Skip to main content

Advertisement

Log in

Osteocyte Signaling in Bone

  • Skeletal Biology (D Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteocytes, the cells residing within the bone matrix and comprising 90 % to 95 % of the all bone cells, have long been considered quiescent bystander cells compared to the osteoblasts and osteoclasts whose activities cause bone gain and loss, and whose dysfunction lead to growth defects and osteoporosis. However, recent studies show that osteocytes play a crucial, central role in regulating the dynamic nature of bone in all its diverse functions. Osteocytes are now known to be the principal sensors for mechanical loading of bone. They produce the soluble factors that regulate the onset of both bone formation and resorption. Osteocytes regulate local mineral deposition and chemistry at the bone matrix level, and they also function as endocrine cells producing factors that target distant organs such as the kidney to regulate phosphate transport. Osteocytes appear to be the major local orchestrator of many of bone’s functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bonewald L. Osteocytes. In: Marcus R, editor. Osteoporosis, 3rd ed. Elsevier; 2008. p. 170–89.

  2. Gu G, Nars M, Hentunen TA, et al. Isolated primary osteocytes express functional gap junctions in vitro. Cell Tissue Res. 2006;323(2):263–71.

    Article  PubMed  Google Scholar 

  3. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    Article  PubMed  CAS  Google Scholar 

  4. He G, George A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem. 2004;279(12):11649–56.

    Article  PubMed  CAS  Google Scholar 

  5. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, et al. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000;15(8):1440–50.

    Article  PubMed  CAS  Google Scholar 

  6. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11(2):130–6.

    Google Scholar 

  7. Fisher LW, Fedarko NS. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res. 2003;44 Suppl 1:33–40.

    PubMed  CAS  Google Scholar 

  8. Rowe PS, Garrett IR, Schwarz PM, et al. Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone. 2005;36(1):33–46.

    Article  PubMed  CAS  Google Scholar 

  9. Gowen LC, Petersen DN, Mansolf AL, et al. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem. 2003;278(3):1998–2007.

    Article  PubMed  CAS  Google Scholar 

  10. Liu SG, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol. 2007;18(6):1637–47.

    Article  PubMed  CAS  Google Scholar 

  11. Liu S, Zhou J, Tang W, et al. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.

    Article  PubMed  CAS  Google Scholar 

  12. Liu S, Guo R, Simpson LG, et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278(39):37419–26.

    Article  PubMed  CAS  Google Scholar 

  13. Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4.

    PubMed  CAS  Google Scholar 

  14. Beighton P. Sclerosteosis. J Med Genet. 1988;25(3):200–3.

    Article  PubMed  CAS  Google Scholar 

  15. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Ominsky MS, Niu QT, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.

    Article  PubMed  Google Scholar 

  17. Bodine PV, Vernon SK, Komm BS. Establishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone. Endocrinology. 1996;137(11):4592–604.

    Article  PubMed  CAS  Google Scholar 

  18. Kato Y, Boskey A, Spevak L, et al. Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J Bone Miner Res. 2001;16(9):1622–33.

    Article  PubMed  CAS  Google Scholar 

  19. Kato Y, Windle JJ, Koop BA, et al. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12(12):2014–23.

    Article  PubMed  CAS  Google Scholar 

  20. Rosser J, Bonewald LF. Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods Mol Biol. 2012;816:67–81.

    Article  PubMed  Google Scholar 

  21. • Al-Dujaili SA, Lau E, Al-Dujaili H, et al. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112(9):2412–23. Describes an in vitro model used to study gene expression of MLO-Y4 cells undergoing apoptosis, and the subsequent effect on osteoclastogenesis.

    Article  PubMed  CAS  Google Scholar 

  22. Zahm AM, Bucaro MA, Srinivas V, et al. Oxygen tension regulates preosteocyte maturation and mineralization. Bone. 2008;43(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  23. Genetos DC, Kephart CJ, Zhang Y, et al. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol. 2007;212(1):207–14.

    Article  PubMed  CAS  Google Scholar 

  24. Kwon RY, Temiyasathit S, Tummala P, et al. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 2010;24(8):2859–68.

    Article  PubMed  CAS  Google Scholar 

  25. • Xia X, Kar R, Gluhak-Heinrich J, et al. Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res. 2010;25(11):2479–88. Demonstrates the effects of glucocorticoids on osteocytes in terms of autophagy and apoptosis. Proposes new mechanisms responsible for bone loss in patients receiving glucocorticoid therapy..

    Article  PubMed  CAS  Google Scholar 

  26. Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280(8):7317–25.

    Article  PubMed  CAS  Google Scholar 

  27. •• Batra N, Burra S, Siller-Jackson AJ, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA. 2012;109(9):3359–64. Shows that mechanical perturbation or conformational activation of integrin α5β1 leads to the opening of the connexin 43 hemichannel, a potentially important pathway for cell-cell communication..

