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Abstract
Purpose of Review Acinetobacter baumannii (AB) is an infamous nosocomial pathogen with a seemingly limitless capacity for
antimicrobial resistance, leading to few treatment options and poor clinical outcomes. The debatably low pathogenicity and virulence
of AB are juxtaposed by its exceptionally high rate of infection-relatedmortality, likely due to delays in time to effective antimicrobial
therapy secondary to its predilection for resistance to first-line agents. Recent studies of AB and its infections have led to a burgeoning
understanding of this critical microbial threat and provided clinicians with new ammunition for which to target this elusive pathogen.
This review will provide an update on the virulence, resistance, diagnosis, and treatment of multidrug resistant (MDR) AB.
Recent Findings Advances in bacterial genomics have led to a deeper understanding of the unique mechanisms of resistance often
present in MDR AB and how they may be exploited by new antimicrobials or optimized combinations of existing agents. Further,
improvements in rapid diagnostic tests (RDTs) and their more pervasive use in combination with antimicrobial stewardship
interventions have allowed for more rapid diagnosis of AB and decreases in time to effective therapy. Unfortunately, there remains
a paucity of high-quality clinical data for which to inform the optimal treatment of MDRAB infections. In fact, recently completed
studies have failed to identify a combination regimen that is consistently superior to monotherapy, despite the benefits demonstrated
in vitro. Encouragingly, new and updated guidelines offer strategies for the treatment of MDR AB and may help to harmonize the
use of high toxicity agents such as the polymyxins. Finally, new antimicrobial agents such as eravacycline and cefiderocol have
promising in vitro activity against MDR AB but their place in therapy for these infections remains to be determined.
Summary Notwithstanding available clinical trial data, polymyxin-based combination therapies with either a carbapenem,
minocycline, or eravacycline remain the treatment of choice for MDR, particularly carbapenem-resistant, AB. Incorporating antimi-
crobial stewardship intervention with RDTs relevant toMDRAB can help avoid potentially toxic combination therapies and catalyze
the most important modifiable risk factor for mortality—time to effective therapy. Further research efforts into pharmacokinetic/
pharmacodynamic-based dose optimization and clinical outcomes data for MDR AB continue to be desperately needed.
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Introduction

Despite the current renaissance in antimicrobial research and
development, Acinetobacter baumannii (AB) remains the

most important unmet medical need among resistant Gram-
negative pathogens. The inability to optimally diagnose and
manage AB infections in a timely manner, particularly those
due to resistant phenotypes, stems from its complex genus, the
repertoire of unique intrinsic and acquired resistance mecha-
nisms, the lack of routine use of appropriate rapid diagnostic
tests (RDTs), a limited number of effective treatment options,
and the longstanding debate regarding its true virulence and
pathogenicity [1]. For years, there has been significant chal-
lenge in differentiating the species within the A. baumannii-
calcoaceticus (ABC) complex, which includes AB,
A. calcoaceticus, A. nosocomialis, and A. pittii, with AB being
the most clinically relevant and virulent species. Additionally,
owing to the many possible resistant phenotypes of AB, the
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nomenclature for referring to AB is often inconsistent and
clinically confusing. For example, multidrug resistant
(MDR) AB [2] may or may not qualify as difficult-to-treat
(DTR) [3•], and the most commonly encountered pheno-
type—carbapenem-resistant AB (CRAB) —may qualify as
both or neither. Although these inconsistencies in naming con-
ventions throughout research and clinical practice likely fur-
ther complicate the understanding of this challenging patho-
gen, antimicrobial resistant AB (MDR, DTR, and/or CRAB)
poses a significant public health threat and is responsible for
excess morbidity, mortality, and healthcare costs regardless of
how it is named. Fortunately, advances in our understanding
of its mechanisms of resistance, progresses in antimicrobial
pharmacokinetics/pharmacodynamics (PK/PD), improve-
ments in identification of AB and its resistance mechanisms,
the development of novel antimicrobial agents, and new clin-
ical data informing the optimal therapy for ABwill continue to
help turn the tide against this enigmatic pathogen.

Mechanisms of Resistance

The management of AB infections is particularly complicated
due to this pathogen’s multiple intrinsic and acquired mecha-
nisms of resistance including β-lactamases, aminoglycoside-
modifying enzymes, efflux pumps, permeability defects, and
target site modifications. AB often simultaneously co-harbor
many resistance mechanisms, which may eliminate the activ-
ity of multiple, and sometimes all, antibiotic classes. Thus, it is
critical that empiric and definitive antimicrobial therapy for
AB infections is guided by an understanding of potential re-
sistance mechanisms and susceptibility trends. The suscepti-
bility rates of various agents against ABC complex are
displayed in Table 1.

