
ORIGINALVERÖFFENTLICHUNG

https://doi.org/10.1007/s11943-022-00311-9
AStA Wirtschafts- und Sozialstatistisches Archiv (2022) 16:277–286

Causality in statistics and data science education

Kevin Cummiskey · Karsten Lübke

Received: 22 June 2022 / Accepted: 20 October 2022 / Published online: 9 November 2022
© The Author(s) 2022

Abstract Statisticians and data scientists transform raw data into understanding
and insight. Ideally, these insights empower people to act and make better decisions.
However, data is often misleading especially when trying to draw conclusions about
causality (for example, Simpson’s paradox). Therefore, developing causal thinking
in undergraduate statistics and data science programs is important. However, there
is very little guidance in the education literature about what topics and learning out-
comes, specific to causality, are most important. In this paper, we propose a causality
curriculum for undergraduate statistics and data science programs. Students should
be able to think causally, which is defined as a broad pattern of thinking that en-
ables individuals to appropriately assess claims of causality based upon statistical
evidence. They should understand how the data generating process affects their con-
clusions and how to incorporate knowledge from subject matter experts in areas of
application. Important topics in causality for the undergraduate curriculum include
the potential outcomes framework and counterfactuals, measures of association ver-
sus causal effects, confounding, causal diagrams, and methods for estimating causal
effects.
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1 Introduction

1.1 Motivation

Friedrich et al. (2021), based on the position paper ‘DAGStat Stellungnahme: Die
Rolle der Statistik in der Künstlichen Intelligenz’, ask: “Is there a role for statistics in
artificial intelligence?”. They argue that statistics in times of artificial intelligence is
important not only for design, data quality, and uncertainty assessment, but also for
the differentiation between causality and associations. The ability to answer causal
questions is not only important for artificial intelligence but also for many other data
use cases.

Modern data scientists, statisticians, and other analysts rarely perform formal
inference in the context of traditional randomized controlled trials and other exper-
imental designs. Quite often, they assess causality while exploring complex data in
observational settings. Understanding causality beyond the traditional randomized
controlled trial is essential (Hernán et al. 2019; Bojinov et al. 2020). Gelman and
Vehtari (2021) list causal inference as one of the most important statistical ideas
of the past 50 years. Recent guidelines recommend students in statistics and un-
dergraduate data science programs understand causality (GAISE 2016; De Veaux
et al. 2017; NASEM 2018; ACM 2021) and there are several papers discussing ways
to integrate causality into undergraduate statistics courses (Ridgway 2016; Kaplan
2018; Cummiskey et al. 2020; Lübke et al. 2020; Forney and Mueller 2021). Utts
(2021) places the topics of “observational studies, confounding and causation” in
her list of important topics for statistical literacy.

Integrating causality helps statistics and data science students develop a frame-
work to think about the data generating process and to think more clearly about
modeling and interpretation of results (Cummiskey et al., 2020; Lübke et al. 2020).
In addition, it more closely aligns their education with the proposals of De Veaux
et al. (2017) and Donoho (2017) for data science programs. However, there is limited
discussion in the literature of how students, with regards to causality, should be able
to think and what they should be able to do after completing their studies. Causal
inference is a huge field of knowledge spanning several disciplines (statistics, eco-
nomics, computer science, epidemiology, etc) and employing numerous methods;
undergraduate programs cannot cover them all and must choose carefully. Further
complicating this choice is the fact that causal inference, due to its recent emergence
as a subfield of statistics, was not part of the formal education of many curriculum
designers. The goal of this paper is to recommend to curriculum designers of un-
dergraduate programs learning outcomes and a small set of important concepts for
developing causal thinking. We intend the learning outcomes and concepts to apply
to most programs while leaving flexibility in the methods and applications.

This paper is organized as follows. First, we discuss causal thinking and its con-
nection to data literacy. Next, we highlight some key ideas in causal inference which
provide students with formal definitions and rules to help structure causal thinking.
Finally, we recommend learning outcomes and key concepts for undergraduate data
science programs.
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1.2 Causal thinking

In terms of causality, the central goal of undergraduate data science and statis-
tics programs should be to develop causal thinking in students. Causal thinking is
a broad pattern of thinking that enables individuals to appropriately assess claims
of causality based upon statistical evidence. Causal thinkers are naturally skeptical
of causality claims from observational studies and recognize the human tendency to
develop causal links between events even when none exist. At the same time, they
have a richer understanding of causality than simply “correlation does not imply
causation” and appreciate that we can, and often should, draw causal conclusions
from observational studies. For example, there has never been a randomized con-
trolled trial linking smoking with lung cancer, but overwhelming evidence from
observational studies provides compelling evidence. Rohrer et al. (2021) stated “the
only thing that can stop bad causal inference is good causal inference.” Humans will
continue to make causal conclusions from data; it is our responsibility as educators
to make our students better at it.

