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Abstract Treatment of enterococcal infections has long
been recognized as an important clinical challenge, particularly
in the setting of infective endocarditis (IE). Furthermore, the
increase prevalence of isolates exhibiting multidrug resistance
(MDR) to traditional anti-enterococcal antibiotics such as
ampicillin, vancomycin and aminoglycosides (high-level resis-
tance) poses immense therapeutic dilemmas in hospitals around
the world. Unlike IE caused by most isolates of Enterococcus
faecalis, which still retain susceptibility to ampicillin and
vancomycin, the emergence and dissemination of a hospital-
associated genetic clade of multidrug resistant Enterococcus
faecium, markedly limits the therapeutic options. The best
treatment of IE MDR enterococcal endocarditis is unknown
and the paucity of antibiotics with bactericidal activity against
these organisms is a cause of serious concern. Although it
appears that we are winning the war against E. faecalis, the
battle rages on against isolates of multidrug-resistant
E. faecium.
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Introduction

Enterococci are gram-positive commensal bacteria that form
part of the normal gastrointestinal flora of humans and many
animals. These organisms have been known to cause endo-
carditis since 1899, when the first detailed clinical and
pathological description of a strain of what almost certain
was Enterococcus faecalis (termed “Microcococcus
zymogenes‘”) was published [1]. Apart from infective endo-
carditis (IE), enterococci are also known to cause several
other diseases (especially in the nosocomial environment)
including urinary tract infections, bacteremia and meningitis,
among others.
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Difficulties in the treatment of enterococcal IE have been
recognized for many years and relate to the frequent lack of
bactericidal activity of penicillin or ampicillin when used as
monotherapy, the toxicity incurred with the recommended
combination of penicillin plus an aminoglycoside, and the
increased reports of high-level resistance to aminoglyco-
sides. A more recent problem derives from the increase in
the number of nosocomial infections caused by multidrug-
resistant (MDR) Enterococcus faecium isolates belonging to
a well characterized hospital-associated (HA) clade [2•, 3];
indeed, ampicillin and vancomycin, which formerly were
the two most commonly used “first-line” antibiotics for the
treatment of enterococcal IE, are now obsolete for E. faecium
endocarditis due to the very high prevalence of resistance to
these agents. Another important factor is the lack of reliable
bactericidal options with well-established clinical activity
against MDR E. faecium. This problem dramatically reduces
the therapeutic alternatives for IE and clinicians are forced to
make decisions based on in vitro activity and limited clinical
data [4].

In this review, we will focus on the epidemiology and
clinical aspects of enterococcal IE, with special emphasis on
the limitations of available therapeutic options. We will divide
this war in two battlefronts, one being fought against
E. faecalis, in which we still seem to have the upper hand,
and the other against E. faecium, in which we have lost
considerable ground. Winning the “war” against enterococcal
IE will depend on the development of novel therapeutic strat-
egies in the future.

Pathogenesis of Enterococcal IE

Several pathogenicity factors have been described in entero-
cocci. Table 1 summarizes determinants that have been
shown to contribute to experimental pathogenesis of entero-
coccal endocarditis (for a more detailed description readers
are directed to a recently published review [5••]). Among
the best characterized are the cell surface adhesins, which
are structures of the cell envelope of enterococci that mediate
the attachment to tissues (e.g., the endothelium of the heart
and blood vessels) and contribute to the production of biofilm:
two critical steps in the pathogenesis of IE [6].

Aggregation substance (AS) comprises a family of
enterococcal surface adhesins, one of which has been shown
to have a role in E. faecalis IE. They are cell wall-anchored
LPxTG proteins, encoded on pheromone-responsive
plasmids, that can enhance adherence to proteins of the
extracellular matrix as well as serum proteins, favor cell
clumping and increase biofilm formation [7–9]. Although
the presence of AS is not required for the development of
IE, animals infected with E. faecalis strains containing a
member of the AS family (Asc-10) produced larger

vegetations and higher bacterial loads as compared with
controls lacking Asc-10 [10]. The use of IgG antibodies
against AS has not been useful in animal models of IE
(in fact it could increase enterococcal aggregation), however,
passive immunization of rabbits with the Fab fragment
of IgG anti-AS attenuated the severity of E. faecalis IE;
moreover, Fab fragments prevented enterococcal aggre-
gation in vitro [11].

