Skip to main content

Advertisement

Log in

Wolbachia in filarial parasites: Targets for filarial infection and disease control

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes. These nematodes have evolved a mutualistic symbiosis with intracellular bacteria of the genus Wolbachia, which are required for nematode embryogenesis and survival. The essential role of these bacteria in the biology of the nematode and their demonstrated involvement in the pathogenesis of filariasis make Wolbachia a promising novel chemotherapeutic target for the control of filarial infection and disease. This article reviews the recent findings, which highlight potential processes that form the basis of the symbiosis, the role of Wolbachia in filarial pathogenesis, and the efficacy of Wolbachia-targeted antibiotic chemotherapy in human trials. Future prospects for the development of an anti-Wolbachia treatment regimen suitable for integration into mass drug administration programs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Molyneux DH, Bradley M, Hoerauf A, et al.: Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 2003, 19:516–522.

    Article  PubMed  CAS  Google Scholar 

  2. Borsboom GJ, Boatin BA, Nagelkerke NJ, et al.: Impact of ivermectin on onchocerciasis transmission: assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West-Africa. Filaria J 2003, 2:8.

    Article  PubMed  Google Scholar 

  3. Dadzie Y, Neira M, Hopkins D: Final report of the Conference on the eradicability of Onchocerciasis. Filaria J 2003, 2:2.

    Article  PubMed  Google Scholar 

  4. Stolk WA, Swaminathan S, van Oortmarssen GJ, et al.: Prospects for elimination of bancroftian filariasis by mass drug treatment in Pondicherry, India: a simulation study. J Infect Dis 2003, 188:1371–1381.

    Article  PubMed  CAS  Google Scholar 

  5. Michael E, Malecela-Lazaro MN, Simonsen PE, et al.: Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis 2004, 4:223–234.

    Article  PubMed  Google Scholar 

  6. Awadzi K, Attah SK, Addy ET, et al.: Thirty-month follow-up of sub-optimal responders to multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 2004, 98:359–370.

    Article  PubMed  CAS  Google Scholar 

  7. Awadzi K, Boakye DA, Edwards G, et al.: An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 2004, 98:231–249.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor MJ, Bandi C, Hoerauf A: Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 2005, 60:245–284.

    Article  PubMed  Google Scholar 

  9. Fenn K, Blaxter M: Are filarial nematode Wolbachia obligate mutualist symbionts? Trends Ecol Evol 2004, 19:163–166.

    Article  PubMed  Google Scholar 

  10. Foster J, Ganatra M, Kamal I, et al.: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biology 2005, 3:e121.

    Article  PubMed  Google Scholar 

  11. Pfarr K, Hoerauf A: The annotated genome of Wolbachia from the filarial nematode Brugia malayi: what it means for progress in antifilarial medicine. PLoS Med 2005, 2:e110.

    Article  PubMed  Google Scholar 

  12. Fenn K, Blaxter M: Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol 2006, 22:61–65.

    Article  Google Scholar 

  13. Heider U, Blaxter M, Hoerauf A, Pfarr KM: Differential display of genes expressed in the filarial nematode Litomosoides sigmodontis reveals a putative phosphate permease up-regulated after depletion of Wolbachia endobacteria. Int J Med Microbiol 2006, 296:287–299.

    Article  PubMed  CAS  Google Scholar 

  14. Townson S, Tagboto S, McGarry HF, et al.: Onchocerca parasites and Wolbachia endosymbionts: evaluation of a spectrum of antibiotic types for activity against Onchocerca gutturosa in vitro. Filaria J 2006, 5:4.

    Article  PubMed  Google Scholar 

  15. Ghedin E, Wang S, Foster JM, Slatko BE: First sequenced genome of a parasitic nematode. Trends Parasitol 2004, 20:151–153.

    Article  PubMed  CAS  Google Scholar 

  16. Rao R, Moussa H, Vanderwaal RP, et al.: Effects of gamma radiation on Brugia malayi infective larvae and their intracellular Wolbachia bacteria. Parasitol Res 2005, 97:219–227.

    Article  PubMed  CAS  Google Scholar 

  17. Rao RU, Atkinson LJ, Vanderwall RP, Weil GJ: Brugia malayi: effects of gamma radiation on adult worms and their intracellular Wolbachia bacteria. Exp Parasitol 2005, 109:87–93.

