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Abstract
Purpose of Review  To provide an overview and highlight recent updates in the field of paraneoplastic neurologic disorders.
Recent Findings  The prevalence of paraneoplastic neurologic disorders is greater than previously reported and the incidence 
has been rising over time, due to improved recognition in the era of antibody biomarkers. Updated diagnostic criteria that are 
broadly inclusive and also contain diagnostic risk for clinical presentations (high and intermediate) and diagnostic antibodies 
(high, intermediate, and low) have replaced the original 2004 criteria. Antibody biomarkers continue to be characterized 
(e.g., KLHL-11 associated with seminoma in men with brainstem encephalitis). Some paraneoplastic antibodies also provide 
insight into likely immunotherapy response and prognosis. The rise of immune checkpoint inhibitors as cancer therapeutics 
has been associated with newly observed immune-mediated adverse effects including paraneoplastic neurological disorders. 
The therapeutic approach to paraneoplastic neurologic disorders is centered around cancer care and trials of immune therapy.
Summary  The field of paraneoplastic neurologic disorders continues to be advanced by the identification of novel antibody 
biomarkers which have diagnostic utility, and give insight into likely treatment responses and outcomes.

Keywords  Paraneoplastic neurologic syndromes · Autoimmune neurology · Diagnostic criteria · Immune checkpoint 
inhibitors

Introduction

Paraneoplastic neurologic disorders are heterogeneous auto-
immune diseases occurring in the context of a non-nervous 
system cancer (solid organ or hematologic). They can arise 
as the clinical presentation for a previously undiagnosed 
cancer (e.g., a woman who presents with ataxia in whom 
ovarian adenocarcinoma is subsequently detected). Paraneo-
plastic neurological disorders can also arise during treatment 
for a recently diagnosed cancer, or can be the clinical pres-
entation alerting the treating providers to a cancer relapse. 
These disorders can target any part of the neuraxis, rostro-
caudally, from cerebral cortex to neuromuscular junction, 
though certain classical syndromes, now known as “high 

risk phenotypes,” have the highest risk for accompanying 
cancer (Table 1) [1••].

The diagnosis of a paraneoplastic neurologic disorder is 
usually supported by the detection of one or more neural 
antigen-directed IgG autoantibodies. These biomarkers serve 
to alert the clinician to the probability of malignancy as well 
as anatomical site and histologic type. While all these are 
biomarkers of various autoimmune neurological disease, 
the significance of each for a paraneoplastic diagnosis var-
ies (Table 2 and Table 3). Some well-established biomark-
ers, such as antineuronal nuclear antibody type 1 (ANNA-1 
[anti-Hu]) which has a > 70% positive predictive value for 
small cell (lung usually) carcinoma (SCLC) or other neu-
roendocrine lineage carcinomas, are considered high-risk 
[2]. More recently described biomarkers are considered 
either intermediate risk (with 30–70% risk for cancer, such 
as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
[AMPA]-receptor [R] antibody) or low risk (with 30% can-
cer risk, such as glial fibrillary acidic protein [GFAP]-IgG) 
[3, 4•]. Although novel antibody discoveries have increased 
diagnostic sensitivity, antibody negativity excludes neither a 
paraneoplastic cause nor cancer diagnosis [5••]. Antigenic 
target type (intracellular versus cell surface) may also be 
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informative for predicting treatment response and progno-
sis [6, 7]. Herein, we provide an update on paraneoplastic 
neurological disorders focusing on presenting phenotypes, 
antibody diagnostics, clinical assessment, and management.

Epidemiology

Since early post-mortem studies first postulated a link 
between limbic encephalitis and carcinoma, appreciation of 
the prevalence of paraneoplastic neurologic disorders has 
grown [8]. Initially thought to affect only 0.01% of patients 
with cancer, it has been demonstrated more recently that par-
aneoplastic disorders occur in 1 in 300 patients with cancer 
[5••, 9]. Overall, they are most commonly associated with 
lung, breast, and ovarian carcinomas but specific syndromes 
carry their own particular cancer associations [5••]. SCLC, 
with its inherent diverse neural antigen repertoire, carries the 
greatest risk for paraneoplastic neurologic disorders, occur-
ring in approximately 10% of patients [10]. The prevalence 
of paraneoplastic neurologic disorders is 5.4 per 100,000 in 
the USA but increases to 11 per 100,000 for those > 60 years 
[11•]. The incidence rate across recent epidemiologic stud-
ies ranges from 0.4 to 1 per 100,000 person years [5••, 11•, 
12]. Furthermore, the incidence of paraneoplastic neurologic 
disorders has increased over time, a trend consistent across 
multiple epidemiological studies [5••, 11•, 12].

In Northeastern Italy, the incidence of paraneoplastic 
neurologic disorders has almost doubled from 2009–2011 

(0.62/100,000 person years) to 2015–2017 (1.22/100,000 per-
son years) [5••]. A similar phenomenon was noted in Olmsted 
county Minnesota with incidence doubling from 1987–2002 
(0.4/100,000 person years) to 2003–2018 (0.8/100,000 person 
years) [11•]. A similar trend was observed for autoimmune 
encephalitis which has trebled in incidence over 20 years, and 
is now more prevalent than infectious encephalitis [13].

These observations may be attributable to improved 
awareness among clinicians, increased detection through 
paraneoplastic autoantibody tests and profiles, and the 
advent of autoimmune complications of checkpoint inhibi-
tor therapies for cancer [14, 15].

Pathophysiology

Paraneoplastic neurologic disorders arise in the context of 
an immune response generated against antigens expressed 
on tumor cells which are also expressed natively in the host 
nervous system [16]. Antigens released following tumor cell 
apoptosis are presented by antigen-presenting cells to helper 
T cells in peripheral lymph nodes. CD4 + helper T cells sub-
sequently activate antigen-specific B cells into to antibody-
producing plasma cells. Disease mechanisms differ between 
disorders associated with antibodies to cell-surface antigens 
and those associated with antibodies directed against intra-
cellular antigens. Antibodies against intracellular antigens 
and are not directly pathogenic but instead represent bio-
markers of cytotoxic T cell–mediated cellular injury. This is 
supported by neuropathological studies which have revealed 
CD8 + T cell infiltration of neural tissues of patients with 
antibodies to intracellular antigens [7]. In contrast, antibod-
ies directed against cell-surface antigens bind in vivo and in 
many instances pathogenic mechanisms have been charac-
terized. For example, antibodies against n-methyl-d-aspar-
tate (NMDA)-R, AMPA-R, and gamma amino butyric acid 
(GABA)A-Rs lead to neuronal dysfunction through a pro-
cess of receptor cross-linking and internalization leading to 
reduced cell-surface receptor density [17]. GABAB-R anti-
bodies, on the other hand, impair receptor function directly 
without causing receptor internalization [18]. LGI1 antibod-
ies affect the protein–protein interaction with its receptor 
ADAM22, whereas aquaporin 4 antibodies mediate antigen 
internalization and complement-induced cytotoxicity [19–21].