Causal thinking underpins many aspects of data literacy. The idea of data literacy
augments the traditional ideas of statistical literacy (critically consuming statistics
produced by others) with other important parts of the life cycle of data and how
data is used in modern society (Gould 2017). Schüller (2020) defines data literacy
as the cluster of all efficient behaviors and attitudes for creating value or making
decisions from data. The final step in this process of creating value is the compe-
tence of deriving action from data. Often, this means asking “what if” questions
about interventions that change some aspect of the system. For example, researchers
investigating the effects of school mask mandates on COVID-19 infections might
ask, “what if a school without a mandate implemented one?” This question is com-
plicated by the fact that schools with mask mandates are likely different in ways
that are important to infection than schools without mask mandates. Ideas in causal
inference provide us with ways to think about these concepts.

1.3 Causal inference

In this section, we discuss some important ideas in causal inference that help stu-
dents develop causal thinking. One goal of causal inference is to estimate the effect
of an intervention or exposure on an outcome of interest. Causal effects compare the
outcome in the population under the intervention to the outcome without the inter-
vention. The central challenge in estimating causal effects is, typically, we cannot
observe the same individual both with and without the intervention. Randomizing the
intervention allows for unbiased estimates of causal effects as individuals in both
groups are similar in expectation assuming full adherence. However, randomized
designs are not always feasible, ethical, or desirable and researchers often perform
observational studies with the goal of estimating causal effects. (Even in experimen-
tal designs, practical issues often impede full adherence to the planned experimental
design making it necessary to adopt causal inference approaches.) In observational
studies, measures of association relating the intervention to the outcome are typ-
ically biased estimates of causal effects due to confounding. Confounding occurs
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when subjects who received the intervention are different from subjects who did not
receive the intervention in ways that are themselves causes of the outcome.

For example, if we conducted a survey shortly after the release of the COVID-19
vaccine and compare all-cause mortality rates in individuals who receive the vaccine
(the intervention, in this example) to individuals who did not receive the vaccine, we
will likely find an association between receiving the vaccine and higher all-cause
mortality rates. This result could lead people to falsely believe vaccines increase
mortality risk. However, at the time, governments were vaccinating the most at-risk
individuals first. The vaccinated individuals were fundamentally different from the
unvaccinated individuals in ways that are important causes of mortality (for exam-
ple, age). In statistical terms, we would say the association we observed between
vaccination and higher all-cause mortality is a biased estimate of the causal effect.
At the beginning of the vaccination campaign, older individuals were more likely to
be vaccinated and, due to the age, at higher mortality risk—and not because of the
vaccine. In other words, the higher mortality in the vaccinated group is caused by
the higher age of the vaccinated group, not by the vaccine. In observational studies,
when researchers measure a sufficient set of confounding variables, i.e. variables that
influence both the exposure and the outcome, they can obtain unbiased estimates of
causal effects using a variety of designs and statistical methods under the assumption
of a correct causal model. In the previous example, age is a confounding variable for
effect of vaccination status on mortality. Researchers identify confounding variables
using subject matter knowledge to develop causal models; it is not possible to iden-
tify causal models and unmeasured confounding variables from the data alone. In
the vaccine example above, it is not possible to detect confounding with only vacci-
nation and mortality data. Researchers had to understand the data collection process
and other mortality factors to identify age as an important confounding variable.

Causal diagrams are useful tools for identifying confounding variables and de-
picting causal models. Following simple heuristics for causal diagrams, researchers
can determine a sufficient set of variables to control for to obtain unbiased estimates
of causal effects (see e.g. Peters et al. 2017, p. 109ff). Importantly, the correctness
of the causal inference depends on the correctness of the causal diagram. Therefore,
subject matter knowledge and care are needed to develop the causal model.