Several well-documented enterococcal surface adhesins
belong to the MSCRAMM family (microbial surface com-
ponents recognizing adhesive matrix molecules), a group of
surface proteins involved in the attachment of bacteria to a
wide range of proteins including collagen, fibrinogen,
laminin and fibronectin. They also have LPxTG motifs
and are thought to be important in early stages of infection.
Two of the most extensively studied enterococcal
MSCRAMMs are the collagen adhesin of E. faecalis (Ace)
and its homolog in E. faecium (Acm). Both Ace and Acm
deletion mutants were substantially attenuated in a rat
enterococcal IE model compared with parental strains [12,
13]. Also, passive and active immunization against Ace
significantly protected rats from acquiring the infection
when compared to non-immunized controls [13].

Another important surface adhesin is the enterococcal
surface protein (Esp) of E. faecalis and its homolog in
E. faecium (Espfm, which shares 89 % amino acid identity
with Esp). These are cell wall anchored LPxTG proteins
frequently found in clinical strains that have been shown to
be involved in biofilm formation and in the pathogenesis of
experimental enterococcal infections [14], e.g., in a rat model
of IE fewer colony-forming units (CFU) were recovered from
the vegetations of animals infected with mutants of E. faecium
lacking Espfm, as compared to those infected with wild-type
strains [15].

Some enterococcal LPxTG proteins are known for their
ability to form pili, which are filamentous structures pro-
truding from the cell surface that have been described in
both E. faecalis and E. faecium. The best characterized are
the E. faecalis Ebp (endocarditis and biofilm-associated pili)
proteins, which are important in cell adhesion, colonization
and biofilm formation [16, 17]. Non-piliated mutants of
E. faecalis were shown to be significantly attenuated in a
rat IE model. Similar results were obtained with mutants of
E. faecium and E. faecalis when testing their ability to
produce urinary tract infection in mice [18, 19].

Another important group of pathogenic determinants are
factors that are secreted and released from the cell and may
contribute to the pathogenesis of several enterococcal infec-
tions including IE. Among them, there is hemolysin/cytolysin,
a molecule frequently encoded by E. faecalis pheromone-
responsive plasmids that has been shown to act together with
AS in animal models of IE [20]. Another secreted factor
associated with pathogenesis of experimental IE is the
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gelatinase (GelE) enzyme, a protein that degrades host tissues
and promotes the release of DNA [21] (extracellular DNA,
eDNA), an important component of biofilm. Mutants lacking
gelE show decreased biofilm production and attenuation of IE
in rats and rabbits [22, 23]. A final protein that has been shown
important in experimental IE is Gls24, a stress-response pro-
tein that mediates resistance of E. faecalis to bile salts as well
as being important in a rat IE model [24].

Epidemiology and Clinical Characteristics
of Enterococcal IE

Multiple publications, including a large international prospec-
tive cohort that included 2781 cases, rank Enterococcus
spp. as the third most frequent etiologic agent of both native
and prosthetic valve IE, after Staphylococcus spp. and
Streptococcus spp. [6, 25, 26]. Recent studies suggest that