Clinical Presentations

General Principles and Criteria

Neurological disorders are subacute in onset (over 
6–12 weeks), and rapidly progressive. As per the updated 
diagnostic criteria, these disorders can be high-risk pheno-
types (previously known as classic), and intermediate-risk 

Table 1   Paraneoplastic phenotypes: high risk, intermediate risk, other

High-risk phenotypes
Limbic encephalitis
Encephalomyelitis
Rapidly progressive cerebellar syndrome
Subacute sensory neuronopathy
Gastro-intestinal pseudo-obstruction
Lambert Eaton myasthenic syndrome
Opsoclonus myoclonus
Dermatomyositis
Intermediate-risk phenotypes
Encephalitis (extra-limbic)
Brainstem encephalitis
Morvan syndrome
Isolated myelopathy
Stiff person syndrome
Polyradiculopathy
Other
Acquired neuromyotonia (Isaac’s Syndrome)
Autoimmune autonomic neuropathy
Myasthenia gravis
Necrotizing autoimmune myopathy
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phenotypes (Table 1). High-risk phenotypic presentations 
include encephalomyelitis, limbic encephalitis, rapidly 
progressive cerebellar syndrome, opsoclonus-myoclonus 
syndrome, sensory neuronopathy, enteric neuropathy, and 
Lambert-Eaton myasthenic syndrome. Intermediate-risk 
phenotypes include non-limbic encephalitides (such as 

anti-NMDA-receptor encephalitis), brainstem encephali-
tis, Morvan syndrome, isolated myelopathy, stiff-person 
spectrum disorders, and paraneoplastic polyradiculoneu-
ropathies [1••]. Other neurological disorders (e.g., para-
neoplastic chorea, isolated myoclonus) or multifocal disor-
ders (e.g., chorea with polyradiculoneuropathy) may occur 

Table 2   Paraneoplastic antibodies (high or intermediate risk and common): neurological and oncological accompaniments

ANNA antineuronal nuclear antibody, Ataxia cerebellar ataxia or paraneoplastic cerebellar degeneration, SCLC small cell lung cancer, Adeno 
adenocarcinoma, PCA Purkinje cell antibody, MAP1B microtubule-associated protein 1B, NSCLC non-small cell lung cancer, DACH1 Dachs-
hund-homolog 1, GI gastrointestinal, NHL non-Hodgkin lymphoma, AGNA anti-glial nuclear antibody, SOX1 SRY-box transcription factor 1, 
CRMP collapsin-responsive mediator protein, LEMS Lambert-Eaton myasthenic syndrome, mGluR metabotropic glutamate receptor, AMPAR 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, GABAA gamma-aminobutyric acid-A receptor, GABABR gamma-aminobutyric 
acid-B receptor, NMDAR N-methyl-d-aspartate receptor, CASPR2 contactin-associated protein-like 2

Antibody (alternative name) Anitgen location Risk Clinical Manifestations Associated neoplasm type

ANNA-1 (Hu) [2] Intracellular High Sensory neuronopathy, ataxia, 
limbic encephalitis, opsoclonus 
myoclonus, autonomic neuropa-
thy, gastrointestinal pseudoob-
struction

SCLC, thymoma, neuroendocrine, 
neuroblastoma

ANNA-2 (Ri) [28, 118] Intracellular High Ataxia, opsoclonus myoclonus, 
dystonia, and parkinsonism

Breast adeno, SCLC

PCA-1 (Yo) [25] Intracellular High Ataxia, occasionally myelopathy, 
or peripheral neuropathy

Ovary, breast adeno

MAP1B (PCA-2) [69•] Intracellular High Ataxia, encephalomyelitis, senso-
rimotor neuropathy

Lung (SCLC and NCSLC), breast 
adeno

ANNA 3 (DACH1) [119] Intracellular High Ataxia, sensorimotor neuropathy, 
cognitive disorders, dysauto-
nomia

SCLC

Ma2 (with or without Ma1) [120] Intracellular High Limbic encephalitis, brainstem 
encephalitis, narcolepsy/cata-
plexy

Testicular germinoma in men; 
Lung, testicular, GI, breast 
adenos, or NHL in either sex

Amphiphysin [42, 68] Intracellular High Stiff person syndrome, encepha-
litis, myelopathy, cerebellar 
syndrome

SCLC, breast adeno

AGNA (SOX1) [121] Intracellular High Ataxia, encephalitis, LEMS SCLC
Kelch-like Protein 11[26, 27•] Intracellular High Ataxia, brainstem encephalitis, 

diplopia, hearing loss, and 
vertigo

Testicular (seminoma), teratoma

CRMP5 (CV2) [67, 122] Intracellular High Encephalomyelitis, sensory 
neuronopathy, ataxia, LEMS, 
uveal/retinal involvement,

SCLC, thymoma

mGluR1 [50] Cell surface Low Ataxia Hodgkin lymphoma, cutaneous T 
cell lymphoma

PCA-Tr (DNER) [49] Cell surface High Ataxia Hodgkin lymphoma
AMPAR [3] Cell surface Intermediate Limbic encephalitis SCLC, malignant thymoma, breast, 

ovarian adenos
GABAA [35] Cell surface Intermediate Multifocal encephalitis with non-

enhancing white matter MRI 
lesions

Thymoma

GABAB [18] Cell surface Intermediate Limbic encephalitis SCLC
NMDAR [123] Cell surface Intermediate Psychiatric prodrome, encephali-

tis, seizures, hyperkinetic move-
ments, dysautonomia, coma

Teratoma (ovarian or extra-ovarian)

CASPR2 [79–81] Cell surface Low-intermediate Limbic encephalitis, neuromyoto-
nia, Morvan syndrome (cancer 
risk 50%)

Malignant thymoma
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in a paraneoplastic context [22, 23]. Thus, it is advisable 
to have some index of suspicion for a paraneoplastic dis-
order in patients presenting with a subacute neurologi-
cal illness where an alternative cause is not immediately 
obvious.

