Skip to main content
Log in

Emerging Technologies in Flow Diverters and Stents for Cerebrovascular Diseases

  • Stroke (H Diener, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Stents and flow diverters have revolutionized the treatment of cerebrovascular disease. Guglielmi coils, flexible microcatheters, and first-generation intracranial stents, such as Neuroform (Stryker Neurovascular) and Enterprise stents (Codman/DePuy-Synthes), have paved the way for the development of the Pipeline Embolization Device (PED) (ev3/Covidien/Medtronic) and other endovascular approaches.

Recent Findings

This review discusses the historical development of flow diverter technologies from the PED to similar devices, such as the Surpass stent (Stryker Neurovascular), the Flow-Redirection Endoluminal Device (FRED; MicroVention, Inc.), the SILK stent (Balt Extrusion), and the p64 Flow Modulation Device (Phenox). In addition, the potential use of drug-eluting stents and various bioresorbable scaffolds (e.g., poly-l-lactic acid, magnesium), new developments in stent material (e.g., thin-film nitinol), design (e.g., biocompatible polymers, embedded microcircuitry, flow models), and potential applications for flow diverters will be considered.

Summary

Endovascular treatment of cerebrovascular disease is rapidly advancing via continued development of new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. D'Urso PI, Lanzino G, Cloft HJ, Kallmes DF. Flow diversion for intracranial aneurysms: a review. Stroke. 2011;42(8):2363–8. https://doi.org/10.1161/STROKEAHA.111.620328.

    Article  PubMed  Google Scholar 

  2. • Fahed R, Raymond J, Ducroux C, Gentric JC, Salazkin I, Ziegler D, et al. Testing flow diversion in animal models: a systematic review. Neuroradiology. 2016;58(4):375–82. https://doi.org/10.1007/s00234-015-1635-0. A review of 42 articles evaluating flow diversion in animals with various results depending on selected animal model.

    Article  PubMed  Google Scholar 

  3. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A second-generation, endoluminal, flow-disrupting device for treatment of saccular aneurysms. AJNR Am J Neuroradiol. 2009;30(6):1153–8. https://doi.org/10.3174/ajnr.A1530.

    Article  CAS  PubMed  Google Scholar 

  4. Lieber BB, Sadasivan C. Endoluminal scaffolds for vascular reconstruction and exclusion of aneurysms from the cerebral circulation. Stroke. 2010;41(10 Suppl):S21–5. https://doi.org/10.1161/STROKEAHA.110.595066.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Becske T, Kallmes DF, Saatci I, McDougall CG, Szikora I, Lanzino G, et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology. 2013;267(3):858–68. https://doi.org/10.1148/radiol.13120099.

    Article  PubMed  Google Scholar 

  6. Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44(2):442–7. https://doi.org/10.1161/STROKEAHA.112.678151.

    Article  PubMed  Google Scholar 

  7. • Kallmes DF, Hanel R, Lopes D, Boccardi E, Bonafe A, Cekirge S, et al. International retrospective study of the pipeline embolization device: a multicenter aneurysm treatment study. AJNR Am J Neuroradiol. 2015;36(1):108–15. https://doi.org/10.3174/ajnr.A4111. A meta-analysis of 793 patients in 17 worldwide centers who underwent Pipeline treatment for intracranial aneurysm showed improved outcomes in anterior circulation aneurysms and smaller aneurysms.

    Article  CAS  PubMed  Google Scholar 

  8. Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR, et al. Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery. 2009;64(4):632–642; discussion 42-3; quiz N6. https://doi.org/10.1227/01.NEU.0000339109.98070.65.

    Article  PubMed  Google Scholar 

  9. Nelson PK, Lylyk P, Szikora I, Wetzel SG, Wanke I, Fiorella D. The pipeline embolization device for the intracranial treatment of aneurysms trial. AJNR Am J Neuroradiol. 2011;32(1):34–40. https://doi.org/10.3174/ajnr.A2421.