β-Lactams

β-Lactam resistance in AB is primarily mediated by the pres-
ence of β-lactamases, decreased permeability due to modifi-
cations in the outer membrane, alterations in penicillin-
binding proteins (PBP), and efflux pumps [6]. Carbapenems
are an important therapeutic option for AB due to widespread
resistance to penicillins and cephalosporins. However,
(CRAB) have emerged as a major problem in the USA and
worldwide [10–12]. From 2009–2013, 2915/6507 (44.8%)
AB isolates originating from 206 acute care hospitals across
the USA were carbapenem-resistant [13]. AB is capable of
possessing typical Ambler class A β-lactamases capable of
hydrolyzing penicillins and cephalosporins (TEM, SHV,
CTX-M, SCO, PER, and VEB) and also less commonly en-
countered carbapenemases such as GES-5, GES-14, and var-
ious KPC-type enzymes [14–17]. Although relatively rare at
this time, AB isolates producing Ambler class B metallo-β-

lactamases (MBLs) (i.e., IMP, VIM, and NDM) have also
been reported [18] and are particularly worrisome due to their
ability to hydrolyze all β-lactams except for aztreonam [19].
Finally, the most problematic groups of β-lactamases among
resistant AB are the chromosomally encoded Ambler class C
and acquired class D enzymes. Acinetobacter-derived c-
ephalosporinase (ADC), an Ambler class C AmpC-type
cephalosporinase, contributes to the resistance of penicillins,
cephalosporins, and aztreonam, but not carbapenems [20].
The Ambler class D β-lactamases are composed of various
oxacillinases (OXA), including subgroups of plasmid-
mediated OXAs with carbapenemase activity such as OXA-
23, OXA-24, OXA-40, OXA-51, and OXA-58 [20, 21].
Specifically, OXA-23 is a globally disseminated
carbapenemase; this is highly prevalent among CRAB [22]
and can be used to predict carbapenem susceptibility via ge-
notypic rapid diagnostic tests, as discussed below [23].
Additionally, although sulbactam has intrinsic activity against
Acinetobacter spp. and may retain activity against some
CRAB isolates, resistance is widespread globally as it is sus-
ceptible to hydrolysis by many of the intrinsic and acquiredβ-
lactamases carried in clinical AB strains, such as TEM, ADC,
and OXA-23 [24–26•, 24–29].

Polymyxins

Historically considered agents of last resort, the polymyxins,
have emerged as important agents in the management of AB
infections due to extensive resistance to other antimicrobial
classes. Although >90% of AB in the USA are susceptible
to the polymyxins, they can infrequently be impacted by var-
ious mechanisms of resistance, the most common of which are
structural changes to the target site lipid A. First, spontaneous
mutations occurring in the lipid A biosynthesis genes (IpxA,
IpxC, and IpxD) lead to complete loss of lipid A, resulting in
high-level polymyxin resistance [30]. Second, mutations in
the pmrCAB operon that lead to constitutive activation of
PmrAB, a two-component regulatory system responsible for
sensing and responding to environmental conditions via reg-
ulation of gene expression involved in lipid A synthesis, result
in induction of the PmrC transferase [31–33]. PmrC overex-
pression leads to the addition of phosphoethanolamine to lipid
A phosphates, which in turn reduces the negative charge of the
lipopolysaccharide (LPS), ultimately compromising the es-
sential interaction between the polymyxins and LPS. Third,
the addition of galactosamine to lipid A phosphates also di-
minishes the polymyxin-LPS interaction by reducing the neg-
ative charge of the LPS [34]. To date, the plasmid-mediated
colistin resistance gene, mcr, has not been reported in clinical
isolates of AB, although a recent report identified an AB strain
isolated from pig feces in China harboring mcr-4.3 [35]. Due
to its transmissibility, it is possible that mcr-harboring AB
strains will be clinically encountered in the near future,
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although the fitness cost associated with mcr-1 expression
may limit its pathogenicity [36].

Tetracyclines

Similar to the polymyxins, there has been a renewed interest in
the clinical use and development of tetracyclines due to their
potent activity against AB, especially MDR strains like
CRAB. Importantly, activity varies between individual agents
within the tetracycline class. Generally speaking, the potency
against AB is as follows: tetracycline < doxycycline <
omadacycline < tigecycline < minocycline < eravacycline
[37, 38]. Resistance to tetracyclines may be attributed to four
general mechanisms: efflux, ribosomal protection, target mod-
ification, and enzymatic inactivation [39]. In AB, tetracycline
efflux may be mediated by the presence of acquired and/or
intrinsically produced tetracycline-specific pumps. Tet(A) and
Tet(B) are the most common tetracycline-specific efflux
pumps encountered in AB and both pumps confer resistance
to tetracycline and doxycycline whereas only Tet(B) influ-
ences minocycline resistance [40]. The newer generation tet-
racycline analogues (i.e., tigecycline, eravacycline, and
omadacycline) are largely unaffected by the presence of
Tet(A) or Tet(B) [9, 41]. Further, all tetracyclines are sub-
strates for the AdeABC efflux pump, although the pump is
more specific for tetracycline, tigecycline, and eravacycline
than doxycycline or minocycline [42–44]. Additionally,
minocycline and tigecycline are each substrates for both the
AdeFGH and AdeIJK efflux pumps [42].