In cases where an antibody is detected, it is possible 
to stratify the likelihood of cancer according to the spe-
cific antibody. Antibodies are termed “high risk” when the 
likelihood of cancer is > 70%, “intermediate risk” when 
there is a 30–70% association with cancer, and “low risk” 

when the probability of cancer is < 30%, Tables 2 and 3 
[1••]. The PNS-Care score allows possible, probable, and 
definite levels of paraneoplastic diagnostic certainty, based 
on the level of risk from the neurological phenotype, anti-
body detected, and cancer found [1••]. For example, a 
woman with cerebellar ataxia (high risk syndrome, = 3), 
PCA-1 (high risk antibody, = 3), and ovarian adenocarci-
noma (cancer consistent with phenotype and antibody, = 4) 
would have a score of 10, and thus fulfill definite criteria 
(score ≥ 8 required).

Table 3   Paraneoplastic antibodies: novel, less common and lower risk

mGluR metabotropic glutamate receptor, Ataxia cerebellar ataxia or paraneoplastic cerebellar degeneration, SCLC small cell lung cancer, NF-L 
neuronal intermediate filament, PDE10A phosphodiesterase 10A, NSCLC non-small cell lung cancer, Adeno adenocarcinoma, TRIM tripartite 
motif-containing protein, CARP VIII carbonic anhydrase-related protein VIII, BRSK2 BR serine/threonine kinase 2, P/Q VGCC​ P/Q type volt-
age-gated calcium channel, LEMS Lambert Eaton myasthenic syndrome, ARHGAP26 Rho GTPase-activating protein, GRAF1 GTPase regulator 
associated with focal adhesion kinase 1, ITPR1 inositol 1,4,5-triphosphate receptor 1, LGI1 leucine-rich glioma inactivated protein 1, DPPX 
dipeptidyl-peptidase-like protein, CNS central nervous system, PERM progressive encephalomyelitis with rigidity and myoclonus, GlyR glycine 
receptor, CIDP chronic inflammatory demyelinating polyneuropathy, MOG myelin oligodendrocyte glycoprotein, MOGAD myelin oligodendro-
cyte glycoprotein antibody disease, NMOSD neuromyelitis optic spectrum disorder, α3-AChR ganglionic nicotinic acetylcholine receptor, GFAP 
glial fibrillary acidic protein, GAD glutamic acid decarboxylase

Antibody (alternative name) Risk Antigen location Clinical manifestations Associated neoplasm type

mGluR2 [124] High* Cell surface Ataxia SCLC, rhabdomyosarcoma
Zic 4 [125, 126] High* Intracellular Ataxia SCLC
NF-L [57•] High* Intracellular Ataxia, encephalopathy, myelopathy Neuroendocrine
PDE10A [127] High* Intracellular Encephalopathy, chorea Lung, renal, pancreatic
Protein kinase C [128] High* Intracellular Ataxia NSCLC, hepatobiliary adeno
TRIM 46 [129, 130] High* Intracellular Encephalomyelitis, ataxia SCLC
TRIM 9/67 [131] High* Intracellular Ataxia NSCLC (adeno)
CARP VIII [132, 133] High* Intracellular Ataxia Melanoma, ovarian, breast adenos
BRSK2 [134] High* Intracellular Limbic encephalitis SCLC
mGluR5 [135] Intermediate Cell surface Encephalitis, Ophelia syndrome Hodgkin lymphoma, SCLC
P/Q VGCC [76] Intermediate Cell surface LEMS, ataxia SCLC
ARHGAP26 (GRAF1) [136] Intermediate Intracellular Brainstem encephalitis, ataxia Ovarian adenos
ITPR1 [48] Intermediate Intracellular Brainstem encephalitis, ataxia, periph-

eral neuropathy
Breast, lung, haematologic

LGI1 [79, 81] Low Cell surface Limbic encephalitis Malignant thymoma, neuroendocrine
DPPX [37] Low Cell surface Encephalitis, CNS hyperexcitability, 

chronic diarrhea/weight loss; PERM
B cell neoplasms

GlyR [63, 64] Low Cell surface Limbic encephalitis, PERM Hodgkin lymphoma, malignant thy-
moma

Contactin-1 [137, 138] Low Cell surface CIDP (sensory-predominant) Thymoma, breast adeno, plasmacytoma
Neurochondrin [139] Low Cell surface Ataxia Uterine adeno
MOG [43] Low Cell surface MOGAD Ovarian teratoma
Aquaporin 4 [60] Low Cell surface NMOSD Adenos
α3-AChR [73] Low Cell surface Autonomic neuropathy, gastrointesti-

nal pseudo-obstruction
Adenos

GFAP [4•, 38] Low Intracellular Meningoencephalitis, optic disc 
oedema

Ovarian teratoma, various adenos

GAD65 [62] Low Intracellular Limbic encephalitis, stiff-person 
syndrome, ataxia

SCLC, other neuroendocrine, malignant 
thymoma

Adaptor protein 3B2 [140] Low Intracellular Ataxia, sensory ataxia Renal carcinoma, B cell lymphoma
Septin 7 [51] Low Cell surface Encephalopathy, myelopathy, psychi-

atric symptoms
Breast adenos, NHL
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Although paraneoplastic neurologic disorders often pre-
cede cancer detection, most cases occur in the context of 
an existing cancer diagnosis [5••]. The timing of cancer 
presentation may vary, depending on the antibody specific-
ity. For example, most Purkinje cytoplasmic antibody type 
1 (PCA-1, anti-Yo) paraneoplastic cerebellar degeneration 
cases manifest subsequent to cancer diagnosis, whereas the 
reverse is true in Kelch-like protein (KLHL)-11 autoimmun-
ity [24–26, 27•]. When the neurological disorder is encoun-
tered first, 92% of cancers are detected within 5 years of 
symptom onset [5••]. However, recent consensus guidelines 
note that in a majority of cases, cancer is identified within 
2 years of the onset of symptoms [1••]. For example, the 
mean interval to cancer diagnosis is 6 months in KLHL-11 
rhombencephalitis, 6.5 months in ANNA-1 encephalomyeli-
tis, and 9 months in ANNA-2-(anti-Ri)-associated disorders 
[2, 27•, 28]. A list of intracellular and cell-surface antibodies 
along with their clinical and tumor associations are provided 
in Tables 2 and 3. Paraneoplastic neurologic disorder pheno-
types are considered in rostrocaudal order below.

