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Abstract
Purpose of Review  The primary goal of this review article was to determine whether the three RAAS-associated SNPs, 
Renin-rs16853055, AGT-rs3789678 and ACE-rs4305 are genetically linked to the development of hypertension in preec-
lampsia. The secondary goal was to establish if there was a link between these SNPs and HIV infection.
Recent Findings  There is a paucity of findings related to the aforementioned SNPs and preeclampsia. There are no recent 
findings on the rs16853055 renin polymorphism. The rs3789678 angiotensinogen polymorphism correlated significantly 
with gestational hypertension. The rs4305 ACE polymorphism showed no significant association with the development of 
pregnancy-induced hypertension.
Summary  There are conflicting findings when determining the relationship between ethnicity and the predisposition of 
preeclampsia and hypertension in relation to the discussed RAAS-associated SNPs. To date, the association between RAAS-
associated SNPs and preeclamptic women co-morbid with HIV in South Africa has revealed that certain alleles of the AGT 
gene are more prominent in HIV-infected PE compared to normotensive pregnant HIV-infected women.
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Introduction

A healthy pregnancy outcome may be attributed to the 
homeostasis of the renin-angiotensin-aldosterone system 
(RAAS) [1] and its signalling cascade between mother and 
foetus [2]. During normal pregnancy, angiotensin-converting 
enzyme (ACE) is the only component of the RAAS that is 
downregulated [3]. However, in pathological complications 
such as preeclampsia (PE), the RAAS is dysregulated [1]  
since the levels of renin, angiotensin I (Ang I) and angi-
otensin II (Ang II) are reduced [4]. Preeclampsia is pri-
marily defined by new onset hypertension (systolic blood 
pressure ≥ 140 mmHg or diastolic pressure ≥ 90 mmHg) 

following 20 weeks of gestation, with or without proteinuria 
(≥ 30 mg/mmol obtained from a 24-h urine test) [5]. Utero-
placental dysfunction and maternal organ malfunction (kid-
ney, liver and haemostatic system) may/may not be present 
[6, 7]. Multiple factors influence the prevalence of PE such 
as parity, ethnicity, economic and social constraints and geo-
graphic location [5, 8]. In 2020, 95% of maternal mortality 
predominated in low-to-middle income countries [9].

Furthermore, maternal deaths emanating from PE devel-
opment are high with an incidence of 2–10% globally 
[10]. Approximately 1.8–16.7% of these deaths have been 
recorded in developing nations as opposed to 0.4% in devel-
oped populations [11]. There were 287,000 deaths recorded 
during and after delivery [9], with 86% of these deaths 
emerging from Southern Asia and sub-Saharan Africa [12]. 
Human immunodeficiency virus infection/acquired immuno-
deficiency syndrome (HIV/AIDS) is a primary public health 
concern, particularly in Africa [13]. Although HIV/AIDS 
is the primary cause of maternal mortality in South Africa 
(SA), epidemiological studies have revealed that PE is the 
direct cause of maternal mortality accounting for 14.8% of 
all deaths [14]. In SA, the province of KwaZulu-Natal has a 
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maternal death rate of 13.35% related to hypertensive disor-
ders of pregnancy (HDP) [15]. Additionally, the prevalence 
rate of HIV infection and PE is high in SA and thus is a 
serious public health challenge [16, 17]. Against this back-
drop, the synergy of HIV infection and PE warrants urgent 
attention; hence, this narrative review appraises the genetic 
polymorphisms of RAAS in pregnancy.

Single nucleotide polymorphisms (SNPs) are frequently 
occurring DNA sequence variations that culminate in 
genetic aberrations of a single nucleotide within the genomic 
sequence [18] (Fig. 1a). Single nucleotide polymorphisms 
may represent a genetic avenue to determine a women’s 
genetic predisposition to an illness or a condition as well as 
their response to therapeutics [19•]. Both the identification 
and subsequent characterisation of a multitude of SNPs are 
required prior to their frequent use as a genetic gold stand-
ard to identify PE predisposition. The frequencies of SNP 
alleles vary drastically amongst different ethnicities within 
the human population, suggesting that many investigations 
can be performed on different populations to attain a similar 
goal. There is a lack of research conducted on polymor-
phisms that predispose hypertension amongst individuals 
of African ancestry. Therefore, extensive genetic studies are 
required to assess the relationship between African popu-
lations and polymorphisms that increase susceptibility to 
hypertension and/or other disease development [20••].

This review firstly outlines the RAAS and its associated 
components in normal and then in PE co-morbid with HIV 
infection. Secondly, this manuscript highlights RAAS-asso-
ciated SNPs and their involvement in the development of 
hypertensive associated co-morbidities. The RAAS-associ-
ated SNPs are potential candidates for gene-related studies 
focused on both pregnancy-induced hypertension (PIH) and 
hypertension per se [21••].

The RAAS and its Components

The RAAS regulates blood pressure and water-electrolyte 
equilibrium via endocrine and intravascular pathways [22•]. 
Of note, dysregulation of components of RAAS has been 
implicated in both the first and second stage of PE develop-
ment [23••, 24•]. The RAAS is composed of a collection 
of hormones and enzymes that associate with each other 
(Fig. 1b), namely, renin (REN), angiotensinogen (AGT), 
angiotensin-converting enzyme (ACE), angiotensin I (Ang 
I), angiotensin II (Ang II), angiotensin receptors, aldoster-
one, aldosterone receptors and the mitochondrial assembly 
protein 1 receptor ( MAS) receptors [25].

