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The hereditary spastic paraplegias (HSPs) comprise 
a large group of inherited neurologic disorders. HSP is 
classified according to the mode of inheritance, the HSP 
locus when known, and whether the spastic paraplegia 
syndrome occurs alone or is accompanied by additional 
neurologic or systemic abnormalities. Analysis of 11 
recently discovered HSP genes provides insight into HSP 
pathogenesis. Hereditary spastic paraplegia is a clinical 
diagnosis for which laboratory confirmation is sometimes 
possible, and careful exclusion of alternate and co-exist-
ing disorders is an important element in HSP diagnosis. 
Treatment for HSP is presently limited to symptomatic 
reduction of muscle spasticity, reduction in urinary 
urgency, and strength and gait improvement through 
physical therapy. Prenatal genetic testing in HSP is pos-
sible for some individuals with the increasing availability 
of HSP gene analysis.

Introduction
The hereditary spastic paraplegias (HSPs) comprise a 
large group of inherited neurologic disorders in which 
the predominant symptom is lower extremity spastic 
weakness [1••,2–4] (http://www.geneclinics.org/pro-
files/hsp/ and http://www.med.umich.edu/hsp and 
http://www.sp-foundation.org). The prevalence of 
HSP has been estimated to range from 1.27 to 9.6 per 
100,000 [5,6]. 

Classification by Mode of Inheritance,  
HSP Syndrome, and Genetic Locus 
Hereditary spastic paraplegia is classified according to 
the mode of inheritance (autosomal dominant, autoso-
mal recessive, and X-linked HSP), according to the HSP 

locus when known (designated SPG loci 1 through 30 
in order of their discovery, Table 1), and according to 
whether the spastic paraplegia syndrome occurs alone 
(“uncomplicated” HSP, which may be accompanied by 
urinary urgency and decreased vibration sensation in 
the toes) or is accompanied by additional neurologic or 
systemic abnormalities (“complicated HSP”). For exam-
ple, “complicated HSP” included syndromes in which 
spastic paraplegia is accompanied by mental retarda-
tion, ataxia, peripheral neuropathy, deafness, cataracts, 
or muscle atrophy. 

 In general, families with well-documented “uncom-
plicated” HSP do not appear to be at risk of transmitting 
“complicated” HSP syndromes. There is some controversy, 
however, as our understanding of the full phenotypic 
spectrum of uncomplicated HSP syndromes emerges. For 
example, although the majority of SPG4/spastin subjects 
have uncomplicated HSP, some SPG4 HSP patients also 
have cognitive impairment, ataxia, epilepsy, and even 
lower motor neuron disturbance [7,8]. 

Neuropathology 
Postmortem studies of uncomplicated HSP show 
axon degeneration limited to the central nervous 
system(CNS) affecting primarily the distal ends of the 
longest descending motor fibers (corticospinal tracts, 
with maximal involvement in the thoracic spinal cord) 
and the distal ends of the longest ascending fibers (fas-
ciculus gracilis fibers, with maximal involvement in the 
cervico-medullary region) [9–15]. Demyelination of 
fibers undergoing degeneration occurs in uncomplicated 
HSP and is considered to be the consequence of primary 
axonal degeneration in uncomplicated HSP. Decreased 
numbers of cortical motor neurons and anterior horn 
cells have been observed in HSP [12,13]. 

 The neuropathology of uncomplicated HSP (distal 
degeneration of long sensory and motor axons in the 
CNS) is parallel to that of Charcot-Marie-Tooth (CMT) 
type II, in which distal motor and sensory axon degen-
eration is limited to the peripheral nervous system. 
Indeed, there is evidence that at least one form of HSP 
may share similar pathophysiologic mechanisms with 
CMT type II:  SPG10 HSP is due to mutation in kinesin 
heavy chain (KIF5A) [16], a molecular motor involved in 
axonal transport; mutations in another kinesin (KIF1B) 
cause CMT type 2A1 [17]. 
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Table 1. HSP loci

Spastic gait 
(SPG) locus HSP syndrome

Protein name  
and function

Gene  
testing Study

Autosomal dominant HSP

SPG3A  
(14q11-q21) 

Uncomplicated HSP:  symptoms usually begin 
in childhood (and may be nonprogressive); 
symptoms may also begin in adolescence or 
adulthood and worsen insidiously. Genetic 
nonpenetrance reported.  De novo muta-
tion reported presenting as spastic diplegic 
cerebral palsy. 