the frequency of enterococcal IE is increasing [27, 28], espe-
cially in the subgroup of health-care associated IE, where
enterococci are considered the second most frequent etiologic
agents, surpassed only by staphylococci [29–31]. Moreover,
enterococci are considered the second leading cause of noso-
comial infections in the United States (after staphylococci),
including catheter-associated bacteremias [32]. The frequency
with which enterococcal bacteremia results in IE varies widely
in different publications [33, 34]. Risk factors for the devel-
opment of IE in patients with enterococcal bacteremia include
a history of pre-existent valvular heart disease, prosthetic
valve and infection with E. faecalis [35, 36]. Enterococcal
IE often occurs in older patients with underlying diseases and
prior valvular damage or a prosthetic valve, affects predomi-
nantly the aortic or mitral valve and is rarely seen in the setting
of right-sided endocarditis [37]. A prior risk group was wom-
en of childbearing age but this situation has been rare during
the last years, presumably because of improvements in perinatal
care, in antimicrobial use and a decrease in rheumatic heart
disease. Themore commonly described sources of enterococcal
bacteremia are indwelling catheters, the gastrointestinal and
urinary tracts (with an important association with invasive
procedures) and anatomical abnormalities, including the
presence of malignant or inflammatory lesions [38–40].

The clinical presentation of enterococcal IE is usually
subacute, with fever and the presence of a cardiac
murmur as the most common findings in the physical
examination. Classical signs of IE such as Osler nodes
or Roth spots are less frequently found. The main compli-
cation of enterococcal IE is heart failure, which occurs in
almost half of the patients and has an important impact on
outcome. Despite this, mortality rates of enterococcal IE are
lower than in other causes of endocarditis, especially when
comparing to S. aureus [41].

An important aspect in the epidemiology of enterococcal
IE is the increase in infection caused by MDR E. faecium.
This species shift has important clinical consequences since
most of the MDR enterococci are E. faecium, while over
90 % of the E. faecalis isolates remain susceptible to ampi-
cillin and vancomycin. Indeed, the first cases of IE due to
vancomycin-resistant enterococci (VRE) were published in
the late 90s and since then the number of reports has risen
[42, 43]. Clinical descriptions of the characteristics of VRE
in patients with IE are scarce, but the history of organ
transplantation (mainly liver), hemodialysis and the pres-
ence of a central venous catheter are considered important
risk factors for the development of VRE IE [44, 45]. Patients
with VRE IE are similar to those with endocarditis due to
vancomycin-susceptible enterococci in terms of age of pre-
sentation, sex and clinical characteristics [44]. Forrest et al.
compared the clinical characteristics and outcomes of
patients with E. faecium and E. faecalis VRE IE, showing
a higher mortality (p00.002) and a longer duration of

Table 1 Pathogenic determinants shown to play a role in the in vivo
pathogenesis of enterococcal IE

Pathogenic
determinant

Description and role in enterococcal IE

• Aggregation
substance

• Cell surface determinant that enhances
adherence, favors clumping and increases
biofilm formation

• Not critical for IE development, but in animal
models E. faecalis endocarditis showed larger
vegetations and higher bacterial loads in the
presence of AS

• Esp and Espfm • Affect biofilm formation

• An Espfm deletion mutant produced attenuated
endocarditis in rats

• Ace and Acm • Belong to the family of MSCRAMMs and
mediate adherence to collagen and laminin

• Deletion mutants of ace and acm were attenuated
in endocarditis in rats and immunization against
Ace and Acm protected animals from
developing the infection

• Ebp and Ebpfm
proteins

• Form pili and play a role in biofilm formation
and adherence

• A non-piliated mutant of E. faecalis produced
an attenuated form of endocarditis in rats

• Gelatinase • Secreted factor that degrades host tissues,
promotes eDNA release and has a role in
clearing misfolded proteins

• Affects translocation through intestinal cells
and affects biofilm formation

• Rabbits and rats infected with mutants lacking
gelatinase produced a milder form of
endocarditis

• Gls24 • Stress-response protein

• Mediates resistance of E. faecalis to bile salts

• Role in the pathogenesis of experimental
endocarditis in a rat model
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bacteremia (p00.002) in patients with E. faecium IE [45],
which may be due to the limited availability of effective
antimicrobials to treat this MDR species.