Central Nervous System

Limbic Encephalitis

Limbic encephalitis is considered a high-risk paraneoplastic 
phenotype. Patients with limbic encephalitis present with 
subacute onset and rapid progression over approximately 
3 months with working memory deficits, seizures, or psy-
chiatric symptoms. Those with typical limbic encephalitis 
have bilateral T2 signal abnormalities of limbic structures on 
MRI, and at least one of CSF pleocytosis or EEG with tem-
poral lobe findings (slow waves, seizures, or both). Patients 
with a paraneoplastic antibody could meet diagnostic crite-
ria without fulfilling all of those criteria (EEG, CSF white 
cell count, and MRI findings) [29]. Paraneoplastic limbic 
encephalitis occurs most commonly in association with 
ANNA-1 and CRMP-5-IgG. SCLC is the most frequent neo-
plasm [30]. In the experience of the authors, forme frustes 
of limbic encephalitis can also occur, mostly isolated lim-
bic seizures without cognitive impairment, though usually 
this occurs in a non-paraneoplastic context such as LGI1 or 
GAD65 autoimmunity.[31].

Encephalitis (Extra‑limbic)

Extra-limbic encephalitis is considered intermediate risk for a 
paraneoplastic cause. The term “extra-limbic” refers to clini-
cal, radiological, or EEG findings indicative of neocortical 
temporal or extra-temporal localization, including multifocal 
disorders. Examples include anti-NMDA-receptor encephali-
tis, gamma-aminobutyric acid-A receptor (GABAA-R) enceph-
alitis, dipeptidyl-peptidase-like protein (DPPX) encephalitis, 

and autoimmune GFAP astrocytopathy. Clinical and radio-
logical presentations are diverse (Table 2). Anti-NMDA-R 
encephalitis classically manifests with a psychiatric prodrome 
followed by seizures, movement disorders, autonomic instabil-
ity, and coma. Normal MRI and CSF pleocytosis are typical 
and neoplasm (usually ovarian teratoma) occurs in 38% [32, 
33]. GABAA-R encephalitis usually presents with a multifo-
cal extra-limbic syndrome with seizures, with multifocal non-
enhancing deep or subcortical white matter lesions sometimes 
in association with thymoma [34, 35]. DPPX encephalitis clas-
sically presents with a triad of gastrointestinal disturbance, 
CNS hyperexcitability (spasms, myoclonus), and encepha-
lopathy, with normal MRI imaging, in association, rarely, with 
B cell neoplasia [36, 37]. Autoimmune GFAP astrocytopathy 
presents with various neuropsychiatric symptoms, meningeal 
symptoms (blurred vision, headache) and sometimes tremor, or 
myelopathic sensory and autonomic findings, accompanied by 
CSF pleocytosis. MRI imaging typically includes diverse pat-
terns of post-gadolinium enhancement (classically following 
the path of deep white matter glial cells running perpendicular 
to the corpus callosum). Approximately one-third have accom-
panying neoplasms of diverse histologies [38, 39].

Encephalomyelitis

Patients with encephalomyelitis have a multifocal neurological 
disorder with symptoms referable to both spinal cord and cere-
bral cortex, but which may also include symptoms localizing to 
peripheral nerve, nerve root, or dorsal root ganglia [40]. Terms 
such as encephalomyeloneuritis or encephalomyeloradiculitis 
are also employed to more precisely define the clinical pheno-
type. Paraneoplastic encephalomyelitis is considered a high-risk 
phenotype and typically has an association with SCLC and one 
or more of ANNA-1, CRMP-5, and amphiphysin antibodies [2, 
41, 42]. Among more recently described syndromes, autoim-
mune GFAP astrocytopathy (a low risk antibody) may present 
with encephalomyelitis, though usually with distinctive CSF 
pleocytosis and inflammatory-appearing T2- or T1-post gado-
linium findings within cerebral white matter and central spinal 
cord. Associated cancers include adenocarcinomas or ovarian 
teratoma [38]. In myelin oligodendrocyte glycoprotein antibody 
disease, a report of encephalomyelitis in the context of a MOG 
protein-expressing teratoma suggests the potential to rarely 
occur as a paraneoplastic phenomenon [43].

Brainstem Syndromes

Paraneoplastic rhombencephalitis presents with symp-
toms localizing to the brainstem and cerebellar connec-
tions including gait disturbance, postural instability, 
oscillopsia, vertigo, diplopia, dysarthria, dysphagia, sleep 
disorders (such as sleep disordered breathing, stridor, 
dream enactment behavior), and cranial neuropathies [44]. 
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Supranuclear gaze palsies can resemble those of progres-
sive supranuclear palsy [45]. Specific signs suggestive 
of certain antibody specificities include jaw dystonia and 
ANNA-2 (in the setting of breast adenocarcinoma) and 
vestibulocochlear symptoms (vertigo, tinnitus and hearing 
loss) in men with KLH-11 antibody (seminoma in 70%) 
[26, 27•, 28]. Listeria rhombencephalitis is an important 
subacute-onset differential diagnostic consideration [46].

Rapidly Progressive Cerebellar Ataxia

This high-risk phenotype presents with gait, speech, and 
dysmetric limb findings (a pancerebellar disorder) with sig-
nificant disability accruing over 12 weeks. More rapid and 
slowly progressive forms have also been described [47]. For 
this phenotype, a diverse range of antibodies (paraneoplastic 
and non-paraneoplastic) could be considered, starting with 
those more common with higher cancer risk (such as PCA-1 
[ovarian and breast adenocarcinoma associated], PCA-Tr 
and metabotropic glutamate receptor [mGluR]-1, which are 
both lymphoma associated), while research-based testing 
could be considered for the less common and infrequently 
cancer-associated analytes (such as inositol triphosphate 
receptor [ITPR]-1 and septin-7 antibodies) [25, 48–51]. 
Distinct clinical features may aid in the diagnosis of certain 
ataxias such as loss of taste sensation in mGluR1 ataxia and 
episodic ataxia which can arise in the context of contactin-
associated protein-like 2 (CASPR2) autoimmunity (some-
times accompanying thymoma) [52, 53].