Atlastin: unknown function, 
appears to be Golgi protein that 
shares homology with guanylate 
binding protein 1, a dynamin 
family GTPase

ADL [57,70,103,104]

SPG4   
(2p22)

Uncomplicated HSP, symptom onset in infancy 
through senescence, single most common 
cause of autosomal dominant HSP (40%); 
some subjects have late-onset cognitive 
impairment.

Spastin:  cytosolic (or pos-
sibly nuclear) protein with AAA 
domain that appears to interact 
with microtubules and may play a 
role in microtubule severing.

ADL [20,27,43,60,71,
105,106]  

SPG6  
(15q11.1)

Uncomplicated HSP: prototypical late-adoles-
cent, early-adult onset, slowly progressive 
uncomplicated HSP.  

NIPA1: neuron specific protein of 
unknown function, 9 alternating 
hydrophobic-hydrophilic domains 
predicts integral membrane 
localization

ADL [72,107–109]

SPG8   
(8q23-q24)

Uncomplicated HSP Unknown No [110,111]

SPG9  
(10q23.3-q24.2)

Complicated: spastic paraplegia associated with 
cataracts, gastroesophageal reflux, and motor 
neuronopathy

Unknown No [112]

SPG10 (12q13) Uncomplicated HSP or complicated by distal 
muscle atrophy

Kinesin heavy chain (KIF5A): is a 
molecular motor that participates 
in axonal transport of  organelles 
and macromolecules

Research [113,114]

SPG12  
(19q13)

Uncomplicated HSP Unknown [111]

SPG13  
(2q24-34)

Uncomplicated HSP: adolescent and  
adult onset

Chaperonin 60 (also known as heat 
shock protein 60): mitochondrial 
protein

Research [31,115]

SPG17  
(11q12-q14)

Complicated: spastic paraplegia associated with 
amyotrophy of hand muscles (Silver syndrome)

BSCL2/seipin: integral membrane 
protein in endoplasmic reticulum

Research [55,56,116]

SPG19  
(9q33-q34)

Uncomplicated HSP Unknown No [117]

SPG29  
(1p31.1-21.1)

Complicated: spastic paraplegia associated 
with hearing impairment and persistent 
vomiting due to hiatal hernia inherited

Unknown No

SPG29  
(2p12)

Uncomplicated HSP Unknown No [118]

Autosomal recessive  HSP

SPG5 (8p) Uncomplicated Unknown No [34,119–121]

SPG7 (16q) Uncomplicated or complicated: variably 
associated with mitochondrial abnormalities 
on skeletal muscle biopsy and dysarthria, 
dysphagia, optic disc pallor, axonal neuropathy, 
and evidence of “vascular lesions,” cerebellar 
atrophy, or cerebral atrophy on cranial MRI

Paraplegin: mitochondrial metal-
loprotease

Research [36,122]

SPG11 (15q) Uncomplicated or complicated: spastic 
paraplegia variably associated with thin corpus 
callosum, mental retardation, upper extremity 
weakness, dysarthria, and nystagmus;  50% of 
autosomal recessive HSP is considered to be 
SPG11

Unknown No [123,124]

*Including DuPont Nemours Clinic and Baylor University. 
ADL—Athena Diagnostics Laboratory; HSP—hereditary spastic paraplegia; 
L1CAM—L1 cell adhesion molecule.
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Table 1. HSP loci

Spastic gait 
(SPG) locus HSP syndrome

Protein name  
and function

Gene  
testing Study

SPG14 (3q27-28) Complicated: spastic paraplegia associated 
with mental retardation and distal motor 
neuropathy

Unknown No [125]

SPG15 (14q) Complicated: spastic paraplegia associated  
with pigmented maculopathy, distal  
amyotrophy, dysarthria, mental retardation, 
and further intellectual deterioration  
(Kjellin syndrome).

Unknown No [126]

SPG20 (13q) Complicated: spastic paraplegia associated  
with distal muscle wasting (Troyer syndrome)

Spartin: N-terminal region  
similar to spastin;  homologous  
to  proteins involved in the 
morphology and trafficking  
of endosomes

Research [30,54,127,128]

SPG21 Complicated: spastic paraplegia associated 
with dementia, cerebellar and extrapyramidal 
signs, thin corpus callosum, and white matter 
abnormalities (Mast syndrome)

Maspardin:  protein localizes to 
endosome/trans-Golgi vesicles, 
may function as protein transport 
and sorting.