Treatment of Enterococcal IE

The management of enterococcal IE has long been recog-
nized as a challenging clinical problem. Endovascular infec-
tions, such as IE, are entities in which bactericidal therapy
appears to be of paramount importance for eradication of
infecting organisms and clinical cure. Indeed, unlike the
clinical success initially observed with penicillin in the
treatment of staphylococcal and streptococcal IE, failure
rates with this compound in enterococcal IE were unacceptably
high [46]. The poor performance of penicillin monotherapy has
been attributed to the “natural” tolerance of many enterococcal
isolates to β-lactams, which means that they do not achieve a
bactericidal effect even though they inhibit enterococcal
growth. The combination of penicillin plus streptomycin was
empirically found to cure the patients who were not improving
with penicillin alone [47] and was subsequently shown to have
synergistic bactericidal activity in vitro [48]. The development
of high-level resistance to streptomycin (which abolishes
synergism) led to the use of gentamicin, an aminoglycoside
for which resistance was rare at the time, and showed similar
results in terms of bactericidal effect [49]. Treatment of entero-
coccal IE with the combination of penicillin plus streptomycin
or gentamicin has been evaluated in several studies [50, 51] and
became the standard of care many decades ago for patients with
IE due to enterococci in the absence of high-level resistance to
aminoglycosides (HLRAG) [52].

Treatment of E. faecalis IE: Winning the Battle?

Except for a few isolates of β-lactamase producers
described in outbreak situations [53], most E. faecalis strains
have remained susceptible to penicillin and ampicillin. Thus,
these β-lactams continue to be part of the recommended
regimens for the treatment of E. faecalis IE in combination
with an aminoglycoside (Fig. 1). However, a pressing issue is
the development of HLRAG in clinical isolates of E. faecalis,
which is defined, for streptomycin, as anMIC>1000 mg/L by
broth microdilution and 2000 mg/L by agar dilution and, for
gentamicin, as an MIC>500 mg/L by any of the above-
mentioned methods. The presence of HLRAG abolishes
synergism of the aminoglycosides with β-lactams, precluding
the achievement of bactericidal therapy and, ultimately,
reducing the likelihood of cure in IE. Isolates exhibiting
HLR to streptomycin often harbor ribosomal mutations
and/or have acquired an aminoglycoside nucleotidyltransfer-
ase [54]. On the other hand, the most common cause of HLR to
gentamicin is the presence of a bifunctional aminoglycoside-

modifying enzyme that confers resistance to all commercially
available aminoglycosides, except for streptomycin. Testing
for the presence of HLRAG to gentamicin and streptomycin
should be routinely performed in all clinical enterococcal iso-
lates causing an endovascular infection.

The widespread dissemination of aminoglycoside resis-
tance determinants coupled with their important toxicity
profile has limited the clinical use of these compounds in
critically ill patients. Therefore, other regimens have been
used in order to avoid the aminoglycosides and still obtain
bactericidal therapy. The combination of ampicillin and
cefotaxime has been shown to have enhanced bactericidal
effect in vitro against an E. faecalis strain with HLRAG [55]
and a similar combination was effective in vivo in a rabbit
model of endocarditis with an E. faecalis isolate exhibiting
HLRAG [56]. More importantly, a multicenter, non-
randomized, open-label study evaluating the combination
of ceftriaxone (2 g every 12 h) plus ampicillin (2 g every
4 h), in the treatment of IE caused by E. faecalis isolates with
and without HLRAG showed that this combination produced
clinical cure at the end of therapy in 71.4 % of the patients
infected with isolates exhibiting HLRAG and in 72.7 % of
those with IE due to strains without HLRAG [57•]. In the
same study, the clinical cure rate at 3 months for all the
episodes was 67.4 %. Of note, this synergistic effect has not
been shown with E. faecium. Data about other therapeutic
options are scarce and mainly come from case reports and in
vitro studies. Successful treatment of a patient with IE caused
by HLRAG E. faecalis has been reported with the combina-
tion of ampicillin, imipenem and vancomycin [58]. Addition-
ally, the use of ampicillin plus ofloxacin was shown to be
synergistic in vitro, achieving bactericidal activity, and to
successfully clear the bacteremia in a patient with E. faecalis
IE exhibiting HLRAG [59].