    Article  PubMed  CAS  Google Scholar 

  28. Heino TJ, Hentunen TA, Vaananen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res. 2004;294(2):458–68.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka-Kamioka K, Kamioka H, Ris H, et al. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res. 1998;13(10):1555–68.

    Article  PubMed  CAS  Google Scholar 

  30. Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng. 1991;113(2):191–7.

    Article  PubMed  CAS  Google Scholar 

  31. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–60.

    Article  PubMed  CAS  Google Scholar 

  32. Skerry TM, Bitensky L, Chayen J, et al. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res. 1989;4(5):783–8.

    Article  PubMed  CAS  Google Scholar 

  33. Dallas SL, Zaman G, Pead MJ, et al. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J Bone Miner Res. 1993;8(3):251–9.

    Article  PubMed  CAS  Google Scholar 

  34. Dodds RA, Ali N, Pead MJ, et al. Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res. 1993;8(3):261–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gluhak-Heinrich J, Ye L, Bonewald LF, et al. Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res. 2003;18(5):807–17.

    Article  PubMed  CAS  Google Scholar 

  36. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15(1):60–7.

    Article  PubMed  CAS  Google Scholar 

  37. Yang W, Lu Y, Kalajzic I, et al. Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem. 2005;280(21):20680–90.

    Article  PubMed  CAS  Google Scholar 

  38. •• Cardoso L, Herman BC, Verborgt O, et al. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605. Demonstrates that osteocyte apoptosis is an obligatory step toward osteoclastogenesis in response to microdamage in cortical bone..

    Article  PubMed  CAS  Google Scholar 

  39. Zhang K, Barragan-Adjemian C, Ye L, et al. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol. 2006;26(12):4539–52.

    Article  PubMed  CAS  Google Scholar 

  40. Ajubi NE, Klein-Nulend J, Nijweide PJ, et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes–a cytoskeleton-dependent process. Biochem Biophys Res Commun. 1996;225(1):62–8.

    Article  PubMed  CAS  Google Scholar 

  41. Wang L, Cowin SC, Weinbaum S, et al. Modeling tracer transport in an osteon under cyclic loading. Ann Biomed Eng. 2000;28(10):1200–9.

    Article  PubMed  CAS  Google Scholar 

  42. Wang L, Wang Y, Han Y, et al. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci USA. 2005;102(33):11911–6.

    Article  PubMed  CAS  Google Scholar 

  43. Squire JM, Chew M, Nneji G, et al. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol. 2001;136(3):239–55.

    Article  PubMed  CAS  Google Scholar 

  44. Burr DB, Martin RB, Schaffler MB, et al. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18(3):189–200.

    Article  PubMed  CAS  Google Scholar 

  45. Burr DB, Forwood MR, Fyhrie DP, et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.

    Article  PubMed  CAS  Google Scholar 

  46. Bentolila V, Boyce TM, Fyhrie DP, et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998;23(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  47. Verborgt O, Tatton NA, Majeska RJ, et al. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res. 2002;17(5):907–14.

    Article  PubMed  CAS  Google Scholar 

  48. Cheng Y, Deshmukh M, D’Costa A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest. 1998;101(9):1992–9.

    Article  PubMed  CAS  Google Scholar 

  49. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature. 2000;407(6805):810–6.

    Article  PubMed  CAS  Google Scholar 

  50. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.

    Article  PubMed  CAS  Google Scholar 

  51. •• Kennedy OD, Herman BC, Laudier DM, et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012; doi: 10.1016/j.bone.2012.01.025. Demonstrates osteocyte expression of pro-osteoclastogenic factors by distinct cell populations in nearby sites of microdamage.

  52. Nakashima T, Kobayashi Y, Yamasaki S, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275(3):768–75.

    Article  PubMed  CAS  Google Scholar 

  53. •• Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. Shows that purified osteocytes express RANKL and have the capacity to support osteoclastogenesis in vitro. Also shows osteocytes are a major source of RANKL in bone remodeling in vivo.

    Article  PubMed  CAS  Google Scholar 

  54. •• Xiong J, Onal M, Jilka RL, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1234–41. Uses a transgenic model with RANKL conditionally deleted to demonstrate that hypertrophic chondrocytes and osteocytes, both of which are embedded in matrix, are essential sources of the RANKL that controls mineralized cartilage resorption and bone remodeling, respectively.

    Article  Google Scholar 

  55. Baron R, Tross R, Vignery A. Evidence of sequential remodeling in rat trabecular bone - morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat Rec. 1984;208(1):137–45.

    Article  PubMed  CAS  Google Scholar 

  56. Fisher M. The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis. 2004;17 Suppl 1:1–6.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: M.B. Schaffler: has received grant support from the National Institutes of Health; and receives royalties from Carolina Biological; O.D. Kennedy: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell B. Schaffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffler, M.B., Kennedy, O.D. Osteocyte Signaling in Bone. Curr Osteoporos Rep 10, 118–125 (2012). https://doi.org/10.1007/s11914-012-0105-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0105-4

Keywords

Navigation