Research [129]

SPG22  
(19q13.3)

Complicated: spastic paraplegia accompanied  
by distal wasting

Neuropathy target esterase Research [130]

SPG23  
(1q24-q32)

Complicated: childhood onset HSP associated 
with skin pigment abnormality

Unknown No [131]

SPG24 (13q14) Complicated: childhood onset HSP  
variably complicated by spastic dysarthira  
and pseudobulbar signs

Unknown No [132]

SPG26  
(12p11.1-12q14)

Complicated: childhood onset progressive 
spastic paraparesis with dysarthria and distal 
amyotrophy in both upper and lower limbs, 
intellectual impairment

Unknown No [133]

SPG27  
(10q22.1-q24.1)

Uncomplicated or complicated: adult-onset, 
uncomplicated spastic paraplegia; or spastic 
paraplegia associated with dysarthria

Unknown No [134]

SPG28  
(14q21.3-q22.3)

Uncomplicated: childhood-onset progressive 
spastic gait

Unknown No [135]

SPG29 Uncomplicated: childhood onset Unknown No [136]

SPG30 Complicated: spastic paraplegia, distal wasting, 
saccadic ocular pursuit, peripheral neuropathy, 
mild cerebellar signs

Unknown No [137]

SPOAN syndrome 
(11q23)

Complicated: spastic paraplegia, optic atrophy, 
neuropathy (SPOAN)

Unknown No [138]

X-linked HSP

SPG1 (Xq28) Complicated: associated with mental retarda-
tion, and variably, hydrocephalus, aphasia, and 
adducted thumbs

L1CAM Research [139]

SPG2  (Xq28) Complicated: variably associated with  
MRI evidence of central nervous system  
white matter abnormality; may have  
peripheral neuropathy

Proteolipid protein Several 
laboratories*

[39,140–142]

SPG16  
(Xq11.2-q23)

Uncomplicated or complicated: associated with 
motor aphasia, reduced vision, nystagmus, 
mild mental retardation, and dysfunction of 
the bowel and bladder

Unknown No [143,144]

*Including DuPont Nemours Clinic and Baylor University. 
ADL—Athena Diagnostics Laboratory; HSP—hereditary spastic paraplegia; 
L1CAM—L1 cell adhesion molecule.

(continued)
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Insights into HSP Pathophysiology 
Analysis of 11 recently discovered HSP genes (Table 1) 
provides insight into HSP pathogenesis [10]. Rather 
than conforming to one extended gene or protein fam-
ily, HSP proteins are diverse. This suggests that diverse 
biochemical abnormalities produce axon degeneration 
in various genetic types of HSP [18]. These abnormalities 
include primary axonal transport abnormality, distur-
bance in Golgi function, mitochondrial abnormality, 
dysmyelination, and disturbance in corticospinal tract 
development. It is likely, though as yet unproven, that 
these disparate biochemical disturbances converge into 
one or more common pathways.

Disturbance in axonal transport or axonal cytoskele-
ton was initially proposed as an HSP mechanism because 
degeneration is maximal at the ends of the longest CNS 
axons. The clearest examples of axonal transport dis-
turbance are autosomal dominant SPG10 HSP due to 
KIF5A mutation, and autosomal dominant SPG4 due 
to spastin mutation. KIF5A is a molecular motor com-
ponent involved in axonal transport of organelles and 
macromolecules. Spastin has been shown to interact with 
microtubules and to be involved in microtubule severing 
[19–28].

A role for Golgi abnormality in HSP pathophysiol-
ogy is suggested by SPG3A HSP due to SPG3A/atlastin 
mutation, and SPG17 due to SPG17/spartin mutation. 
Although the functions of these proteins are unknown, 
both atlastin and spartin have been shown to be local-
ized to Golgi [29,30].

Evidence that primary mitochondrial abnormality 
underlies at least some forms of HSP is indicated by 
the fact that two HSP genes encode integral mitochon-
drial proteins: chaperonin 60/heat shock protein 60, 
mutations in which cause autosomal dominant uncom-
plicated SPG13 HSP [31]; and paraplegin, mutations in 
which cause autosomal recessive SPG7 HSP [32–35]. 
Some SPG7 HSP subjects have morphologic and his-
tochemical abnormalities of mitochondria in skeletal 
muscle biopsy [36]. 

Axon degeneration in at least one form of HSP arises 
from glial abnormality rather than intrinsic neuron abnor-
mality. Proteolipid protein (PLP; mutations in which 
cause X-linked SPG2) is an intrinsic myelin protein. PLP 
gene mutations cause both Pelizaeus-Merzbacher disease 
[37], an X-linked infantile-onset dysmyelinating disor-
der; and a childhood onset slowly progressive spastic gait 
disorder (X-linked SPG2 HSP) [38–40].  