Ribosomal protection proteins, or RPPs, facilitate the dis-
sociation of tetracyclines from their ribosomal binding site.
The two most well-described RPPs are Tet(M) and Tet(O),
which confer resistance to tetracycline, doxycycline, and
minocycline, but spare tigecycline, eravacycline, and
omadacycline due to the presence of side chains at the C9
position of the D-ring [45]. The activity of tigecycline, and
its predecessors, may be diminished in AB due to modifica-
tions at the ribosomal binding site such as those caused by
mutations in rpsJ or trm [46, 47]. The effect of these mutations
on the activities of eravacycline and omadacycline is largely
unknown at this time, although previous data demonstrate
elevated eravacyclineMICs inKlebsiella pneumoniae isolates
harboring rpsJ mutations [48]. Finally, all currently available
tetracyclines are prone to enzymatic inactivation by the pres-
ence of Tet(X), which causes covalent inactivation by adding
a hydroxyl group at position C-11a [49].

Aminoglycosides

Aminoglycosides remain one of the most active antimicrobial
classes in vitro against AB, with approximately 80% of iso-
lates retaining susceptibility against at least one agent
(Table 1). Among aminoglycoside-resistant isolates, the major

determinant of aminoglycoside resistance is the presence of
aminoglycoside-modifying enzymes (AMEs), which can be
further classified into acetyltransferases, adenyltransferases,
and phosphotransferases [50]. These AMEs are often co-
harbored on plasmids carrying carbapenemases, making ami-
noglycoside resistance more common among CRAB.
Additionally, the aminoglycosides are impacted to a different
degree by CRAB isolates harboring AMEs. In a study of
CRAB isolates collected from 8 US metropolitan areas from
2012–2015, susceptibility rates to amikacin, gentamicin, and
tobramycin were 61.1%, 30.7%, and 59.9%, respectively [51].
The neoglycoside agent plazomicin retains activity against
pathogens harboring AMEs, but has limited activity against
AB (~ 65% susceptible) [52] given the frequent presence of
other mechanisms of aminoglycoside resistance including ef-
flux pumps (AdeABC and AdeDE) [7, 53] and ribosomal
methylation (rMTs) [10].

Fluoroquinolones

Widespread resistance has considerably compromised the
place in therapy of fluoroquinolones for treatment of AB in-
fections (Table 1). Phenotypic changes in the fluoroquinolone
targets topoisomerase II (DNA gyrase) and topoisomerase IV,
due to mutations in the gyrA, gyrB, and parC genes, are the
primary mechanism of fluoroquinolone resistance among AB
isolates [11, 54]. The binding affinity of fluoroquinolones to
DNA gyrase and topoisomerase IV may also be compromised
by the presence of plasmid-encoded determinants qnrA, qnrB,
and qnrS [55–57]. Efflux-mediated resistance by AdeABC
and AdeFGH may also play a role in fluoroquinolone-
resistance [58].

Rapid Diagnostics

Accurate and rapid diagnosis of AB infections is critical to the
timely selection of effective antibiotic therapy. Acinetobacter
spp. are strictly aerobic, non-fermenting, Gram-negative
coccobacilli [59]. Historically, the identification of
Acinetobacter spp. has been difficult via conventional micro-
biology techniques given their unique morphology, the fact
that they are often Gram-variable on Gram stain, there is no
single metabolic test to distinguish the genus from other non-
fermenting Gram-negative bacteria, and phenotypic/DNA-
DNA hybridization assays do not distinguish between the
species within the ABC species complex [59–61].
Fortunately, the past decade has brought cutting-edge technol-
ogies in the form of RDTs to the clinical microbiology lab that
provide more accurate and rapid results compared to conven-
tional microbiology methods [62, 63]. These RDTs have sig-
nificantly improved the ability to identify AB down to the
species level, which is crucial given the propensity for the
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ABC complex to cause disease in humans and possess an
MDR phenotype [1, 13, 51, 64–66].