    CAS  PubMed  Google Scholar 

  10. Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda ZS, Lee W, et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. AJNR Am J Neuroradiol. 2010;31(6):1139–47. https://doi.org/10.3174/ajnr.A2023.

    Article  CAS  PubMed  Google Scholar 

  11. De Vries J, Boogaarts J, Van Norden A, Wakhloo AK. New generation of flow diverter (surpass) for unruptured intracranial aneurysms: a prospective single-center study in 37 patients. Stroke. 2013;44(6):1567–77. https://doi.org/10.1161/STROKEAHA.111.000434.

    Article  PubMed  Google Scholar 

  12. Diaz O, Gist TL, Manjarez G, Orozco F, Almeida R. Treatment of 14 intracranial aneurysms with the FRED system. J Neurointerv Surg. 2014;6(8):614–7. https://doi.org/10.1136/neurintsurg-2013-010917.

    Article  PubMed  Google Scholar 

  13. Briganti F, Napoli M, Tortora F, Solari D, Bergui M, Boccardi E, et al. Italian multicenter experience with flow-diverter devices for intracranial unruptured aneurysm treatment with periprocedural complications—a retrospective data analysis. Neuroradiology. 2012;54(10):1145–52. https://doi.org/10.1007/s00234-012-1047-3.

    Article  PubMed  Google Scholar 

  14. Briganti F, Leone G, Marseglia M, Cicala D, Caranci F, Maiuri F. p64 flow modulation device in the treatment of intracranial aneurysms: initial experience and technical aspects. J Neurointerv Surg. 2016;8(2):173–80. https://doi.org/10.1136/neurintsurg-2015-011743.

    Article  PubMed  Google Scholar 

  15. Fischer S, Aguilar-Perez M, Henkes E, Kurre W, Ganslandt O, Bazner H, et al. Initial experience with p64: a novel mechanically detachable flow diverter for the treatment of intracranial saccular sidewall aneurysms. AJNR Am J Neuroradiol. 2015;36(11):2082–9. https://doi.org/10.3174/ajnr.A4420.

    Article  CAS  PubMed  Google Scholar 

  16. Kirtane AJ, Gupta A, Iyengar S, Moses JW, Leon MB, Applegate R, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119(25):3198–206. https://doi.org/10.1161/CIRCULATIONAHA.108.826479.

    Article  CAS  PubMed  Google Scholar 

  17. McKeage K, Murdoch D, Goa KL. The sirolimus-eluting stent: a review of its use in the treatment of coronary artery disease. Am J Cardiovasc Drugs. 2003;3(3):211–30.

    Article  PubMed  Google Scholar 

  18. Stone GW, Ellis SG, Cannon L, Mann JT, Greenberg JD, Spriggs D, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005;294(10):1215–23. https://doi.org/10.1001/jama.294.10.1215.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez AE, Pavlovsky H, Del Pozo JF. Understanding the outcome of randomized trials with drug-eluting stents and coronary artery bypass graft in patients with multivessel disease: a review of a 25-year journey. Clin Med Insights Cardiol. 2016;10:195–9. https://doi.org/10.4137/CMC.S40645.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Juni P, Vaina S, et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol. 2008;52(14):1134–40. https://doi.org/10.1016/j.jacc.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  21. Thielen E, McClure M, Rouchaud A, Ding YH, Dai D, Schroeder D, et al. Concomitant coiling reduces metalloproteinase levels in flow diverter-treated aneurysms but anti-inflammatory treatment has no effect. J Neurointerv Surg. 2016; https://doi.org/10.1136/neurintsurg-2015-012207.

  22. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  23. Nishio S, Kosuga K, Igaki K, Okada M, Kyo E, Tsuji T, et al. Long-term (>10 years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012;125(19):2343–53. https://doi.org/10.1161/CIRCULATIONAHA.110.000901.

    Article  CAS  PubMed  Google Scholar 

  24. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869–75. https://doi.org/10.1016/S0140-6736(07)60853-8.

    Article  CAS  PubMed  Google Scholar 

  25. Haude M, Erbel R, Erne P, Verheye S, Degen H, Bose D, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013;381(9869):836–44. https://doi.org/10.1016/S0140-6736(12)61765-6.