At least one form of HSP appears to reflect dis-
turbance in corticospinal tract development rather 
than being a progressive degenerative disorder. L1 cell 
adhesion molecule (L1CAM) is involved in neuronal 
migration and corticospinal tract development. L1CAM 
mutations cause a variety of X-linked neurologic disor-
ders including a complicated form of HSP (SPG1) and 
X-linked hydrocephalus [41]. 

Symptoms and Course of Uncomplicated HSP 
Gait disturbance is the hallmark feature of uncompli-
cated HSP. Symptom may begin at any age, from very 
early childhood through the eighth decade. When symp-
toms begin in very early childhood (before age 2 years) 
they may be essentially nonprogressive. The relatively 
nonprogressive spastic gait (toe walking) of early-onset 
HSP may closely resemble that of spastic diplegic cerebral 
palsy [42]. On the other hand, when symptoms begin 
after early childhood (after age 6 years), gait disturbance 
usually worsens insidiously over many years. Onset and 
progression of symptoms over weeks or months has not 
been reported for HSP and would suggest alternative or 
co-existing disorders. Many individuals report that lower 
extremity spasticity increases in cold weather, following 
exertion, and in the evening.  

Urinary urgency is a common symptom of HSP and 
occasionally is an early or presenting symptom. Cognitive 
impairment may be a feature of SPG11 HSP (the most com-
mon type of recessively inherited HSP) and several other 
forms of complicated HSP (Table 1). In addition, cognitive 
disturbance and late-onset dementia have been reported in 
some patients with SPG4 HSP, which is the most common 
form of dominantly inherited HSP [43–50]. The preva-
lence of cognitive impairment in this and other forms of 
otherwise uncomplicated HSP is not known. 

Neurologic Examination 
Neurologic examination of HSP subjects begins with gait 
analysis because gait disturbance is the primary symptom 
of HSP. Though spastic gait is observed in all subjects 
with HSP, the manner in which gait is abnormal is often 
variable between individuals [51]. HSP subjects generally 
exhibit reduced stride length due to difficulty lifting the 
legs and dorsiflexing the feet, variable degrees of anteri-
orly shifted foot strike (ranging from striking the floor 
with the mid-lateral plantar surface, the balls of the feet, 
or toe-walking), and a tendency to drag their toes (due 
to decreased hip flexion and foot dorsiflexion). Circum-
duction, “scissoring” (due to adductor muscle spasticity), 
hyperlordosis, and hyperextension at the knees may also 
be seen. The ability to walk on the heels is generally com-
promised. Careful analysis of each patient’s gait is useful 
to provide specific exercise recommendations and to 
determine which subjects would benefit most from spas-
ticity-reducing medication, and which subjects would 
benefit from ankle-foot orthotic devices.

Neurologic examination of individuals with uncom-
plicated HSP reveals lower extremity hyperreflexia, 
spasticity (particularly in the hamstrings, adductor, and 
gastrocnemius-soleus muscles), weakness (particularly in 
the hamstrings, iliopsoas, and tibialis anterior muscles), 
and extensor plantar responses (rarely, plantar responses 
remain flexor despite obvious lower extremity spasticity 
and pathologic hyperreflexia). Lower extremity involve-
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ment is typically symmetric (or nearly symmetric). Pes 
cavus (high arched feet) is common in HSP, although it 
may be absent in definitely affected subjects. 

Spasticity and weakness occur in variable proportions 
in HSP [13,52]. Whereas some patients have significant 
weakness, other patients have only marked spasticity 
with no demonstrable weakness. Assessing the relative 
contributions of weakness versus spasticity helps deter-
mine which patients’ gait would benefit from spasticity 
reducing medication. 

It is common for subjects with uncomplicated HSP to 
have mildly increased reflexes (grade 3+) in their upper 
extremities. Nonetheless, mild upper extremity hyperre-
flexia in uncomplicated HSP is not accompanied by upper 
extremity spasticity, weakness, slowness of movement, 
or reduced dexterity and produces no functional distur-
bance. Spastic paraplegia that becomes associated with 
slowly progressive, functionally limiting, upper extrem-
ity spasticity and weakness would suggest a diagnosis of 
primary lateral sclerosis (PLS) rather than uncomplicated 
hereditary spastic paraplegia.

Mildly decreased vibratory sensation in the toes is often 
observed in uncomplicated HSP. Proprioception and other 
sensory modalities are normal. Vibratory sensation impair-
ment, when present and not attributable to other causes 
(such as peripheral neuropathy or cervical spondylosis), is a 
helpful sign distinguishing HSP from early phases of amyo-
trophic lateral sclerosis (ALS) and PLS, neither of which 
involve dorsal column impairment [53]. Distal vibratory 
sense impairment in uncomplicated HSP is mild. Severe 
dorsal column disturbance is not typical of uncomplicated 
HSP and would suggest alternative diagnoses (such as Fried-
reich’s ataxia, subacute combined degeneration, and tertiary 
syphilis) or co-existing disorders.