Opsoclonus‑Myoclonus Syndrome

Opsoclonus-myoclonus syndrome (OMS) is subjectively char-
acterized by generalized tremulousness and oscillopsia, and 
objectively by arrhythmic, multidirectional conjugate saccadic 
eye movements (opsoclonus) accompanied by limb and trunk 
myoclonus. Other clinical features may include ataxia, encepha-
lopathy, and sleep disturbance [54]. In children, opsoclonus-
myoclonus is strongly associated with neuroblastoma [55]. 
Among adults, OMS mostly arises as an idiopathic autoimmune 
phenomenon. Paraneoplastic antibodies encountered include 
ANNA-2 antibodies (less commonly ANNA-1). Breast adeno-
carcinoma and SCLC are the more frequently reported oncolog-
ical accompaniments [54, 56]. OMS accompanying encepha-
lopathy sometimes occurs in anti-NMDA-R encephalitis.

Myelopathy

Isolated paraneoplastic myelopathy manifests with suba-
cute or insidiously progressive spinal cord signs such as 
motor weakness, bowel, or bladder disturbance. It can 

also present with tract-specific signs such as a dorsal col-
umn syndrome. Associated antibody specificities include 
CRMP-5, amphiphysin, ANNA-1, and neuronal intermedi-
ate filaments (particularly neurofilament light chain) [57•, 
58]. Small cell carcinoma and breast adenocarcinoma are 
the typical neoplastic associations [58]. Although more 
commonly an idiopathic autoimmune phenomenon, a 
paraneoplastic myelitis can occur in the setting of neu-
romyelitis optica spectrum disorder (NMOSD) mediated 
by aquaporin-4 (AQP4) antibodies. Neoplastic accompani-
ments include thymoma, and breast and lung carcinomas 
[59]. Older age of onset, especially in men, is a risk factor 
for paraneoplastic NMOSD [60].

Stiff Person Syndrome

Paraneoplastic stiff person syndrome (SPS) accounts for 
just 1–2% of all SPS cases [61]. Stiff person syndrome 
arises usually as an idiopathic autoimmune phenomenon 
associated with glutamic acid decarboxylase (GAD65) or 
glycine receptor antibodies [61]. The classical SPS clin-
ical presentation includes muscle rigidity and spasms, 
symmetrically involving the trunk and proximal lower 
limbs. Symptoms are exacerbated by emotional distress 
or startle. Partial forms affecting one limb or the trunk in 
isolation have also been described. In rare cases of SPS, 
usually among older male patients, GAD65 antibodies 
may occur in association with lung, breast, or thymic 
neoplasms [62]. In the setting of glycine receptor autoim-
munity, the progressive encephalomyelitis with rigidity 
and myoclonus (PERM) phenotype is most common [63]. 
This represents SPS findings in the context of a wide-
spread encephalomyelitis. Though usually idiopathic in 
etiology, lymphoma and thymoma are among reported 
neoplastic accompaniments [64].

Peripheral Nervous System, Neuromuscular 
Junction, and Muscle

Polyradiculopathy

Paraneoplastic polyradiculopathy or polyradiculoneuropathy 
occurs in isolation or as part of a multifocal encephalomy-
eloneuropathic disorder. CRMP-5 polyradiculoneuropathy 
usually presents with a painful, asymmetric axonal neuropa-
thy. Amphiphysin autoimmunity is associated with a sym-
metric axonal neuropathy [66–68]. Microtubule-associated 
protein 1B (MAP1B) autoimmunity more commonly pre-
sents with a painless polyradiculoneuropathy [69•]. The 
most common oncological association for MAP1B and 
CRMP-5 IgGs is small cell carcinoma. Adenocarcinoma of 
breast or SCLC are the usual oncologic accompaniments of 
amphiphysin-IgG [67, 68, 69•].
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Subacute Sensory Neuronopathy

Subacute sensory neuronopathy is a high-risk paraneoplas-
tic phenotype in which the disorder localizes to the dor-
sal root ganglion. Patients develop sensory loss subacutely 
over weeks or months, initially affecting vibration and pro-
prioception, followed by involvement of the other sensory 
modalities. The clinical picture is one of profound sensory 
ataxia often with accompanying pseudoathethosis on clinical 
examination [70]. The presence of ANNA-1 and accompa-
nying SCLC is prototypic, but subacute sensory neuronopa-
thy can also arise in the setting of CRMP-5, amphiphysin, 
and MAP1B antibodies [67, 68, 69•, 71].

Autonomic Neuropathy

Chronic gastric pseudo-obstruction represents a focal form 
of autoimmune autonomic neuropathy. This disorder pre-
sents with abdominal distension, cramping, nausea, vomit-
ing, and weight loss not explained by mechanical obstruc-
tion. Other or additional gastroenterologic localizations may 
be encountered, namely small-bowel pseudo-obstruction or 
large-bowel obstipation. One or more other features of dysau-
tonomia may accompany the gastroenterologic complaints 
(orthostatic hypotension, mydriasis, heat intolerance due to 
anhidrosis, erectile dysfunction, and urinary retention) [72, 
73]. Serological findings include ANNA-1, in the setting of 
small cell carcinoma, or (occasionally in the authors’ expe-
rience) thymoma. Autoimmune autonomic ganglionopathy 
with ganglionic nicotinic acetylcholine receptor (α3-AChR) 
antibody detected is occasionally paraneoplastic in etiology, 
associated with diverse cancer types, including small cell car-
cinoma and thymoma [73, 74]. When autonomic neuropathy 
and sensorimotor neuropathy co-exist, the typical oncological 
accompaniment is SCLC [74].