There are currently several genotypic and phenotypic
RDTs that support the species identification, resistance deter-
minant detection, and/or susceptibilities of AB isolates
(Table 2). Of these platforms, the ePlex BCID-GN panel and
the Verigene BC-GN assay are the most comprehensive for
bloodstream infections due to AB. The primary difference
between these platforms is that the ePlex BCID-GN is able
to identify AB to the species level, while the Verigene BC-GN
assay is limited to genus identification [22, 67–69]. The de-
tection of genotypic markers of resistance in AB (i.e., blaOXA)
has been shown to correlate well with subsequent phenotypic
susceptibilities. In a multicenter study by Pogue et al., the
absence of blaOXA detection in AB by Verigene BC-GN was
highly predictive of phenotypic meropenem susceptibility
(93% negative predictive value), and vice versa [23].
Although limited by isolate count and the absence of detecting
other mechanisms of resistance, this genotypic and phenotyp-
ic correlation allows for rapid escalation or de-escalation of
antimicrobial therapy and dramatically improves time to ef-
fective therapy, which allows for the implementation of
genotypic-phenotypic antibiograms and care pathways.

It is essential that RDTs are employed in conjunction with
active antimicrobial stewardship (AMS) intervention in order
to improve patients’ clinical outcomes, particularly mortality.
The combination of RDT + AMS intervention decreases mor-
tality primarily by improving the time to effective antimicro-
bial therapy. Patients with infections due to MDR AB often
experience long delays in time to effective therapy given the
baseline resistance present in the majority of isolates negating
the typical first-line antimicrobial agents. This has been dem-
onstrated in a study byWenzler et al. in which identification of

AB by MALDI-TOF MS in patients with pneumonia and/or
bacteremia along with AMS intervention resulted in decreased
time to effective therapy compared to conventional identifica-
tion methods and was associated with an increase in clinical
cure [70]. Future RDT advances that will impact treatment of
AB infections include utilizing non-blood RDTs to diagnose
AB pneumonia. Accordingly, Entasis Therapeutics has incor-
porated the BioFire® FilmArray Pneumonia Panel to provide
earlier organism identification in order to optimize enrollment
into their phase 3 study of ETX2514SUL for the treatment of
serious infections due to ABC complex (NCT03894046) [71].

Treatment

There have been several recent advances toward improving
the safety and efficacy of current therapeutic options for AB
including additional pre-clinical and clinical data regarding
optimal treatment of AB infections, new guidelines
(Table 3), and the availability of new antibiotics.

β-Lactams

β-Lactams are the drugs of choice against susceptible AB
infections [1, 81]. However, just 26% of MDR AB in the
USA remains susceptible to one or more first line agents,
including carbapenems or sulbactam [2, 3•, 82•]. Despite
low rates of in vitro susceptibility, the β-lactams, typically
carbapenems, may be effectively utilized as part of a treatment
regimen for MDR AB via optimization of PK/PD parameters
(high dose, extended infusion) and combining with another
agent that improves its bactericidal activity (polymyxins).
In vitro, carbapenem-polymyxin combinations frequently

Table 2 Commercially available rapid diagnostic tests relevant to Acinetobacter spp.

Test Technology Identification Resistance markers detected Source FDA
approved

Verigene BC-GN Nucleic acid test Acinetobacter spp. blaCTX-M, blaKPC, blaNDM, blaVIM,
blaIMP, blaOXA-48, blaOXA-23,
blaOXA-40, blaOXA-58

Positive
blood
culture

Yes

Accelerate Pheno Morphokinetic
cellular analysis

A. baumannii Susceptibilities to
piperacillin-tazobactam
and amikacin

Positive
blood
culture

Yes

Unyvero Multiplex PCR Acinetobacter spp. blaCTX-M, blaKPC, blaNDM, blaVIM,
blaIMP, blaTEM, blaOXA-48, blaOXA-23,
blaOXA-24, blaOXA-58

Endotracheal
aspirate

Yes

Biofire FilmArray
Blood
Culture ID 2 Panel

Multiplex PCR Acinetobacter
calcoaceticus-baumannii
complex

blaKPC, blaNDM*, blaVIM*, blaIMP*,
blaOXA-48-like*

Positive
blood
culture

Noa

Biofire FilmArray
Pneumonia Panel

None BAL, sputum Yes

PCR polymerase chain reaction, BAL bronchoalveolar lavage

*New resistance targets that will be added to the current FDA-approved FilmArray BCID Panel
a The Blood Culture ID 2 Panel is currently research use only, while the FilmArray BCID Panel is FDA-approved
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demonstrate synergy and improved bactericidal activity com-
pared to either agent alone, especially against AB [83].
Previous data have suggested that the efficacy of this combi-
nation is maximized when the meropenem MIC is ≤ 8 mg/L
and it is administered as a high dose, extended infusion regi-
men in combination with a polymyxin [84, 85]. These find-
ings were confirmed in the recent AIDA study, a prospective,
multicenter, open-label randomized clinical trial [86]. AIDA
sought to answer whether colistin plus high dose extended
infusionmeropenem (2 g every 8 h infused over 3 h) improved
clinical success and mortality compared to colistin monother-
apy in patients with severe infections (hospital-acquired pneu-
monia (HAP), ventilator-associated pneumonia (VAP), bacter-
emia, or urosepsis) caused by carbapenem non-susceptible
bacteria. The majority of subjects had pneumonia or bacter-
emia (87%, 355/406) with AB being the most common path-
ogen (77%, 312/406). Unfortunately, 97% of AB isolates had
meropenem MICs > 8 mg/L, likely obfuscating the true ben-
efit, if any, of carbapenem-polymyxin combination therapy.
There was a trend toward reduced clinical failure with combi-
nation therapy in the most severe infection types (73% vs.
82% p = 0.059), but nearly every clinical endpoint including
14- and 28-day mortality showed a lack of benefit for adding
meropenem to colistin for CRAB infections. Moreover,
among patients with isolates later confirmed to be colistin-
resistant by the central laboratory, combination therapy with
meropenem and colistin was associated with increased mor-
tality compared to colistin monotherapy [87••].