Clinical Variability of HSP
Hereditary spastic paraplegia has significant clinical 
variability. As with any large group of genetically het-
erogeneous disorders, there may be significant clinical 
variation between different genetic types of HSP. Such 
clinical differences include age of symptom onset, 
course, degree of disability, and presence of other neu-
rologic deficits of systemic involvement. Although some 
forms of “uncomplicated” HSP (eg, uncomplicated SPG4, 
SPG8, and SPG6 HSP) are extremely similar and not reli-
ably distinguished by clinical parameters, various forms 
of complicated HSP are recognized by unique clinical 
syndromes. For example, autosomal recessive SPG20 
HSP and autosomal dominant SPG17 HSP have distal 
muscle wasting (conforming to Troyer [30,54] and Silver 
syndromes [55,56] respectively) that is not a feature of 
SPG3A, SPG4, SPG6, or SPG8 “uncmomplicted” HSP.  

The age at which HSP symptoms begin may vary signifi-
cantly between different genetic types of HSP. For example, 
gait disturbance in SPG10, SPG3A, and SPG12 HSP4 typi-

cally begins in childhood whereas symptom onset in SPG4, 
SPG13, SPG8, and SPG6 HSP is typically in late adolescence, 
or adulthood. Nonetheless, within a given type of HSP there 
is a wide range of ages at which symptoms begin. For exam-
ple, although SPG3A typically begins in early childhood, 
some SPG3A HSP patients have symptom onset in late 
childhood, adolescence, or adulthood [57–59]. Similarly, 
although the average age of symptom onset for SPG4 HSP 
is usually between age 20 and age 40 years [4], symptom 
onset has ranged from age 2 to 70 years [60]. 

The causes of clinical variation in a given type of HSP 
are usually not known. For SPG4 HSP, meta-analysis of 75 
families did not show a correlation between spastin muta-
tion class (missence, aberrant splicing, frameshift, premature 
truncation mutations) and age-of-symptom onset [61]. On 
the other hand, unique phenotypes may at times be associ-
ated with specific mutations. For example, although SPG4 
and SPG3A HSP are typically “uncomplicated,” ataxia is 
associated with SPG4/spastin mutation GLN490Stop7 and 
peripheral axonal neuropathy has been associated with 
SPG3A/atlastin mutation M408V [62]. 

In some HSP families, the age of symptom onset and 
severity are relatively uniform. This is most often seen with 
very early onset HSP. In other families, the range of age 
of symptom onset may vary by two decades or more. The 
cause of this variation is uncertain, although the effect of 
modifying genes is likely. One source of modifying genes 
is the HSP genes themselves. Recently, benign variations in 
the SPG4/spastin gene (L44 and Q45) were associated with 
markedly earlier symptom onset in subjects with pathogenic 
mutations in SPG4/spastin’s AAA domain [63].

 Disability due to HSP is age dependent and may be 
variable between different genetic types of HSP as well 
as within a given family [4]. For example, we have seen 
SPG3A and SPG6 HSP families in which several elderly 
subjects were only mildly affected whereas most subjects 
had moderate to marked disability.

Complicated forms of HSP are often variable within 
a given family. For example, although SPG9, SPG10, and 
SPG17 are characterized by spastic paraplegia associated 
with motor neuropathy or distal wasting, these “com-
plicating features” may not be present in each affected 
subject. In such families, therefore, affected subjects may 
have either complicated or uncomplicated HSP. 

Some HSP families exhibit progressively younger 
age of symptom onset in succeeding generations, a pat-
tern that is consistent with genetic anticipation [64]. It 
is notable that in such cases where the gene mutation is 
identified, it is due to a point mutation and not a tandem 
repeat expansion (which cause genetic anticipation in 
many other inherited neurologic disorders). 

HSP Diagnostic Criteria 
Hereditary spastic paraplegia is a clinical diagnosis for 
which laboratory confirmation is sometimes possible. 
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Diagnostic criteria for HSP are 1) the presence of HSP 
symptoms (spastic weakness affecting both legs approxi-
mately symmetrically, often accompanied by urinary 
urgency) that may be either essentially nonprogressive 
(when HSP begins in very early childhood) or insidiously 
progressive; 2) neurologic signs of bilateral (typically sym-
metric) lower extremity spasticity, hyperreflexia, extensor 
plantar responses (rarely flexor), often accompanied by 
mildly decreased vibration sensation in the toes; 3) family 
history of the same disorder; and 4) exclusion of other dis-
orders. In addition to these criteria, complicated forms of 
HSP are recognized by syndrome-specific signs (Table 1). 