Neuromuscular Junction Disorders

Lambert Eaton myasthenic syndrome (LEMS) is a high-risk 
paraneoplastic phenotype accompanied by small cell carci-
noma in 50% generally, with an even higher risk in smokers 
older than 50 with weight loss [75]. Though P/Q-type calcium 
channel antibody is a general biomarker for LEMS, coexist-
ing antiglial/neuronal nuclear antibody (AGNA, or Sry-like 
high-mobility group box protein 1 [SOX-1]-IgG) or ANNA-1 
positivity is more predictive of small cell carcinoma in those 
cases [76]. In a study assessing for risk for SCLC in LEMS 
patients, age at onset, smoking behavior, weight loss, Kar-
nofsky performance status, bulbar involvement, male sexual 
impotence, and the presence of SOX-1 antibody were inde-
pendent predictors [77]. A DELTA-P score was derived allo-
cating 1 point for the presence of each of the following items 
at or within 3 months from onset: age at onset ≥ 50 years, 

smoking at diagnosis, weight loss ≥ 5%, bulbar involvement, 
erectile dysfunction, and Karnofsky performance status lower 
than 70. A DELTA-P score of 0 or 1 corresponded to a < 3% 
chance of SCLC, whereas a score of ≥ 4 or more had a positive 
predictive value for SCLC of > 90% [77]. Myasthenia gravis is 
associated with thymoma in 10–15% of cases [78].

Neuromyotonia

Peripheral nerve excitability, or neuromyotonia, is charac-
terized by stiffness, muscle cramps, fasciculations, and/or 
myokymia. Dysautonomia including hypohidrosis, orthos-
tatic hypotension, and gastric dysmotility may co-occur in 
patients with LGI1 or CASPR2 antibodies [79]. Morvan’s 
syndrome is the co-occurrence of neuromyotonia with cen-
tral nervous system dysfunction such as encephalopathy, sei-
zures, and insomnia (termed “agrypnia excitata”). Morvan’s 
syndrome carries a 50% risk of thymoma, usually accompa-
nying CASPR2 antibodies [80, 81].

Myopathy

Dermatomyositis is a form of immune-mediated myopathy 
which carries a 15% risk of malignancy [82]. It presents with 
proximal muscle weakness and cutaneous findings such as a 
periorbital heliotrope rash or violaceous papules over the dorsal 
aspect of the metacarpophalangeal joints (“Gottron papules”). 
Dermatomyositis is associated with a wide range of malignan-
cies and the histologic type varies according to ethnicity and 
underlying population risk profile [83]. Certain antibodies such 
as nuclear matrix protein 2, transcription intermediary factor 1 
gamma, and small ubiquitin-like modifier 1 activating enzyme 
subunit occur more frequently in paraneoplastic dermatomyosi-
tis [84]. Necrotizing autoimmune myopathy is characterized by 
painful, proximal muscle weakness and can occur as a paraneo-
plastic phenomenon in 10% of cases, some of whom are signal 
recognition particle (SRP) antibody positive. The most frequent 
cancer association is gastrointestinal adenocarcinoma [85].

Diagnostic Evaluation

Clinical Assessment

The neurological clinical assessment should pay particular 
attention to the trajectory of symptom onset and progression. 
In almost all circumstances, onset is subacute. Neurological 
exam should assist in localizing the disorder to one or more 
anatomic regions of the nervous system. Risk factors to con-
sider when evaluating paraneoplastic neurologic disorders 
include a current or remote history of malignancy, smoking 
history, coexisting non-neurologic autoimmune disease his-
tory, and exposure to immune checkpoint inhibitors.
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Imaging

MRI

In paraneoplastic limbic encephalitis, T2 hyperintensity 
of the mesial temporal lobes is typical, occasionally with 
contrast enhancement (Fig. 1) [86]. In extra-limbic para-
neoplastic encephalitides, MRI may demonstrate extra-
temporal lobar abnormalities that can resemble infectious 
or neoplastic processes [87]. Linear, radial enhancement 
extending from the lateral ventricles is a characteris-
tic MRI imaging finding in GFAP astrocytopathy [38]. 
Distinctive radiological features also arise in GABAA-R 
encephalitis characterized by multi-lobar deep white mat-
ter and juxtacortical lesions on FLAIR imaging (without 
enhancement), Fig. 1 [88]. In many instances, MRI of the 
brain can be entirely normal, including most patients with 
anti-NMDA receptor encephalitis [32].

The hallmark radiographic feature of paraneoplastic myeli-
tis is longitudinally extensive, gadolinium-enhancing T2 sig-
nal change selective for individual spinal tracts, sometimes 

with enhancement post-gadolinium (Fig. 1). This finding 
most commonly affects the dorsal and lateral columns. How-
ever, the MRI may be normal in half of all cases [66, 89].

Nerve root enhancement is a radiological feature pre-
sent in one-third of patients with paraneoplastic mye-
loneuropathy [66]. In paraneoplastic myopathy, MRI can 
support the diagnosis, localize the affected muscles for a 
targeted biopsy, and in certain cases distinguish between 
myositis subtypes [90].

Neurophysiology

Neurophysiological testing can aid in localizing a paraneo-
plastic neurologic disorder. The extreme delta brush pattern 
on EEG occurring in one-third of patients with anti-NMDA 
receptor encephalitis is associated with more severe ill-
ness [91]. Slow wave or epileptiform activity localized to 
the temporal lobe may aid reaching a diagnosis of limbic 
encephalitis [29]. Continuous motor-unit activity on EMG, 
agonist–antagonist co-contraction, exaggerated acoustic 
startle, and exteroceptive responses are characteristic of stiff 

Fig. 1   MRI and antibody test findings in paraneoplastic disorders. 
Top row, axial MRI images demonstrate (left, T2 FLAIR) bilateral 
mesial temporal hyperintensities in a patient with ANNA-1-associated 
paraneoplastic limbic encephalitis (middle, T2 FLAIR) multifocal 
extra-limbic hyperintensities in a patient with GABA-A receptor (R) 
encephalitis, and (right, T1 post-gadolinium) spinal cord tractopathies 
in a patient with seronegative renal cell carcinoma-associated paraneo-

plastic myelopathy. Bottom row, indirect immunofluorescence assay 
using mouse brain tissue as substrate reveals a typical synaptic pattern 
of IgG staining of hippocampus (left) and cerebellum (right) produced 
by CSF from a patient with GABA-A-R encephalitis. GABA-A-R 
specificity was confirmed by GABA-A-R alpha 1 subunit specific cell-
based assay (not shown). Top right image from reference 58 repro-
duced with permission from American Academy of Neurology
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person syndrome [92]. In neuromyotonia, nerve conduction 
studies reveal stimulus-induced after discharges and EMG 
characteristically demonstrates spontaneous firing of dou-
blet or multiplet motor unit discharges indicative of periph-
eral nerve hyperexcitability [93]. Pre- and post-synaptic 
neuromuscular junction disorders can be distinguished by 
compound muscle action potential amplitude responses to 
repetitive nerve stimulation (increment in LEMS, decrement 
in myasthenia gravis) [94].