    Article  CAS  PubMed  Google Scholar 

  26. Onuma Y, Serruys PW, Ormiston JA, Regar E, Webster M, Thuesen L, et al. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention. 2010;6(4):447–53. https://doi.org/10.4244/EIJ30V6I4A76.

    Article  PubMed  Google Scholar 

  27. Tanimoto S, Serruys PW, Thuesen L, Dudek D, de Bruyne B, Chevalier B, et al. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv. 2007;70(4):515–23. https://doi.org/10.1002/ccd.21136.

    Article  PubMed  Google Scholar 

  28. Serruys PW, Onuma Y, Garcia-Garcia HM, Muramatsu T, van Geuns RJ, de Bruyne B, et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention. 2014;9(11):1271–84. https://doi.org/10.4244/EIJV9I11A217.

    Article  PubMed  Google Scholar 

  29. Serruys PW, Chevalier B, Dudek D, Cequier A, Carrie D, Iniguez A, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385(9962):43–54. https://doi.org/10.1016/S0140-6736(14)61455-0.

    Article  CAS  PubMed  Google Scholar 

  30. • Serruys PW, Chevalier B, Sotomi Y, Cequier A, Carrie D, Piek JJ, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91. https://doi.org/10.1016/S0140-6736(16)32050-5. An evaluation of 501 patients compared an everolimus-eluting metallic stent and the ABSORB bioresorbable stent for the treatment of myocardial infarction.

  31. Ellis S, Kereiakes D, editors. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent III—ABSORB III. American College of Cardiology 2017 Annual Scientific Session; 2017.

  32. Chen Y, Howe C, Lee Y, Cheon S, Yeo WH, Chun Y. Microstructured thin film nitinol for a neurovascular flow-diverter. Sci Rep. 2016;6:23698. https://doi.org/10.1038/srep23698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu T, Liu Y, Chen Y, Liu S, Maitz MF, Wang X, et al. Immobilization of heparin/poly-(L)-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater. 2014;10(5):1940–54. https://doi.org/10.1016/j.actbio.2013.12.013.

    Article  CAS  PubMed  Google Scholar 

  34. Busch R, Strohbach A, Rethfeldt S, Walz S, Busch M, Petersen S, et al. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets. Acta Biomater. 2014;10(2):688–700. https://doi.org/10.1016/j.actbio.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  35. Rudolph A, Teske M, Illner S, Kiefel V, Sternberg K, Grabow N, et al. Surface modification of biodegradable polymers towards better biocompatibility and lower thrombogenicity. PLoS One. 2015;10(12):e0142075. https://doi.org/10.1371/journal.pone.0142075.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen C, Yao C, Yang J, Luo D, Kong X, Chung SM, et al. Biomimetic apatite formed on cobalt-chromium alloy: a polymer-free carrier for drug eluting stent. Colloids Surf B Biointerfaces. 2016;151:156–64. https://doi.org/10.1016/j.colsurfb.2016.12.021.

    Article  PubMed  Google Scholar 

  37. Bulbul A, Tandar A, Patel A, Kim H, editors. Micro hydraulic pressure sensing stent. Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems; 2015.

  38. Zanaty M, Chalouhi N, Tjoumakaris SI, Rosenwasser RH, Gonzalez LF, Jabbour P. Flow-diversion panacea or poison? Front Neurol. 2014;5:21. https://doi.org/10.3389/fneur.2014.00021.

    Article  PubMed  PubMed Central  Google Scholar 

  39. • Tenekecioglu E, Farooq V, Bourantas CV, Silva RC, Onuma Y, Yilmaz M, et al. Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. 2016;16:38. https://doi.org/10.1186/s12872-016-0207-5. A review of multiple bioresorbable scaffolds clinically approved and under development for coronary artery treatment is discussed.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hwang CW, Johnston PV, Gerstenblith G, Weiss RG, Tomaselli GF, Bogdan VE, et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials. 2015;52:318–26. https://doi.org/10.1016/j.biomaterials.2015.02.047.