In addition to traditional β-lactams, the β-lactamase inhib-
itor sulbactam has in vitro activity against Acinetobacter spe-
cies and recent studies have continued to explore its utility in
patients. Two meta-analyses assessed the use of sulbactam in
patients with severe infections due to MDR AB and XDR AB
and concluded that sulbactam-based regimens had compara-
ble effectiveness to alternative antimicrobial regimens [88,
89]. Another meta-analysis found that sulbactam-based thera-
pies were comparable to carbapenem and polymyxin therapies
but that clinical response was higher with doses of sulbactam
≥ 9 grams/day [90]. Population PK and Monte Carlo simula-
tions have demonstrated that in patients with severe sepsis due
to AB, high dose extended infusion sulbactam (2 g every 6 h
infused over 4 h) may achieve 90% probability of target at-
tainment (PTA) at 60% time above the MIC (60%ƒT>MIC) for
AB isolates with sulbactam MICs ≤ 16 mg/L [91, 92].
However, sulbactam doses > 12 g/day would be necessary to
achieve 90% PTA against most MDR AB isolates encoun-
tered outside North America (MIC50 > 16 mg/L) [74, 82,
91]. These high dose sulbactam regimens (12 g/day) have also
demonstrated promise as part of dual or triple combination
regimens in in vitro hollow fiber infection models and may
warrant additional investigation [75, 79].

For the treatment of β-lactam susceptible AB, guidelines
generally recommend a carbapenem administered as a

prolonged infusion [76–78, 93]. The American Society of
Transplantation Infectious Diseases Community of Practice
(AST IDCOP), which is among the few guidelines that have
been updated since the publication of the AIDA trial, continues
to recommend carbapenem and polymyxin combination thera-
py for CRAB infections in transplant patients on the basis of
improved microbiologic eradication [93]. For sulbactam, con-
ditional recommendations are given for use as pathogen-
directed therapy among susceptible isolates, including CRAB
[77, 93–95]. When used, 9–12 g of daily sulbactam in divided
doses infused over 4 h has been recommended for severe in-
fections [78, 93]. Finally, guidelines for the optimization of
treatment with β-lactams by the French Society of
Pharmacology and Therapeutics (SFPT) recommend
prolonged or continuous infusions β-lactams for isolates with
high MICs (e.g., near the susceptibility breakpoint) and in pa-
tients who are critically ill [96].

Although several new β-lactam/β-lactamase inhibitor
agents have been approved for the treatment of MDR
Gram-negative pathogens like carbapenem-resistant
Enterobacteriaceae , none of them (ceftazidime-
avibactam, ceftolozane-tazobactam, meropenem-
vaborbactam, imipenem-relebactam) have any apprecia-
ble activity against CRAB. Fortunately, novel β-lactam-
based agents are currently in the developmental pipeline
with activity against MDR AB including cefiderocol and
ETX2514. Cefiderocol is a siderophore cephalosporin
with activity against CRAB including isolates producing
serine carbapenemases and metallo-β-lactamases.
Currently proposed dosing provides > 90% PTA with a
PK/PD target of 75–85% ƒT>MIC for MICs ≤ 4 mg/L
[92, 97, 98]. Cefiderocol demonstrated non-inferiority to
imipenem in a Phase 2 clinical trial for complicated urinary
tract infection (cUTI) involving Enterobacteriaceae and
Pseudomonas aeruginosa and Phase 3 trials for HAP/VAP
and carbapenem-resistant Gram-negative pathogens have re-
cently completed but results are not yet available [98–101].
ETX2514 is a diazabicyclooctenone β-lactamase inhibitor
currently in development in combination with sulbactam spe-
cifically for the treatment of AB. ETX2514 has potent activity
against Ambler class A, C, and D β-lactamases, and also
enhances the bactericidal activity of sulbactam against AB
by binding PBP2 [102]. Having recently completed a Phase
2 clinical trial for cUTI, a Phase 3 trial is currently recruiting to
evaluate the efficacy and safety of sulbactam-ETX2514 in the
treatment of patients with infections due to ABC complex
(NCT03894046) [72, 73, 80, 103]. Ultimately, although these
new β-lactam-based agents may have promising activity
against AB, carbapenems remain an important treatment op-
tion for infections caused by AB with low MICs (e.g.,
meropenem MICs ≤ 8 mg/L). While some data support the
use of sulbactam for AB infections, large scale clinical trials
are absent and PK/PD analyses do not favor its routine use as

Curr Infect Dis Rep (2019) 21: 46 Page 9 of 17 46



monotherapy for a majority of the AB isolates outside North
America [74, 82•, 91].