    Article  PubMed  Google Scholar 

  18. Hoerauf A, Satoguina J, Saeftel M, Specht S: Immunomodulation by filarial nematodes. Parasite Immunol 2005, 27:417–429.

    Article  PubMed  CAS  Google Scholar 

  19. Gillette-Ferguson I, Hise AG, McGarry HF, et al.: Wolbachia-induced neutrophil activation in a mouse model of ocular onchocerciasis (river blindness). Infect Immun 2004, 72:5687–5692.

    Article  PubMed  CAS  Google Scholar 

  20. Gillette-Ferguson I, Hise AG, Sun Y, et al.: Wolbachia-and Onchocerca volvulus-induced keratitis (river blindness) is dependent on myeloid differentiation factor 88. Infect Immun 2006, 74:2442–2445.

    Article  PubMed  CAS  Google Scholar 

  21. Higazi TB, Filiano A, Katholi CR, et al.: Wolbachia endosymbiont levels in severe and mild strains of Onchocerca volvulus. Mol Biochem Parasitol 2005, 141:109–112.

    Article  PubMed  CAS  Google Scholar 

  22. Turner JD, Langley RS, Johnston KL, et al.: Wolbachia endosymbiotic bacteria of Brugia malayi mediate macrophage tolerance to TLR-and CD40-specific stimuli in a MyD88/TLR2-dependent manner. J Immunol 2006, 177:1240–1249.

    PubMed  CAS  Google Scholar 

  23. Debrah AY, Mand S, Specht S, et al.: Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filariasis. PLoS Pathog 2006, 2:e92.

    Article  PubMed  Google Scholar 

  24. Fenollar F, Maurin M, Raoult D: Wolbachia pipientis growth kinetics and susceptibilities to 13 antibiotics determined by immunofluorescence staining and real-time PCR. Antimicrob Agents Chemother 2003, 47:1665–1671.

    Article  PubMed  CAS  Google Scholar 

  25. Makepeace BL, Rodgers L, Trees AJ: Rate of elimination of Wolbachia pipientis by doxycycline in vitro increases following drug withdrawal. Antimicrob Agents Chemother 2006, 50:922–927.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor MJ, Makunde WH, McGarry HF, et al.: Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 2005, 365:2116–2121.

    Article  PubMed  CAS  Google Scholar 

  27. Hoerauf A, Mand S, Fischer K, et al.: Doxycycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol (Berl) 2003, 192:211–216.

    Article  CAS  Google Scholar 

  28. Debrah AY, Mand S, Marfo-Debrekyei Y, et al.: Assessment of microfilarial loads in the skin of onchocerciasis patients after treatment with different regimens of doxycycline plus ivermectin. Filaria J 2006, 5:1.

    Article  PubMed  Google Scholar 

  29. Hoerauf A, Mand S, Volkmann L, et al.: Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect 2003, 5:261–273.

    Article  PubMed  CAS  Google Scholar 

  30. Turner JD, Mand S, Debrah AY, et al.: A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin Infect Dis 2006, 42:1081–1089.

    Article  PubMed  CAS  Google Scholar 

  31. Stolk WA, de Vlas SJ, Habbema JD: Anti-Wolbachia treatment for lymphatic filariasis. Lancet 2005, 365:2067–2068.

    Article  PubMed  Google Scholar 

  32. Volkmann L, Fischer K, Taylor M, Hoerauf A: Antibiotic therapy in murine filariasis (Litomosoides sigmodontis): comparative effects of doxycycline and rifampicin on Wolbachia and filarial viability. Trop Med Int Health 2003, 8:392–401.

    Article  PubMed  CAS  Google Scholar 

  33. Bajpai P, Vedi S, Owais M, et al.: Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model. J Drug Target 2005, 13:375–381.

    Article  PubMed  CAS  Google Scholar 

  34. Gilbert J, Nfon CK, Makepeace BL, et al.: Antibiotic chemotherapy of onchocerciasis: in a bovine model, killing of adult parasites requires a sustained depletion of endosymbiotic bacteria (Wolbachia species). J Infect Dis 2005, 192:1483–1493.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Taylor PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, K.L., Taylor, M.J. Wolbachia in filarial parasites: Targets for filarial infection and disease control. Curr Infect Dis Rep 9, 55–59 (2007). https://doi.org/10.1007/s11908-007-0023-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-007-0023-2

Keywords

Navigation