The absence of family history does not exclude the 
diagnosis of HSP. Family history may be absent because of 
incomplete ascertainment, de novo mutation, late age of 
symptom onset (children are sometimes affected before 
a parent is affected), mild and nondisabling symptoms 
that are attributed to other etiologies, autosomal reces-
sive inheritance (carriers are typically asymptomatic), 
and X-linked inheritance. “Apparently sporadic spastic 
paraplegia” refers to subjects who have all signs and 
symptoms of HSP but who do not have apparent family 
history of the disorder. Mutations in HSP genes are iden-
tified in approximately 5% to 10% of such subjects. 

The diagnosis of HSP should be questioned, however, 
when the course is atypical (abrupt symptom onset, 
salutatory worsening, or marked symptom progression 
over several months), when neurologic involvement is 
unilateral or markedly asymmetric, when spasticity and 
weakness involve upper extremities (beyond asymptom-
atic upper extremity hyperreflexia) or bulbar muscles, or 
in the presence of spinal sensory level.

The presence of significant muscle atrophy and fas-
ciculations in a subject with lower extremity spasticity 
would suggest alternative disorders (such as ALS) rather 
than uncomplicated HSP. Significant muscle atrophy is 
not regarded as a typical feature of uncomplicated HSP. 
There are notable exceptions, however. SPG3A HSP, 
though usually “uncomplicated,” has been associated 
with distal wasting in some subjects with SPG3A/atlastin 
mutation M408V [62]. Late-onset, slowly progressive ALS 
has been reported in a subject with SPG4/spastin muta-
tion [8]. 

In contrast to “uncomplicated” HSP, it is now apparent 
that lower motor neuron involvement occurs in many forms 
of “complicated” HSP. Troyer syndrome (SPG20) and Silver 
syndrome (SPG17) are autosomal recessive and autosomal 
dominant forms, respectively, of HSP associated with distal 
muscle wasting [54,55]. In addition, peripheral motor axon 
degeneration and/or muscle wasting have been reported in 
SPG7, SPG10, SPG14, SPG15, and SPG26 HSP [10].  

Differential Diagnosis 
Careful exclusion of alternate and co-existing disorders is 
an important element in HSP diagnosis. The differential 

diagnosis includes disorders with significantly differ-
ent prognosis (eg, ALS and PLS) and conditions for 
which specific treatments are available (eg, vitamin 
B12 deficiency and dopa-responsive dystonia). 

 The differential diagnosis primarily includes 1) struc-
tural disorders of the brain and spinal cord (eg, tethered 
cord syndrome, spinal cord compression from degen-
erative spondylosis or neoplasm); 2) disturbance of CNS 
white matter (eg, vitamin B12 deficiency, multiple sclerosis, 
adrenomyeloneuropathy) [65,66]; 3) infectious diseases 
(tropical spastic paraplegia due to HTLV1 infection, which 
may be familial, and pachymeningitis due to tertiary 
syphilis); 4) other degenerative neurologic disorders (eg, 
Friedreich’s ataxia, which may have spasticity rather than 
arreflexia [67], Machado-Joseph disease, PLS [53], ALS, 
and spinal cord arteriovenous malformation); and 5) 
environmental toxins (such as lathyrism and organophos-
phate-induced delayed neuropathy). It is always important 
to consider the possibility of dopa-responsive dystonia 
[68], particularly when evaluating childhood-onset gait 
disturbance [69].

HSP gene analysis 
Gene analysis for HSP is increasingly available. For exam-
ple, analysis of SPG3A/atlastin [70], SPG4/spastin [71], 
and SPG6/NIPA1 [72] genes (available through Athena 
Diagnostics Laboratory, Boston, MA) will confirm the 
diagnosis of HSP in 60% of subjects for whom the disorder 
is dominantly inherited. PLP gene analysis (to diagnose 
SPG2 HSP) is performed at various centers, including the 
DuPont Nemours Clinic. When an HSP gene mutation is 
identified in an affected subject, this information can be 
applied to prenatal genetic testing [73,74]. 

Despite its utility, there are important limits to HSP 
gene testing. Presently, gene testing is commercially avail-
able for only a subset of HSP genes and only examines 
the coding sequences and intron-exon splice junctions 
of these genes. Sequence abnormalities in gene pro-
moter and other gene regulatory elements (implicated in 
approximately 10% of SPG4 HSP) are not assessed. There-
fore, although identification of an HSP gene mutation 
can confirm the clinical diagnosis of HSP, the absence 
of a detectable mutation among currently available HSP 
genes does not exclude the diagnosis.