    Article  CAS  PubMed  Google Scholar 

  41. Puffer C, Dai D, Ding YH, Cebral J, Kallmes D, Kadirvel R. Gene expression comparison of flow diversion and coiling in an experimental aneurysm model. J Neurointerv Surg. 2015;7(12):926–30. https://doi.org/10.1136/neurintsurg-2014-011452.

    Article  PubMed  Google Scholar 

  42. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202. https://doi.org/10.1016/j.jacc.2006.03.042.

    Article  PubMed  Google Scholar 

  43. Verheye S, Ormiston JA, Stewart J, Webster M, Sanidas E, Costa R, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv. 2014;7(1):89–99. https://doi.org/10.1016/j.jcin.2013.07.007.

    Article  PubMed  Google Scholar 

  44. Brugaletta S, Heo JH, Garcia-Garcia HM, Farooq V, van Geuns RJ, de Bruyne B, et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J. 2012;33(11):1325–33. https://doi.org/10.1093/eurheartj/ehr466.

    Article  CAS  PubMed  Google Scholar 

  45. Onuma Y, Serruys PW, Perkins LE, Okamura T, Gonzalo N, Garcia-Garcia HM, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation. 2010;122(22):2288–300. https://doi.org/10.1161/CIRCULATIONAHA.109.921528.

    Article  CAS  PubMed  Google Scholar 

  46. Jou LD, Mitchell BD, Shaltoni HM, Mawad ME. Effect of structural remodeling (retraction and recoil) of the pipeline embolization device on aneurysm occlusion rate. AJNR Am J Neuroradiol. 2014;35(9):1772–8. https://doi.org/10.3174/ajnr.A3920.

    Article  PubMed  Google Scholar 

  47. Ding Y, Dai D, Kallmes DF, Schroeder D, Kealey CP, Gupta V, et al. Preclinical testing of a novel thin film nitinol flow-diversion stent in a rabbit elastase aneurysm model. AJNR Am J Neuroradiol. 2016;37(3):497–501. https://doi.org/10.3174/ajnr.A4568.

    Article  CAS  PubMed  Google Scholar 

  48. Yoganand A, Wood RP, Jimenez C, Siddiqui A, Snyder K, Nagesh SV et al. Angiographic analysis for phantom simulations of endovascular aneurysm treatments with a new fully retrievable asymmetric flow diverter. Proc SPIE Int Soc Opt Eng. 2015;9417. doi:https://doi.org/10.1117/12.2082079.

  49. Marosfoi M, Langan ET, Strittmatter L, van der Marel K, Vedantham S, Arends J, et al. In situ tissue engineering: endothelial growth patterns as a function of flow diverter design. J Neurointerv Surg. 2016; https://doi.org/10.1136/neurintsurg-2016-012669.

  50. Zhong Q, Mao Q, Yan J, Liu W, Zhang T, Liu J. Real-time in situ monitoring of poly(lactide-co-glycolide) coating of coronary stents using electrochemical impedance spectroscopy. J Biomed Mater Res B Appl Biomater. 2015;103(3):691–9. https://doi.org/10.1002/jbm.b.33250.

    Article  PubMed  Google Scholar 

  51. Qi P, Chen S, Liu T, Chen J, Yang Z, Weng Y, et al. New strategies for developing cardiovascular stent surfaces with novel functions (review). Biointerphases. 2014;9(2):029017. https://doi.org/10.1116/1.4878719.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kristin Kraus, MSc, for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min S. Park.

Ethics declarations

Conflict of Interest

Michael Karsy, Jian Guan, Andrea A. Brock, Anubhav Amin, and Min S. Park each declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsy, M., Guan, J., Brock, A.A. et al. Emerging Technologies in Flow Diverters and Stents for Cerebrovascular Diseases. Curr Neurol Neurosci Rep 17, 96 (2017). https://doi.org/10.1007/s11910-017-0805-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0805-3

Keywords

Navigation