Treatment of E. faecium IE: The War is Still Raging

E. faecium infections pose very difficult therapeutic dilemmas
for clinicians as treatment options have been reduced dramat-
ically during the last decade. In contrast to E. faecalis, over
90 % of E. faecium clinical isolates in the USA, the vast
majority of which belong to a HA clade, are reported to be
ampicillin-resistant, making this antibiotic obsolete for the
treatment of E. faecium IE. The mechanism of ampicillin
resistance is related to differences in penicillin binding protein
5 (PBP5) ofE. faecium strains of the HA clade, called PBP5R,
which has a lower affinity for β-lactams compared with the
PBP5S of strains of the community-associated clade, which
are typically susceptible to ampicillin [2•, 60]. The HA strains
frequently exhibit high-level resistance to ampicillin, with
MICs>64mg/L. In certain instances, isolates exhibiting lower
MICs (≤ 64 mg/L) may still respond to therapy with higher
doses of ampicillin (ca. 30 g/day) in combination with

342 Curr Infect Dis Rep (2012) 14:339–349



aminoglycosides (provided that the organism does not exhibit
HLRAG) [61] (Fig. 2). Unfortunately, E. faecium isolates with
ampicillin MICs≤64 mg/L are seen less frequently [62]. For
many years, vancomycin was the alternative of choice when
dealing with ampicillin-resistant E. faecium infections;
however, modern-day E. faecium isolates are often resistant
to vancomycin, particularly in the USA (ca. 80%), making this
antibiotic useless for the majority of E. faecium IE patients.

Streptogramins: Quinupristin-Dalfopristin

Quinupristin-dalfopristin (Q/D) is composed of 30 %
quinupristin (streptogramin B) and 70 % dalfopristin (strep-
togramin A), and has activity against most vancomycin-
resistant E. faecium, but not E. faecalis, which are intrinsi-
cally resistant. Q/D inhibits protein synthesis by interacting
with the 50 S ribosomal subunit and was the first agent to
receive FDA approval for the treatment of VRE infections
[63]. Its activity against vancomycin-resistant E. faecium
was tested in non-comparative, multicenter, prospective
studies enrolling patients with severe E. faecium infections,
with an overall success rate of 65 % [64, 65]. Of note, the
clinical success against VRE bacteremia of unknown origin
was 72 % [64], however, the number of patients with IE was
too low to extrapolate these results to this group of patients.
One important limitation of this drug is the high frequency
of secondary effects, particularly phlebitis, arthralgia and
myalgia, which frequently leads to treatment interruptions
[66, 67]. In addition, several mechanisms of E. faecium
resistance to Q/D have been described including drug mod-
ification, inactivation and efflux pumps [68••]. Among
these, ribosomal methylases encoded by the erm genes are
frequently found in clinical isolates of E. faecium and have

been shown to decrease Q/D bactericidal activity in vitro
and in a rabbit model of IE [69]. Although Q/D is one of the
American Heart Association recommended alternatives for
the treatment of MDR E. faecium IE [52], evidence for its
efficacy as a single agent is limited. Published reports sug-
gest that Q/D is most useful when used in combination and
monotherapy is discouraged. Indeed, treatment with Q/D
alone was shown to be inferior to the combination of Q/D
plus imipenem or levofloxacin in a rabbit model of
E. faecium IE [70]. The combination of Q/D plus doxycy-
cline and rifampin was able to clear the bacteremia in a
patient with VRE faecium IE in which microbiological
failure had been observed with Q/D alone [71]. Moreover,
the combination of Q/D and high-dose ampicillin (24 g/day)
was successfully used in a patient with persistent bacteremia
with VRE and ampicillin-resistant (MIC>32 mg/L) E. faecium
who had failed linezolid monotherapy [72] and in an immuno-
compromised patient with a relapse of VRE IE initially treated
with doxycycline plus gentamicin and high-dose ampicillin
[73]. Therefore, the above limited but compelling clinical data,
suggest that Q/D, if used, should be part of a combination
therapy in the treatment of E. faecium endocarditis (Fig. 2).