2 Causality in the undergraduate curriculum

2.1 The undergraduate curriculum

Undergraduate statistics and data science programs should prepare students for
a data-rich and complex world. Students should master fundamental concepts in
statistics, computer science, and mathematics while gaining experience with all
steps of the data cycle. De Veaux et al. (2017) describe six key competencies of an
undergraduate data science major. They are computational and statistical thinking,
mathematical foundations, model building and assessment, algorithms and software
foundation, data curation, and knowledge transference. All courses should include
significant data experiences where students must obtain, wrangle, and prepare data
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for analysis. Donoho (2017) divides the activities of data science into six divi-
sions: data gathering, preparation, exploration; data representation and transforma-
tion, computing with data, data modeling, data visualization and presentation, and
science about data science. Statistics and machine learning courses tend to focus on
data modeling with little formal education in the others, especially data gathering,
preparation, and exploration which takes up most of practitioners’ time. In a survey
of introductory data sciences courses, Schwab-McCoy et al. (2021) report visualiza-
tion, cleaning, and management, as well as professional practices and (statistical)
modeling are the top five most common topics.

2.2 Causality learning outcomes

We propose the following causality-related learning outcomes for statistics and data
science programs. Undergraduate statistics and data science students should:

� Be able to define causal effects and understand how they differ from associations.
� Understand the concept of a data generating process and assumptions necessary

for drawing causal conclusions.
� Be able to identify common sources of bias and confounding in data and depict

them in a causal diagram.
� Be able to apply design or adjustment-based methods to estimate causal effects.

2.3 Causality topics

We recommend the following topics in causality for undergraduate statistics and
data science majors with an emphasis on developing causal thinking through the
investigation of cause-and-effect type questions with real-world data.

� Potential Outcomes Framework—The potential outcomes framework provides un-
dergraduate students with formal definitions of causality, mathematical notation
for expressing causal effects, and common assumptions made when assessing
causality. The definition of causality in statistics differs from its common usage in
the English language and in other disciplines. For example, we might say pushing
a door causes it to close. If I push the door with enough force, it will close every
time (all else being equal). However, in statistics, we do not require this determin-
istic relationship between cause and effect. For example, we say smoking causes
lung cancer even though not everyone who smokes will get lung cancer. Poten-
tial outcomes framework identifies the causal effect as the difference between two
potential outcomes, the outcome if the individual smoked, Y1, and the outcome if
the individual did not smoke, Y0, when averaged over the entire population. Tra-
ditional conditional probability notation cannot distinguish between causal effects
and confounding. Let A be an indicator an individual smokes and Y be an indicator
of lung cancer. E(Y|A= 1)– E(Y|A= 0)> 0 could either indicate smokers are more
likely to get lung cancer (causality), or the smokers and nonsmokers are different
in ways that cause lung cancer (confounding).
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� Causal Effects and Confounding—Undergraduate students should reflexively
think about confounding when presented with measures of association relating
an intervention to an outcome. For example, a long running radio advertisement
for a hospital located in the wealthiest county in New York touted that they had
the shortest surgery recovery times in the entire state. Students should recog-
nize some of the challenges to attributing shorter recovery times to the hospital
(through better procedures, equipment, and expertise) instead of other factors
(types of surgeries performed, baseline health of patients).

� Causal Diagrams—Causal diagrams are tools researchers use to depict the causal
relationships between variables. The nodes in the graph are variables and an arrow
(i.e. a directed edge) between them indicated a causal relationship. In many cases,
using simple heuristics, researchers can determine a sufficient set of variables to
control for during design and analysis to eliminate or reduce bias. For students,
they are a valuable tool for structuring multivariable thinking and connecting con-
textual knowledge to statistical modeling decisions. It should be remembered that
the correctness of the causal conclusion depends on the correctness of the causal
model. With causal diagrams, modelling can be supported by qualitative back-
ground knowledge about the data generating process. As these assumptions are
encoded in the diagram, communication and discussion of the results with other
stakeholders is facilitated if the goal of the analysis is causal inference. Fig. 1
shows the assumed causal diagram of the COVID example. The diagramwas made
using DAGitty (Textor et al. 2016).

� Methods for Adjustment—students should gain experience with several basic
methods for confounding adjustment. At a minimum, we recommend regression
and matching. Regression provides an important opportunity to show students
how the same method can be employed towards different objectives like predic-
tion or causal inference. For example, when the goal of a study is prediction, we
might automate variable selection to produce a parsimonious model that does well
at predicting an outcome close to what we observe. However, when the goal of
the study is to estimate a causal effect, it would be more appropriate to select
variables to control for based on a presupposed causal diagram to control for

Fig. 1 Causal diagram for the
Covid example. The effect of
Vaccination on Mortality is
confounded by Age
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confounding (exposure confounder! outcome), but not for mediators (expo-
sure!mediator! outcome) and colliders (exposure! collider outcome). In
the COVID vaccine example, we would control for Age by including it in the
regression model because Age is confounding. However, if there was a mediator
variable M of the Vaccination and Mortality relationship, we would not want
to control for M, even if doing so improved the predictive performance of the
model. Controlling for M results in a biased estimate of the causal effect. This is
a different approach to teaching regression which typically focuses on improving
the predictive performance and not estimating effects. Matching is also a very
effective method for introducing students to causal thinking because the analysis
after matching resembles that of a randomized treatment, thus reinforcing the
notion of causality and common obstacles to obtaining good estimates of it.