Polymyxins

Over the last two decades, polymyxins became the backbone
of therapy for MDR AB, and specifically CRAB infections.
Among available studies, the reportedmortality rates of severe
MDR AB infections treated with polymyxins cluster between
30 and 60%, in part reflecting frequent limitations of many
polymyxin clinical trials, such as a lack of standardized poly-
myxin susceptibility testing and dosing [81]. The recent
AIDA trial used standardized intravenous colistin dosing, in-
cluding a loading dose, for severe infections due to colistin-
susceptible, carbapenem-resistant Gram-negative bacteria, yet
the 28-day mortality rate was still 49% (154/312) among pa-
tients with severe CRAB infections [86]. Secondary analyses
of CRAB infections showed that active empiric therapy with
colistin was not associated with improved survival compared
to inactive therapy (p = 0.504), nor was subsequent colistin-
resistance confirmed by broth microdilution (19% (52/266) of
available CRAB isolates) associated with lower survival
[87••, 104]. In fact, both secondary analyses showed a trend
toward reduced mortality when either inactive empirical treat-
ment was prescribed or the CRAB isolate was colistin resis-
tant. In part due to limitations of the trial itself, a trend toward
reduced mortality in colistin-resistant isolates also hints at the
tradeoff between colistin-resistance and virulence as previous-
ly noted.

International polymyxin guidelines have been published
and may help to standardize the clinical use and investigation-
al use of these last-line agents [105]. Most significantly, the
polymyxin guidelines include dosing recommendations for
colistin and polymyxin B in multiple clinical scenarios includ-
ing renal replacement therapy. Overall, guideline bodies gen-
erally recommend avoiding polymyxins when possible, but
consider combination therapy with aggressively dosed poly-
myxins to be the workhorse for CRAB infections [76–78, 92,
93, 106, 107]. Additionally, administering the polymyxins by
alternative routes such as via inhalation may help to maximize
their efficacy and minimize toxicity, although clinical data
supporting their use in nosocomial pneumonia due to AB
are conflicting [108, 109].

In addition to alternative routes of administration, several
novel polymyxin derivatives are in development designed to
improve efficacy and reduce toxicity. A review of these novel
polymyxin agents is available elsewhere [110]. One such
agent is SPR741, a low toxicity polymyxin analog with lim-
ited intrinsic activity which can potentiate the activity of many
antimicrobials by permeabilizing the outer membrane of
Gram-negative bacteria thereby increasing the penetration of
antimicrobials to their intracellular targets [111]. The antibiot-
ic to be paired with SPR741 has not been announced, but

significant potentiation of activity against MDR AB has been
noted for rifampin, macrolides, and β-lactams [111]. SPR741
was generally well tolerated in a recent Phase I clinical trial
with 4 of 6 patients in the highest dosing cohort of SPR741
(600 mg every 8 h for 14 days) experiencing a reversible mild
or moderate decrease in creatinine clearance [112]. As a
whole, the polymyxins remain a backbone in treatment of
AB infections and continued efforts into dose optimization
and understanding their use in combination will be critical to
their continued effectiveness.

Tetracyclines

Tetracyclines are second only to polymyxins for most reliable
in vitro activity against AB and are often the drugs of choice
for combination therapy against CRAB. Most recent studies
were retrospective in design and nearly all featured tigecycline
in combination with a variety of other agents including poly-
myxins, β-lactams, and aminoglycosides [113–115]. The use
of tigecycline for bacteremia is still cautioned, however, as a
prospective multicenter study of empiric tigecycline-based
salvage therapies for persistent febrile neutropenia (> 72 h)
demonstrated the risk of treatment failure in bacteremia was
over 4-fold higher than non-bacteremic infections (OR 4.42;
95% CI 1.41–13.89, p = 0.011) [116]. Overall, systemic
tigecycline-based therapies compared unfavorably to alterna-
tives for MDR AB when assessed by both traditional and
Bayesian networkmeta-analyses [88, 89, 117]. Though results
have not been confirmed by large clinical trials, unfavorable
outcomes with tigecycline may be potentially offset by using
higher dosages (e.g., 200 mg loading dose, 100 mg every 12
h) [118, 119].