Oxazolidinones: Linezolid

Linezolid is a bacteriostatic compound that inhibits protein
synthesis by interfering with the A site of bacterial ribosomes.
It has activity against a wide range of Gram positive micro-
organisms and has been FDA-approved for the treatment of
VRE infections [68••]. Enterococcal resistance to linezolid
remains rare, but it has been well described, mostly related
to mutations in the genes encoding domain V of the 23 S
rRNA [74]. Also, resistance due to the acquisition of the cfr

Fig. 1 Suggested therapeutic alternatives for the treatment of E. fae-
calis IE with isolates exhibiting different susceptibility patterns;
authors preferred options are bolded and underlined. (1) Rare cases
of β-lactamase producing strains. (2) Consider doses of 8–12 mg/kg.
For penicillin allergy, vancomycin or desensitization is suggested. If

unable to desensitize, high-dose daptomycin plus gentamicin or strep-
tomycin (in the absence of HLRAG) or high-dose daptomycin plus
another agent (if the organism exhibits HLRAG) should be considered.
HLRAG high-level resistance to aminoglycosides
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gene, which encodes a methyltransferase that modifies the
23 S rRNA, has been reported in human isolates of S. aureus
and, recently, in a clinical strain of E. faecalis [75, 76].

Together with Q/D, linezolid is one of the alternatives
suggested for the treatment of MDR enterococcal IE;
however, evidence supporting its use in endovascular infec-
tions is limited. There are no randomized control trials and a
small, open-label study published in 2003, reported the
efficacy of linezolid for the treatment of VRE faecium
bacteremia with rates of clinical and microbiological cure
of 78 % and 85 %, respectively. In the subgroup of endo-
carditis, out of 13 patients with VRE IE, 10 (76.9 %)
achieved clinical cure [77]. A systematic review published
in 2006 attempted to evaluate the clinical efficacy of line-
zolid in the treatment of enterococcal IE. This study found
that 7 out of 8 cases improved or were cured with linezolid
[78]; four of the included cases were caused by E. faecalis
(two VRE) [79–82] and the rest of them were cases of IE
due to vancomycin-resistant E. faecium [83–86]. Conversely,
four cases of linezolid failure in the treatment of VRE IE (two
E. faecalis and two E. faecium) have recently been published
[44, 87–89]. Therefore, with the available clinical data, it is
very difficult to draw strong conclusions regarding the clinical
efficacy of linezolid as monotherapy for E. faecium IE. Thus,
treatment of E. faecium IE with linezolid should be reserved
for cases in which no other therapeutic options are available,
and, perhaps, as part of a combination regimen (Fig. 2).

Lipopeptides: Daptomycin

Daptomycin (DAP) is a cyclic lipopeptide whose bactericidal
activity depends on its insertion into the cell membrane in a
calcium-dependent manner. DAP has dose-dependent

bactericidal activity against most Gram-positive agents, includ-
ing vancomycin and ampicillin-resistant enterococci [90]. It is
approved for the treatment of SSTI including vancomycin-
susceptible E. faecalis and for S. aureus bacteremia and right-
sided IE. The use of DAP for the management of E. faecium
infections, regardless of vancomycin-susceptibility, is off-label.
The great majority of enterococcal isolates remain DAP-
susceptible; however, several reports of isolates developing
DAP non-susceptibility during therapy have been documented
[91, 92]. The mechanisms of DAP-resistance in enterococci
remain to be completely elucidated, but mutations in two
groups of genes that are likely to be involved in the bacterial
cell envelope response to antibiotics and cell membrane phos-
pholipid metabolism were recently shown to have a role in
DAP-resistance in clinical isolates of both E. faecalis and E.
faecium [93•, 94].