� Design based approaches—in addition to classical randomized controlled trials,
students should be aware of other designs such as natural experiments, instrumen-
tal variables, and regression discontinuity designs. Here we assume that most pro-
grams already include randomized experiments. If not, the topic of experimental
design and the benefits of “randomness” within the data collection process should
be discussed. Causal diagrams are an effective way to depict these designs. For
example, a randomized experiment removes the arrow between the explanatory
variable and the confounder.

2.4 Resources

Statistics and data science are not the only disciplines with causality. Epidemiol-
ogy, biostatistics, political sciences, economics, and computer science investigate
research questions concerning causality. In the last years, several textbooks were
published which may serve as the basic reading within data science courses ad-
dressing causality. We briefly highlight a few of them here.

The book of why: the new science of cause and effect by Pearl and Mackenzie
(2018) introduces the topic for general audiences. In particular, the ladder of causal-
ity provides a nice framework for thinking about types of research questions and the
limitations of algorithms to answer causality questions without human intervention.
Aronow and Sävje 2020 provide some important critical notes in their review of the
book. For a more mathematical treatment, Causal inference in statistics: A primer,
by Pearl et al. (2016) covers many topics and provides a gentle introduction to causal
inference. The ASA causality award winning book by Peters et al. (2017) Elements
of causal inference: foundations and learning algorithms is written with a focus to-
wards machine learning and may be more suitable for graduate courses. Introduction
to causal inference from a machine learning perspective (Neal 2020) is currently still
under development but provides additional resources like slides and videos. Alves
(2020) Causal inference for the brave and true integrates Python examples through-
out. Hardt and Recht (2021) include causality in their Patterns, predictions, and
actions: A story about machine learning book. Other textbooks that should be con-
sidered are Cunningham (2021), Hernán and Robins (2020) and Huntington-Klein
(2021).
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There are also several high-quality online courses. These are especially helpful
for instructors for whom causal inference was not part of their formal education but
want to integrate these topics into their existing courses. Harvard University offers
the online course “Draw your assumptions before your conclusions” by Hernán on
causal diagrams. The University of Pennsylvania offers “A Crash Course in Causal-
ity: Inferring Causal Effects from Observational Data” taught by Jason Roy, recent
winner of the ASA’s Causality in Statistics Education Award. Columbia University
offers a two-course series on causal inference taught by Michael Sobel. Udemy
offers the course “Causal Data Science with Directed Acyclic Graphs” by Paul
Hünermund.

3 Discussion

The compelling progress of computational technology and the wide availability of
diverse data makes the 21st century an exciting time for expanding opportunities
in statistics and data science. We can analyze data in ways unpredictable when the
foundations of statistical theory were developed 100 years ago. Despite this “data
revolution” (Ridgway 2016), we should not forget the epistemological goals of an
analysis. For communication of data-based results, it seems crucial to help students
to think clearly about the assumptions of the data generating process to draw correct
conclusions. The proposed undergraduate causality curriculum aims at providing
a modeling framework to do so.

The causality topics discussed in this paper can be covered in a single course
and only very few preliminaries are needed. Alternatively, they could be integrated
in existing courses such as intermediate applied statistics, modeling, data science,
regression, and generalized linear models. Some introductory textbooks are avail-
able, e.g. Pearl et al. (2016), as well as R or Python software for causal inference.
Moreover, the concepts can be linked to other important aspects of modern statistics
and data science and, therefore, can broaden the view on data and science.

Big data most often is multivariate observational data. Statisticians know about
the pitfalls in drawing conclusions without random sampling or allocation. However,
instead of just lamenting, we should explain the benefits of randomizing (erasing
arrows in a causal diagram) and discuss the extra qualitative assumptions needed
for causal inference. So our answer on Friedrich et al. (2021): “Is there a role for
statistics in artificial intelligence?” is also yes. However, we need to adopt a richer
understanding of causality in the curriculum.

Lastly, it should be noted that, to the best of our knowledge, there is limited
empirical knowledge about the achieved learning outcomes. After implementation,
students reasoning about correlation and causation, as well as the different tasks
description such as prediction and causal inference, should be assessed.
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