Eravacycline, a tetracycline analogue, is 2- to 4-fold more
potent than tigecycline against CRAB [120]. The eravacycline
registrational clinical trials in the treatment of complicated
intra-abdominal infection (cIAI) included 13 patients with in-
fections due to AB, all of whom achieved clinical and micro-
biologic cure on pooled microbiologic analysis [121]. New
clinical trial data for minocycline is unavailable, but many
practitioners continue to view it as a favorable alternative
due to high in vitro activity and previous clinical successes
against MDR AB, especially in higher doses (e.g., 400 mg
loading dose, 200 mg every 12 h) [122–124].

Updated guidelines reflect the somewhat divisive clinical
data regarding tetracycline agents for AB infection. There is
consensus recommendation against the empiric use of tigecyc-
line in HAP/VAP, with suggested use in combination with
other agents for the treatment of MDR AB soft tissue and
intra-abdominal infections [77, 78, 93, 94, 106]. When tige-
cycline is used, the British Society of Antimicrobial
Chemotherapy recommends tigecycline dosages of 100 mg
twice daily [106]. Though minocycline is largely absent from
treatment guidelines, the ASTIDCOP do issue a weak
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recommendation in favor of its use as an alternative treatment
option for CRAB [93].

New tetracycline-derivatives for the treatment of MDR AB
are also in development. One notable agent is TP-6076, a fully
synthetic tetracycline with potent in vitro activity against
CRAB (MIC50/90 0.03/0.06 mg/L) [125]. Available data
shows potent in vivo efficacy of TP-6076 in murine infection
models, but it may also have non-linear PK and dose limiting
nausea similar to others of the class [126, 127]. Development
of this agent was recently halted by the sponsor in order to
focus on eravacycline, so it is unclear if or when TP-6076 will
be clinically available [128]. Overall, although clinical data
are largely lacking, tetracycline compounds such as tigecyc-
line, minocycline, and eravacycline are likely to be the second
most active agents in vitro against AB behind the polymyxins.
As discussed, tigecycline should generally be avoided in favor
of minocycline or eravacycline if possible, and nuanced dif-
ferences in vulnerability to AB’s tetracycline resistance mech-
anisms are important to recognize. Finally, the future of the
tetracyclines in the treatment of serious AB infections will
likely depend in large part on generating more robust PK/PD
data for which to establishing optimal dosing regimens and
accurate exposure-response relationships.

Other Agents

The aminoglycosides, fluoroquinolones, and fosfomycin are
typically used in combination with other agents for the treat-
ment of CRAB. Although new agents from these classes have
been approved, plazomicin (aminoglycoside) and
delafloxacin (fluoroquinolone) do not offer significant im-
provements against AB compared to other drugs from their
respective classes [129, 130]. There have been no reports to
date demonstrating efficacious use of plazomicin or
delafloxacin in AB infections [130, 131]. Intravenous
fosfomycin is expected to be available in the USA in the near
future, but clinical data to support its use against AB is still
lacking [81]. As AB possesses intrinsic resistance against
fosfomycin, fosfomycin has been recommended in very high
doses as an extended infusion (e.g., 8 g every 8 h infused over
3 h) and in combination with other agents on the basis of
in vitro synergy and Monte Carlo Analysis [132].

Guidelines mirror the clinical data for aminoglycosides,
fluoroquinolones, and fosfomycin, with a paucity of direct
recommendations for MDR AB infections. When discussed,
current guidelines advocate that aminoglycosides,
fluoroquinolones, and/or fosfomycin may be an acceptable
alternative therapy in susceptible isolates when used in com-
bination with other agents [77, 93, 94, 105, 106].

Apart from the previously mentioned intravenous
fosfomycin, the only agent from these classes undergoing
clinical development is apramycin, a veterinary aminoglyco-
side that is not subject to resistance due to RNA methylation

[133]. With increased in vitro activity against AB and purport-
edly reduced toxicity compared to traditional aminoglyco-
sides, apramycin will make a welcome addition to potential
combination therapies.

Non-Antibiotic Therapies

Some of the most forward-thinking strategies in the treatment
of MDR AB are non-small molecule therapies. One such ex-
ample is the use of bacteriophages which are viruses that par-
asitize bacteria, and have bacterial host-specificity which is
often species or even strain-specific [134, 135]. Though in
their infancy, bacteriophages have been effectively used in
the prevention of MDR AB infection through environmental
aerosolization [136], and the treatment of MDR AB infection
through systemic and local administration [137–140].

Also under investigation are monoclonal antibodies for the
treatment of MDR AB infections which target capsular poly-
saccharides with the intent to opsonize bacteria and improve
clearance by macrophages [141]. Nielsen et al. evaluated a
monoclonal antibody able to abolish mortality in lethal murine
models of MDR AB bacteremia, and having synergistic effect
with colistin [142]. Conversely, a recent investigation into
another anticapsular monoclonal antibody resulted in substan-
tially increased bacterial burden and mortality in an AB pneu-
monia model [143]. This discordance highlights the complex-
ity of AB infections and the disparity of effect that may be
elicited by an immune response toward enhancing or hinder-
ing the clearance of infection.