Immunological testing

Antibody testing

Neural antibodies, which are of IgG class, belong to 2 broad 
groups, those mostly “high risk” and reactive with linear 
epitopes of nuclear (e.g., Hu), nucleolar (e.g., Ma2), or cyto-
plasmic (e.g., Yo) antigens, and those of “intermediate” or 
“low” risk mostly reactive with cell surface protein con-
formation-dependent extracellular epitopes, such as GluN1 
subunit of NMDA receptor (Tables 2 and 3). Antibody testing 
should be performed in both serum and CSF in a laboratory 
with expertise diagnosing autoimmune neurologic disor-
ders. Certain IgGs are more readily detected in serum (e.g., 
LGI1 antibody) and others are more readily and specifically 
detected in CSF (e.g., NMDA-R and GFAP antibodies) [38, 
79, 95]. Tissue-based immunohistochemistry or immunofluo-
rescence serves as a screening test for most antibodies; a high 
degree of interpretative experience is necessary to precisely 
identify these (Fig. 1). IgG specificities identified should be 
confirmed by protein-specific methods, such as western blot, 
ELISA or radioimmunoprecipitation assays for intracellular 
antigens, and transfected cell-based assays (observer-based 
or flow cytometry) for cell-surface antibodies. It is not rec-
ommended to rely on commercial line blots alone and posi-
tive results, where possible, should be correlated with tissue 
immunohistochemistry [96•]. In the authors’ experience, cer-
tain antibodies are not sensitively detected by tissue-based 
assays (e.g., LGI1, CASPR2, AQP4-IgG, and MOG-IgG), but 
are detectable sensitively and specifically by optimized cell-
based assays, either by microscopy or by flow cytometry [97]. 
The absence of an antibody does not preclude the diagnosis 
of a paraneoplastic neurologic disorder. Where a high index 
of suspicion persists in seronegative cases, serum and CSF 
samples could also be referred to a laboratory with research 
expertise for novel antibody testing [1••].

CSF

Routine findings on CSF that are supportive of a paraneo-
plastic neurologic disorder include pleocytosis, the presence 
of CSF-exclusive oligoclonal bands or a raised CSF IgG 
index or synthesis rate. Cytology should be performed to 

exclude direct rather than remote effect of systemic cancer. 
CSF glucose levels are not abnormal in paraneoplastic neu-
rologic disorders but can be reduced in metastatic cancer 
or infection [98]. Normal CSF parameters do not exclude a 
paraneoplastic diagnosis [99].

Cancer Screening

Cancer testing may be quite selective, when guided by the 
antibody detected, or could be a broad search in seronega-
tive patients or in those with an antibody with less specific 
cancer associations. CT imaging of chest, abdomen, and 
pelvis is usually pursued. This could be supplemented, as 
appropriate, with CT of the neck, ultrasound, or MRI of the 
gynecologic tract, ultrasound of testes, pelvic MRI, mam-
mography, and gastroenterologic endoscopies. Fluorode-
oxyglucose-PET-CT (orbits to thighs) is useful for detect-
ing carcinoma or lymphoma in primary screening, or after 
normal CT imaging [100]. High-resolution CT or MRI is 
preferred for thymoma detection. Paraneoplastic antibod-
ies may direct the search for cancer and related manage-
ment decisions. For example, in a man with KLHL-11 or 
Ma2 antibodies, testicular seminoma or other germinoma 
would be suspected [27•, 44]. For patients with Ma2 anti-
bodies, a compatible neurologic phenotype and testicular 
microcalcifications on ultrasound, orchiectomy would be 
considered for patients under 50 years [1••]. Similarly, in 
post-menopausal women with PCA-1, exploratory surgery 
or prophylactic hysterectomy and bilateral salpingo-oopho-
rectomy might be considered even if imaging tests were 
negative [1••]. While improvements may be encountered in 
KLHL-11 patients (50%), they are almost always absent in 
PCA-1 patients (85%) [25, 26]. For patients with a high-risk 
antibody accompanied by a compatible neurologic syndrome 
without underlying cancer, it is recommended that tumor 
screening should be repeated every 4–6 months for 2 years. 
The same applies for intermediate-risk antibodies but only 
if accompanied by a high-risk phenotype (Table 1). For low-
risk antibodies, cancer screening at the time of diagnosis is 
deemed sufficient; however, decisions should be guided by 
individual patient assessment, presence of risk factors, and 
clinical judgment [1••].

Pathology

In the context of suspected autoimmune encephalitis, occa-
sional patients meet the criteria for seronegative probable 
autoimmune encephalitis on the basis of inflammatory brain 
biopsy findings, and one other supportive finding (inflam-
matory CSF or MRI) [29]. In that setting, a search for can-
cer might be undertaken, though the overall risk for cancer 
in a seronegative non-limbic encephalitis is low [101]. In 
myositis, specific features on muscle biopsy aid in arriving 
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at a diagnosis of dermatomyositis or immune-mediated 
necrotising myopathy [102]. Though not done routinely, a 
paraneoplastic diagnosis may be strengthened by detecting 
the cognate antigen for a low-risk antibody in the patient 
neoplasm by immunohistochemistry [1••].

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs) are a class of mono-
clonal antibodies which inhibit the immune-checkpoints 
that exert a negative regulatory effect on the immune sys-
tem [103]. Targets include cytotoxic T-lymphocyte antigen 
4 (CTLA-4: ipilimumab), programmed cell death protein 1 
(rembrolizumab, nivolumab), and programmed cell death 
ligand 1 (durvalumab) [104]. These therapies restore host 
antitumour immunity, promote tumor cell death, and have 
been associated with improved outcomes even in patients 
with advanced malignancy [105]. Novel toxicities termed 
immune-related adverse events (irAEs) have emerged in 
association with ICIs. Neurologic irAEs (nirAE) are thought 
to affect 1% of patients and include myositis, myasthenia 
gravis, and inflammatory neuropathies including Guillain-
Barré syndrome [106]. This risk increases when anti-
CTLA-4 is used in combination with anti-PD-1/anti-PD 
ICIs [107, 108]. Neuromuscular and peripheral nirAEs are 
more common than disorders with central nervous system 
involvement, and myasthenia gravis has the highest fatality 
rate among all nirAEs [109].

