamm LH. Comparison of 30-day mortality

models for profiling hospital performance in acute ischemic

stroke with vs without adjustment for stroke severity. JAMA.

2012;308:257–264.

14. Gibbons C, Bruce J, Carpenter J, Wilson AP, Wilson J, Pearson

A, Lamping DL, Krukowski ZH, Reeves BC. Identification of

risk factors by systematic review and development of risk-

adjusted models for surgical site infection Introduction to the

research. Health Technol Assess. 2011;15:1–156, iii–iv.

15. Gray P, Streed S, Dolan S, Khoury R, Kulich P, Olmsted R.

APIC Position Paper: The Use of Administrative (Coding/Bill-

ing) Data for Identification of Healthcare-Associated Infections

(HAIs) in US Hospitals. 2010. Available at: http://www.apic.

org/Resource_/TinyMceFileManager/Advocacy-PDFs/ID_of_

HAIs_US_Hospitals_1010.pdf. Accessed November 11, 2014.

16. Grosso LM, Curtis JP, Lin Z, Geary LL, Vellanky S, Oladele C,

Ott LS, Parzynski C, Suter LG, Berhneim SM, Drye EE, Krum-

holz HM (Yale New Haven Health Services Corporation/Center

for Outcomes Research & Evaluation (YNHHSC/CORE). Hos-

pital-level Risk-Standardized Complication Rate Following

Elective Primary Total Hip Arthroplasty (THA) And/Or Total

Knee Arthroplasty (TKA): Measure Methodology Report. Pre-

pared for the Centers for Medicare & Medicaid Services. 2012.

Available at: https://staging.qualitynet.org/. Accessed November

11, 2014.

17. Hammill BG, Curtis LH, Fonarow GC, Heidenreich PA, Yancy

CW, Peterson ED, Hernandez AF. Incremental value of clinical

data beyond claims data in predicting 30-day outcomes after heart

failure hospitalization. Circ Cardiovasc Qual Outcomes. 2011;

4:60–67.

18. Jackson ML, Nelson JC, Jackson LA. Why do covariates defined

by International Classification of Diseases codes fail to remove

confounding in pharmacoepidemiologic studies among seniors?

Pharmacoepidemiol Drug Saf. 2011;20:858–865.

19. Jamsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for

infection after knee arthroplasty: a register-based analysis of

43,149 cases. J Bone Joint Surg Am. 2009;91:38–47.

20. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J.

Infection burden for hip and knee arthroplasty in the United

States. J Arthroplasty. 2008;23:984–991.

21. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic

burden of periprosthetic joint infection in the United States. J

Arthroplasty. 2012;27:61–65 e61.

22. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J. Pros-

thetic joint infection risk after TKA in the Medicare population.

Clin Orthop Relat Res. 2010;468:52–56.

23. Leening MJ, Cook NR. Net reclassification improvement: a link

between statistics and clinical practice. Eur J Epidemiol.

2013;28:21–23.

24. Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK.

Improving risk-adjusted measures of surgical site infection for the

national healthcare safety network. Infect Control Hosp Epi-

demiol. 2011;32:970–986.

25. Namba RS, Inacio MC, Paxton EW. Risk factors associated with

surgical site infection in 30,491 primary total hip replacements. J

Bone Joint Surg Br. 2012;94:1330–1338.

26. Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J.

Prosthetic joint infection risk after total hip arthroplasty in the

Medicare population. J Arthroplasty. 2009;24(6 suppl):105–109.

27. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W,

Steckelberg JM, Rao N, Hanssen A, Wilson WR. Diagnosis and

management of prosthetic joint infection: clinical practice

guidelines by the Infectious Diseases Society of America. Clin

Infect Dis. 2013;56:e1–e25.

28. Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD,

Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Za-

lavras CG. New definition for periprosthetic joint infection: from

the Workgroup of the Musculoskeletal Infection Society. Clin

Orthop Relat Res. 2011;469:2992–2994.

29. Sarrazin MS, Rosenthal GE. Finding pure and simple truths with

administrative data. JAMA. 2012;307:1433–1435.

30. Shahian DM, He X, Jacobs JP, Rankin JS, Peterson ED, Welke

KF, Filardo G, Shewan CM, O’Brien SM. Issues in quality

measurement: target population, risk adjustment, and ratings. Ann

Thorac Surg. 2013;96:718–726.

31. Song KH, Kim ES, Kim YK, Jin HY, Jeong SY, Kwak YG, Cho YK,

Sung J, Lee YS, Oh HB, Kim TK, Koo KH, Kim EC, Kim JM, Choi

TY, Kim HY, Choi HJ, Kim HB. Differences in the risk factors for

surgical site infection between total hip arthroplasty and total knee

arthroplasty in the Korean Nosocomial Infections Surveillance Sys-

tem (KONIS). Infect Cont Hosp Ep. 2012;33:1086–1093.

32. Steiner C, Andrews R, Barrett M, Weiss A. HCUP Projections:

Mobility/Orthopedic Procedures 2003 to 2012. HCUP Projections

Report # 2012-03. Online September 20, 2012. U.S. Agency for

Healthcare Research and Quality. Available: http://www.hcup-us.ahrq.

gov/reports/projections/2012-03.pdf. Accessed November 11, 2014.

33. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M,

Obuchowski N, Pencina MJ, Kattan MW. Assessing the perfor-

mance of prediction models: a framework for traditional and

novel measures. Epidemiol. 2010;21:128–138.

34. Urquhart DM, Hanna FS, Brennan SL, Wluka AE, Leder K,

Cameron PA, Graves SE, Cicuttini FM. Incidence and risk factors

for deep surgical site infection after primary total hip arthroplasty:

a systematic review. J Arthroplasty. 2010;25:1216–1222.

35. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin

CK, Keohane C, Denham CR, Bates DW. Health care-associated

infections: a meta-analysis of costs and financial impact on the

US health care system. JAMA Intern Med. 2013;173:2039–2046.

1786 Maradit Kremers et al. Clinical Orthopaedics and Related Research1

123

http://www.cdc.gov/nhsn/
http://www.cdc.gov/nhsn/
http://www.apic.org/Resource_/TinyMceFileManager/Advocacy-PDFs/ID_of_HAIs_US_Hospitals_1010.pdf
http://www.apic.org/Resource_/TinyMceFileManager/Advocacy-PDFs/ID_of_HAIs_US_Hospitals_1010.pdf
http://www.apic.org/Resource_/TinyMceFileManager/Advocacy-PDFs/ID_of_HAIs_US_Hospitals_1010.pdf
https://staging.qualitynet.org/
http://www.hcup-us.ahrq.gov/reports/projections/2012-03.pdf
http://www.hcup-us.ahrq.gov/reports/projections/2012-03.pdf

	Do Claims-based Comorbidities Adequately Capture Case Mix for Surgical Site Infections?
	Abstract
	Background
	Questions/purposes
	Patients and Methods
	Results
	Conclusions

	Introduction
	Patients and Methods
	Results
	Discussion
	References