Approach to Antimicrobial Selection

Empiric Therapy

As with all infections, patient risk factors and local
antibiogram data should be utilized to inform and select opti-
mal therapeutic options. If the isolate is strongly suspected to
be susceptible to a β-lactam, or if RDTs do not detect a
carbapenemase (e.g., OXA-negative by Verigene BC-GN),
monotherapy with a carbapenem in sufficiently high doses
to achieve effective concentrations at the site of infection is
recommended. Preference is generally given to meropenem
over other group 2 carbapenems as meropenem is less suscep-
tible to OXA β-lactamases [144] and more clinical and trans-
lational evidence is available. Although many MDR AB iso-
lates retain susceptibility to sulbactam, empiric therapy with
carbapenems is preferred over sulbactam for several reasons:
{1} carbapenems have broader spectrum of activity for em-
piric coverage of critically ill patients, {2} PK/PD targets of
carbapenems are more easily achieved than sulbactam (>
40%ƒT> MIC vs. > 40–60%ƒT> MIC, respectively), and {3}
the increased incidence of acquired β-lactamases that
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hydrolyze sulbactam in MDR AB (e.g., TEM, ADC, OXA)
presents a concern for its efficacy in monotherapy [22, 25, 26,
29, 81].

When β-lactam resistance is suspected or MICs preclude
the use of carbapenems, polymyxin-based combination thera-
pies are recommended. Polymyxin B is the preferred agent
over colistin due to its more predictable PK profile and de-
creased risk of nephrotoxicity [105]. Polymyxins should be
used in combination with other agents for serious AB infec-
tions in order to achieve synergy and prevent the development
of resistance. For empiric coverage of presumed CRAB in
severe infections, the combination of polymyxin B (2.0–2.5
mg/kg loading dose, 1.25–1.5 mg/kg every 12 h; see poly-
myxin guidelines [105]) and minocycline (400 mg loading
dose, 200 mg every 12 h) is suggested given their reliable
in vitro susceptibility.

Definitive Therapy

For severe infections due to AB with meropenem MIC ≤ 8
mg/L, meropenem is recommended as monotherapy given as
high dose extended infusion [76, 78, 93, 94, 106]. High dose
extended infusion ampicillin-sulbactam with or without addi-
tional agents may also be an alternative for susceptible isolates
[77, 78, 93, 106]. In cases of CRAB where combination ther-
apy was used empirically, therapy should be consolidated to
two or fewer agents from different classes with known in vitro
activity [77, 94, 107, 145]. Generally, this will be a combina-
tion of a polymyxin plus a secondary agent to which the
CRAB is susceptible, if available. When polymyxins or ami-
noglycosides are used systemically in pneumonia or meningi-
tis/ventriculitis, adjunctive inhaled or intrathecal/
intraventricular administration is recommended, respectively
[76–78, 105, 106].

Polymyxin monotherapy may be an option in cases where
it is the only susceptible agent or there are no other active
agents available; however, a second agent (e.g., minocycline
or ampicillin/sulbactam) should still be utilized if possible for
the goal of achieving synergy [81]. Synergy is often strain-
specific and selection of agents to use in combination with a
polymyxin should consider patient-specific factors such as the
source of the infection and potential toxicities of the combi-
nation [94, 105]. If possible, isolates should be tested for
in vitro synergy in the clinical microbiology laboratory to
inform the clinical management of the patient. When tested
in vitro against MDR AB, meropenem, sulbactam, and
minocycline have all shown synergistic effect when combined
with polymyxins [81]. Triple combination therapy has also
shown significant promise in the ability to eradicate AB that
is resistant to all three agents, such as with the combination of
polymyxin B, meropenem, and ampicillin/sulbactam [79].

Finally, in patients for whom oral therapy is considered to
complete a treatment course, monotherapy with minocycline

or ciprofloxacin/levofloxacin may be an acceptable option in
susceptible isolates following clinical improvement after in-
travenous therapy.

Conclusion

The management of MDR AB infections has continued to be
exceptionally challenging owing to a limited understanding of
the pathogen’s virulence, its near limitless ability to possess
and acquire resistance, a paucity of adequate pre-clinical and
clinical data, and a dearth of novel treatment options. At pres-
ent, employing RDTs and aggressive antimicrobial combina-
tion therapy up front with de-escalation based on genotypic/
phenotypic susceptibilities is optimal for managing serious
MDR AB infections. Importantly, several guidelines are now
available that may help to standardize the treatment of AB and
guide the use of agents with narrow therapeutic windows such
as the polymyxins. Finally, continued advances in both the
antimicrobial and non-antimicrobial treatment pipelines for
AB will be essential for combating this difficult to treat
pathogen.
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