There is increasing recognition of incomplete genetic 
penetrance (the existence of asymptomatic subjects who 
have pathogenic HSP gene mutations) in dominantly 
inherited HSP (the existence of asymptomatic subjects 
who have pathogenic HSP gene mutations) as well clini-
cal variability including late age of symptom onset and 
mild symptoms. Furthermore, there is usually no reliable 
association between specific mutations (eg, which spe-
cific SPG4/spastin gene mutation) and clinical features 
such as disease severity and age of symptom onset. There-
fore, although an asymptomatic subject shown to possess 
an HSP gene mutation previously identified in affected 
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family members would be considered at increased risk of 
developing HSP, it would not be possible to predict with 
certainty when symptoms would begin or the extent of 
disability. For these reasons, HSP gene testing is usually 
reserved for confirming the diagnosis in affected subjects 
and is generally not recommended for asymptomatic sub-
jects in HSP families. 

Laboratory, neuroimaging,  
and neurophysiologic studies 
The primary role of laboratory, neuroimaging, and neu-
rophysiologic studies is to exclude alternative disorders. 
In addition, neuroimaging and neurophysiologic studies 
are useful to assess the extent of neurologic involvement, 
and to classify more precisely the type of HSP. This infor-
mation is helpful when estimating the prognosis. Routine 
laboratory evaluations such as serum lactate, pyruvate, 
long chain fatty acids, and cerebrospinal fluid examina-
tion are normal in subjects with HSP.

Magnetic resonance imaging of the brain and spi-
nal cord are important to exclude alternative disorders 
including multiple sclerosis, leukodystrophies, and struc-
tural abnormalities affecting the brain or spinal cord. 
Conventional brain MRI is normal in uncomplicated HSP. 
Brain MRI in several forms of complicated HSP reveals 
syndrome-specific abnormalities such as thin corpus cal-
losum in SPG11 [75], cerebral or cerebellar abnormalities 
in SPG7, and hydrocephalus in SPG1. MRI of the spinal 
cord in uncomplicated HSP may be entirely normal or 
show atrophy, particularly involving the thoracic spinal 
cord [7,43,49,76].

 Electromyography (EMG) nerve conduction 
studies (NCS) are usually normal in uncomplicated HSP. 
Subclinical sensory neuropathy in otherwise uncom-
plicated HSP has been described [77,78]. In contrast to 
“uncomplicated” HSP, a number of forms of “compli-
cated” HSP (eg, SPG10, SPG14, SPG15, and SPG26 HSP) 
are associated with peripheral neuropathy and evidence 
of lower motor neuron involvement (Table 1).

Axon degeneration in uncomplicated HSP often 
involves dorsal column fibers in addition to corticospinal 
tracts. Not unexpectedly, somatosensory evoked potentials 
recorded from the lower extremities often show delayed 
conduction [79–83].  When present, this finding helps dis-
tinguish HSP subjects from those in which lower extremity 
spasticity is a phase of PLS or ALS (in which vibration sen-
sation and dorsal column function are normal) [53].

Corticospinal tract conduction velocity, measured 
by cortical evoked potentials, is often reduced in HSP. 
Whereas cortical evoked potentials recorded from the legs 
often show reduced conduction velocity and amplitude 
[84–87], those recorded from cervical spinal segments 
are typically normal or show only mildly reduced con-
duction velocity [86]. 

Muscle biopsy in some but not all subjects with SPG7 
HSP (due to mutations in the mitochondrial metallopro-

tease paraplegin) shows ragged red fibers and cytochrome 
oxidase C negative fibers [36]. Mitochondrial abnormality 
is not a general feature of all types of HSP. Muscle biopsies 
and analysis of oxidative phosphorylation enzymes have 
been normal in autosomal dominant “uncomplicated” 
SPG3A, SPG4, SPG6, and SPG8 HSP. 

Treatment
Treatment for HSP is presently limited to symptomatic 
reduction of muscle spasticity (through muscle stretching 
exercises and medications such as lioresal (oral or intra-
thecal), dantrolene, or tizanidine [88–90]; reduction 
in urinary urgency (through medications such as oxy-
butyinin); and strength and gait improvement through 
physical therapy. Individuals with HSP consistently 
report the benefits of stretching for 10 minutes twice a 
day and daily physical exercise designed to improve lower 
extremity strength and general cardiovascular condition-
ing. Ankle-foot orthotic devices are often useful to reduce 
toe dragging in HSP subjects.