DAP has been shown to have good penetration into endo-
cardial vegetations [95], a property that, together with its
bactericidal activity against enterococci, makes it attractive
when dealing with MDR enterococcal IE. Indeed, DAP ther-
apy was shown to be useful against VRE faecium in an in vitro
endocardial simulated vegetation model [96] and has been
successfully used as single therapy against E. faecium and E.
faecalis [vancomycin-susceptible and VRE] in a rat IE model
[97]. In addition, DAPmonotherapy was shown to be superior
to vancomycin and to the combination of ampicillin plus
gentamicin for the treatment of rats with IE due to a
penicillin-resistant E. faecalis with HLRAG [98].

Although there are no prospective randomized-controlled
studies evaluating the efficacy of DAP for the treatment of
IE, several reports of successful use for the treatment of
MDR enterococcal IE have been published. Among 22
patients with enterococcal IE treated with DAP reported in

Fig. 2 Suggested therapeutic
regimens for the treatment of E.
faecium IE with isolates
exhibiting different
susceptibility patterns, Authors’
preferred choices are bolded
and underlined. (1) Consider
doses up to 30 g/day. (2)
Consider doses of
10 -12 mg/kg. (3) If imipenem
MIC<32 mg/L. (4) Recom-
mended by the American Heart
Association for the treatment of
IE. (5) Agents with possible
activity include ampicillin,
doxycycline, rifampin, tigecy-
cline and fluoroquinolones.
HLRAG high-level resistance to
aminoglycosides; DAP dapto-
mycin; Q/D quinupristin-
dalfopristin
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a European registry (18 E. faecalis and 4 E. faecium), the
success rate was 73 %, but no information regarding dosage
or combination therapy was given [99]. Also, the combination
of DAP and tigecycline was reported to be successful in three
different patients with VRE faecium IE [100–102] and there are
unpublished data of a patient with E. faecalis VRE IE and
persistent bacteremia while on DAP 8 mg/kg, that was success-
fully treated with the combination of DAP 9 mg/kg plus strep-
tomycin. On the other hand, there are four cases of
microbiological failure of DAP (one received 4 mg/kg and the
rest 6 mg/kg) when treating DAP-susceptible VRE faecium IE
[44, 89, 103, 104•, 105]. Clinical cure was achieved in three of
these cases after increasing DAP dose and combining it with
high-dose ampicillin in one case, gentamicin plus ampicillin in
another and doxycycline in the third [103, 104•, 105]. Inter-
estingly, Sakoulas et al. were able to clear the bloodstream of a
patient with IE caused by an ampicillin-resistant VRE faecium
IE by adding ampicillin (1 g every 6 h) to daptomycin (12 mg/
kg every 48 h). The combination was shown to be synergistic
in vitro in spite of the fact that the isolate exhibited ampicillin
MICs>256 mg/L. Moreover, using fluorescent-labeled DAP,
they were able to show that ampicillin increased the cell
membrane binding of DAP to the enterococcal cells [104•].
As mentioned, all the reported failures were using DAP at a
dose of 6 mg/kg (approved dose for S. aureus bacteremia
and right-sided IE) and microbiological eradication was
obtained when the dose used, in combination with another
agent, was increased to 8 and 12mg/kg [103, 104•]. This issue
is of particular interest since the high protein binding of
DAP in vivo (decreasing the free fraction of the drug) has
been suggested to contribute to clinical failure and higher
doses could potentially overcome this problem [89, 106].
Indeed, using a simulated model of endocardial vegetations,
Hall et al., showed that DAP displayed a dose-dependent
bactericidal effect and that high-dose daptomycin regimens
demonstrated an enhanced pharmacodynamic profile and
were the most bactericidal regimens against VRE [107]. Also,
it is important to note, that the DAP MIC90 for enterococci,
especially E. faecium, is higher than that of staphylococci
(4 mg/L and 0.5 mg/L, respectively), supporting the concept
that higher doses of DAP may be needed for the management
of enterococcal IE [108].