In 2019, Graus and colleagues defined three clinical sce-
narios where nirAEs can be considered to meet criteria for 
paraneoplastic neurologic disorders: (i) when the symptoms 
of the nirAE are identical to that of a classical paraneoplastic 
neurologic disorders, irrespective of the presence of para-
neoplastic antibodies; (ii) any nirAE in association with the 
detection of paraneoplastic antibodies provided other causes 
are excluded; (iii) nirAEs in the presence of cell-surface pro-
tein or synaptic antibodies in the presence of a typical tumor 
[110••].

Paraneoplastic neurologic syndromes often respond 
poorly to systemic immunotherapy due to irreversible cyto-
toxic T cell–driven neuronal injury [16]. However, in cases 
associated with ICI use, withdrawal of the ICI in addition 
to treatment with one or more of corticosteroids, IVIg and 
plasma exchange can be beneficial [14]. Administration of 
corticosteroids in particular has been associated with favora-
ble clinical outcomes, even in disorders that do not typically 
demonstrate a favorable response to steroids (e.g., Guillain-
Barré syndrome) [14, 109]. Seronegative cases have been 
reported in the context of ICI use and therefore the absence 
of high or intermediate-risk antibodies does not exclude the 
diagnosis [111].

Treatment

Treatment includes nervous system–directed immunother-
apy, cancer-specific treatment, and symptomatic therapy.

Immunotherapy

In general, disorders associated with cell-surface antibodies 
respond to immunotherapy better than other paraneoplastic 
disorders, whereas those associated with intracellular anti-neu-
ronal antibodies respond less favorably [16]. Class 1 evidence 
for immunosuppressant therapy is lacking and treatment strate-
gies are guided by antibody type (cell surface-directed versus 
intracellular), expert opinion, and small case series. Improve-
ments may be modest in the case of disorders associated with 
antibodies to intracellular antigens and arresting further neuro-
logical decline is often the therapy goal. It is recommended that 
baseline neurological assessments be obtained and recorded 
prior to initiation of therapy to evaluate the degree of treatment 
response. A trial of immunotherapy typically consists of IV 
methylprednisolone 1 g and/or intravenous immunoglobulin 
(IVIg) 0.4 g/kg daily for 5 days and can occur during or after 
cancer treatment. This may be followed by weekly doses for 
6–12 weeks, or a slow oral taper of prednisone. Plasmapheresis 
every second day for 5–7 treatments can also be trialed upfront 
or used in treatment-resistant cases. In syndromes associated 
with intracellular antigen-directed antibodies, neuronal injury 
is evidentially cytotoxic T cell–mediated and therefore cyclo-
phosphamide can be used [112]. Rituximab has generally been 
considered a second-line agent in patients with disorders asso-
ciated with cell-surface antibodies, though in anti-NMDA-R 
encephalitis it is frequently used early in the disease course of 
patients with severe neurological disease without waiting for 
outcomes of first-line therapy (steroids and IVIg or plasma 
exchange) [113].

Relapsing disease is uncommon, though it can occur in 
20–30% of patients with certain intermediate or low-risk 
antibodies such as anti-NMDA-R encephalitis, autoimmune 
GFAP astrocytopathy, PERM, and LgI1 encephalitis [32, 38, 
64, 79]. For those relapsing patients, maintenance immu-
notherapy considerations include intravenous rituximab or 
oral agents such as azathioprine, mycophenolate mofetil, 
or methotrexate. For cases requiring chronic therapy, the 
weaning of intravenous methylprednisolone or IVIg should 
occur in a cautious manner, extending the dosing interval 
gradually over 3–6 months, to mitigate against the risk of 
relapse. For paraneoplastic disorders in the setting of ICI 
use, the treatment involves withdrawal of the ICI and admin-
istration of corticosteroids (IV regimen as detailed above or 
oral prednisolone 60–80 mg for 1–2 weeks) [14]. There is 
no established consensus regarding the duration of chronic 
immunotherapy in paraneoplastic neurologic disorders.
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Cancer Treatment

The treatment of cancer, as guided by oncology and surgery, 
may coincide with stabilization or improvement of neurolog-
ical symptoms. Some patients with anti-NMDA-R encepha-
litis have marked neurological improvements after ovarian 
teratoma resection [32]. However, because this response is 
variable, immune therapy is universally recommended in 
addition to teratoma removal [113]. In many cases, cancer 
treatment may at best result in stabilization of the neurologi-
cal disorder such as in PCA-1 cerebellar ataxia [25].

Symptomatic Therapy

Anti-seizure medications should be trialed for symptomatic 
seizures but immunotherapy is characteristically more effec-
tive for seizure control [114]. Benzodiazepines (usually 
diazepam) are used for SPS [61]. Other movement disor-
ders may respond to symptomatic therapy such as parkinson-
ism (levodopa), myoclonus (benzodiazepines), or dystonia 
(trihexyphenidyl or botulinum toxin). Carbamazepine or 
phenytoin are employed to manage muscle cramps and stiff-
ness in paraneoplastic neuromyotonia [115]. Pyridostigmine 
is used in gastrointestinal pseudo-obstruction, myasthenia 
gravis, and LEMS (with 3,4 diaminopyridine for the latter) 
[115–117]. Neuropathic pain medications such as gabapen-
tin, pregabalin, and tricyclic anti-depressants are employed 
in paraneoplastic neuropathy, but cancer treatment remains 
the optimal means of stabilizing symptoms [117].

Conclusions

The field of paraneoplastic neurologic disorders has been 
advanced through updated diagnostic criteria aiding classifi-
cation. The prevalence of these disorders is greater than pre-
viously reported. With increased use of immune-checkpoint 
inhibitors, it is possible that the incidence of paraneoplastic 
neurologic disorders will continue to rise. IgG biomarkers 
have diagnostic, therapeutic, and prognostic utility and can 
guide management decisions. Many paraneoplastic neuro-
logic disorders remain seronegative.
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