Prognosis
Subjects who experience HSP symptom onset in the 
first several years of life often show very little worsen-
ing through the first two decades. Thereafter, gait may 
worsen slowly, owing in part to advancing spasticity and 
general muscular deconditioning. When HSP symptoms 
begin after early childhood they typically worsen slowly 
over many years. Recognition of the often significant 
variation in severity within and between HSP families 
requires caution when estimating the degree of even-
tual disability. We and others have evaluated families in 
which some members had progressively disabling spastic 
paraparesis and others had mild, nondisabling spastic 
gait. Often, the ability to provide prognosis is limited 
by the analysis of small families in which the potential 
range of severity and age of symptom onset may not be 
appreciated. It must be recognized that subjects may have 
lower extremity hyper-reflexia for many years before gait 
becomes impaired. In addition, prognosis must consider 
the benefit of physical therapy and spasticity-reducing 
medication. In general, affected subjects from families 
with well-documented “uncomplicated” HSP are not 
considered at risk for developing a “complicated” HSP 
phenotype. Diagnosing “uncomplicated” HSP carries 
with it the prognosis that upper extremity strength and 
dexterity, speech, and swallowing will remain normal, 
and that life span will not be reduced. 

Genetic Counseling
Genetic counseling in HSP is improved for many indi-
viduals by the availability of HSP gene analysis. If the 
disorder is one for which an HSP gene mutation is identi-
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fied (presently limited to SPG3A, SPG4, SPG6, and SPG2 
HSP), this information can be applied to prenatal diag-
nosis and genetic counseling. As discussed previously, 
identifying an HSP gene mutation indicates the increased 
risk of developing HSP but does not indicate the age at 
which symptoms will begin or disease severity. 

Genetic counseling in HSP must consider the mode 
of inheritance (X-linked, dominant, recessive), the 
frequency of spontaneous mutations for dominantly 
inherited HSP, the degree of genetic penetrance, and the 
extent of clinical variability. As many as 12% of individu-
als with apparently sporadic spastic paraplegia have been 
shown to have a mutation for dominantly inherited HSP 
[28,91–93].

Genetic penetrance in “uncomplicated” HSP is age-depen-
dent, high (70%–85% for SPG4 HSP [94]), but sometimes 
incomplete. Incomplete penetrance has been reported for 
SPG4 [95], SPG8 [96], and SPG3A HSP [97–102].

Genetic counseling must also consider that genetic 
anticipation has been observed in some (a minority) 
SPG464and SPG3A HSP families. Genetic anticipation 
carries with it the possibility that affected individuals 
in succeeding generations may be more severely affected 
and develop symptoms at an earlier age. In addition, it is 
possible that children may be affected before their par-
ents. Diagnosing SPG3A HSP in a child, for example, may 
imply that one of the parents possesses the SPG3A/HSP 
gene and is thus at risk of developing HSP. 

Conclusions 
The hereditary spastic paraplegias are genetically and 
clinically heterogeneous disorders whose primary feature 
is lower extremity spastic weakness. More than 30 differ-
ent genetic types of HSP have been identified. Whereas 
“complicated” forms of HSP may be recognized by specific 
clinical features, many forms of “uncomplicated” HSP 
are very similar and may not be reliably distinguished 
by clinical parameters alone. The neuropathology of 
“uncomplicated” HSP involves axonal degeneration 
involving the ends of the longest motor (corticospinal 
tract) and sensory (dorsal column fibers) in the spinal 
cord. Recent identification of 11 HSP genes suggests 
that different primary biochemical abnormalities may 
be responsible for this distal axonopathy in different 
genetic types of HSP. These include cytoskeletal and axo-
nal transport abnormalities, mitochondrial disturbance, 
altered Golgi function, primary myelin disturbance, and 
corticospinal tract developmental abnormality. 

Diagnosing “uncomplicated” HSP carries with it the 
prediction that although lower extremity spasticity may 
progress and become disabling, upper extremity strength 
and dexterity, speech, and swallowing will remain nor-
mal and that life expectancy will not be reduced. 

Gene testing is available for SPG2 (X-linked), SPG3A, 
SPG4, and SPG6 HSP (autosomal dominant) and can 

confirm the diagnosis in SPG2 X-linked HSP and in 
approximately 60% of dominantly inherited HSP. Genetic 
test results can be applied to prenatal diagnosis. Advances 
in HSP gene testing notwithstanding, HSP is a diagnosis 
of exclusion for most subjects. The differential diagnosis 
includes treatable disorders as well as those whose progno-
sis is quite different than HSP. Presently, treatment for HSP 
is symptomatic and includes physical therapy and the use 
medications to reduce spasticity and urinary urgency.
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