Thus, the limited data available suggest that daptomycin
as single therapy should be used with caution and, perhaps,
a dose of 8–12 mg/kg in combination with ampicillin,
tigecycline or aminoglycosidesmay offer a clinical advantage.
Prospective clinical studies to support the use of these combi-
nations are warranted.

Glycylcyclines: Tigecycline

Tigecycline is a bacteriostatic, semi-synthetic tetracycline-
analogue derived from minocycline that binds to the bacterial

30 S ribosomal subunit, inhibiting protein synthesis. It is active
against a wide range of Gram-positive and Gram-negative
bacteria and was approved for the treatment of intra-
abdominal infections and skin and soft tissue infections (SSTI)
including those where vancomycin-susceptibleE. faecaliswere
present [109]. Tigecycline is active in vitro against VRE, but its
use remains off-label for the management of these infections.

Enterococcal resistance to tigecycline is uncommon. The
first resistant clinical isolate of E. faecalis was reported on
2008 [110] and 7 other tigecycline-resistant E. faecalis
isolates were recently identified, although only four of them
were recovered from humans (two from clinical samples)
[111]. The mechanisms of enterococcal resistance to tigecy-
cline are unknown.

Using a rat model of endocarditis, tigecycline monotherapy
produced a 2-log10 reduction in the bacterial CFU counts in
cardiac vegetations, compared to untreated controls, for both
vancomycin-susceptible and resistant E. faecalis [112]. Simi-
larly, tigecycline produced a 4.2-log10 reduction in CFU counts
on the vegetations of rabbits infected with a tetracycline-
resistant E. faecium isolate compared with start-of-therapy
controls; however, no difference was detected when comparing
tigecycline-treated and untreated animals with IE caused by
tetracycline-susceptible strains of E. faecalis [113].

The combination of tigecycline with several drugs,
including vancomycin, gentamicin, doxycycline and rifampin
has been shown to be additive in vitro against Enterococcus
spp. [114]. Of note, three patients with MDR E. faecium IE
have been successfully treated with a combination of tigecy-
cline plus daptomycin (DAP) [100–102]. In summary, although
tigecycline has good and homogenous penetration into the
cardiac vegetation, the use of this drug as monotherapy is
discouraged because of the following: i) it is bacteriostatic, ii)
the maximum serum concentrations achievable with the rec-
ommended doses are low (ca. 1 mg/L) which may be a signif-
icant shortcoming in the treatment of IE, iii) emergence of
resistance during therapy is a concern since it has been well
reported in Gram-negative bacteria and has also been docu-
mented in an E. faecalis strain [68••, 113], and iv) there is
paucity of clinical data to support the use of tigecycline for
IE. Therefore, the role of this compound in the treatment of IE
is unclear but may offer promise when used as part of a
combination regimen.

Conclusions

The treatment of MDR enterococci causing IE has become an
important clinical challenge due mostly to the lack of effective
therapies and the paucity of clinical data. Most worrisome is
the increasing prevalence of MDR E. faecium isolates
causing IE, since no standard therapy has been proven to
work effectively. Anti-enterococcal antibiotics [i.e., ampicillin,

Curr Infect Dis Rep (2012) 14:339–349 345



aminoglycosides and vancomycin] used in the past for the
treatment of enterococcal IE are now obsolete for E. faecium
IE. The two antibiotics that are approved for the treatment of
VRE infections and suggested in the endocarditis guidelines for
therapy (i.e., linezolid and Q/D) have important limitations of
activity against E. faecium and the emergence of side effects is
common in prolonged course required for IE. The role of anti-
biotics such as daptomycin or tigecycline for the treatment of IE
is still unclear but it is likely that, in order to win the war, novel
strategies that include combinations of agents may be required.
The search for the optimal therapy for MDR enterococcal IE
continues and the battle rages on.
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