Renin (REN) is produced, stored and secreted by the 
juxtaglomerular cells of the kidney [28]. It is an essential 
mono-specific enzyme that consists of 406 amino acids 
in addition to a pre-segment and pro-segment of 20–23 

and 43–47 amino acids, respectively [29]. It is composed 
of 12.5 kb of DNA consisting of ten exons [30] and eight 
introns [31].

Its precursor form, pro-renin, is produced in the adrenal 
gland, testis, placenta and eye and is activated by enzymes 
via receptor binding action [32]. Renin may also serve as 
a hormone due to its signalling function. It manifests its 
action by decreasing arterial blood pressure, salt chloride 
levels and sympathetic nervous system activity [33]. Sub-
sequently, REN hydrolyzes AGT (produced in the liver) 
[34], to angiotensin I (Ang I) via its leucine-valine bond 
[35]. Renin cleaves the N-terminal of AGT which results 
in the formation of angiotensin I [36].

Angiotensin-converting enzyme (ACE)—ACE consists 
of 25 introns and 26 exons [37]. The human form of this 
gene is located on chromosome 17q23.3 [37]. It is pro-
duced in the endothelial cells of the lungs and epithelial 
cells of kidneys where it converts inactive Ang I to active 
angiotensin II (Ang II). ACE cleaves two amino acids from 
the C-terminal of angiotensin I to make the peptide angio-
tensin II. Also, ACE has a degradative effect on active 
bradykinin (BK), which plays an important role in control-
ling blood pressure (Fig. 1b) [27, 38, 39].

Angiotensin I—Notably, angiotensin I is synthesised via 
REN by cleaving ten amino acids from its N-terminal [40]. Fur-
ther, it is also a source of several activated angiotensin peptides.

Angiotensin II—Notably, Ang II is a powerful vaso-
constrictor responsible for the elevation of blood pressure, 
thereby increasing the pulse speed of the cardiovascular 
system and triggering plasminogen activator inhibitor pro-
teins thus elevating pro-thrombotic capacity [41]. Although 
the half-life of Ang II is 30 s [42], it may be converted to 
angiotensin III (Ang III) by the action of aminopeptidase 
A on erythrocytes [43]. Angiotensin-converting enzyme-2 
(ACE2) plays an essential role in the RAAS as it has oppos-
ing functions to Ang II [44]. Therefore, both ACE and ACE2 
possess significant functions; in that, ACE indirectly ele-
vates blood pressure in a volume-depleted milieu [45] whilst 
ACE2 is beneficial for the kidney [46]. Moreover, Ang II 
activates the adrenal gland cortex to release aldosterone [47].

Aldosterone—Aldosterone exerts its function by main-
taining sodium-potassium homeostasis. This is achieved 
by activating the proximal convoluted tubules of the kid-
ney, culminating in elevated sodium reabsorption, thus 
preserving sodium concentration with concomitant release 
of potassium [48]. Also, it stimulates the hypothalamus 
by triggering the thirst reflex, with consequent release of 
anti-diuretic hormone (ADH) to limit urinary loss [49].

Angiotensin receptors—There are four angiotensin receptors:

(i)	 Angiotensin II-type 1 receptor (AT1R) occurs in the 
renal vasculature, glomerular mesangium, interstitial 
cells and proximal tubules. This receptor functions via 
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Fig. 1   Single nucleotide polymorphisms and the RAAS.  a Double-
stranded DNA showing the outcome of a genetic mutation (SNP) 
(adapted from [26]). b The RAAS pathway is displayed in conjunc-

tion with prominent functions/effects of certain analytes (adapted 
from [27]). (ACE, angiotensin-converting enzyme; AT1R, angioten-
sin II type 1 receptor; AT2R, angiotensin II type 2 receptor)
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signalling pathways to increase intracellular calcium 
whilst also causing vasoconstriction, sympathetic activ-
ity and aldosterone release [3] (Fig. 1b).

(ii)	 Angiotensin II-type 2 receptor (AT2R) shares a similar 
location as AT1R. It inhibits cell growth and initiates 
apoptosis, causing vasodilation thus promoting foetal 
development [3]. It is important to study both receptors 
collectively as they are both derivatives of the seven-
transmembrane G-protein-coupled receptor bearing 
equal affinity to Ang II [50].

(iii)	 Angiotensin II-type 3 receptor (AT3R)—there is a dire 
limitation of available data warranting further research.

(iv)	 Angiotensin II-type 4 receptor (AT4R) bears an 
increased affinity to membrane binding loci for [125I] 
Ang IV peptide. Further, these receptors are found 
mainly in the brain and to a small extent, in the vascu-
lature, kidneys, heart and adrenal glands. Additionally, 
they function in the regulation of blood flow, vasodila-
tion and improved cognition [51–53].

(v)	 The mitochondrial assembly protein 1 receptor (MAS1 
oncogene) is the primary receptor for RAAS-secreted 
Ang 1-7 as it is structurally similar to several other 
G-protein-coupled receptors [52]. When stimulated by 
binding to Ang (1-7), it opposes the effects of Ang II-
stimulated-angiotensin-receptors. The MAS receptor is 
expressed on the endothelium and binds to Ang (1-7), 
resulting in localised redox balance, reduced oxidative 
stress in addition to anti-fibrosis. Its location includes 
the vasculature, brain, kidneys and the heart [54].

RAAS and HIV Infection

Hypertension and inflammation are both triggered by the 
direct effect of HIV infection on the RAAS, linked to T cell  
activation [55••]. Of note, REN stimulates HIV replication  
within T cells by triggering the activation of both nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
KB) and phosphoinositide 3-kinase (PI-3 K) pathways [56••].  
Therefore, the emergence of metabolic syndrome and hyper-
tension in people living with HIV (PLWH) is influenced by 
ongoing immunological activation [55••]. During HIV infec-
tion, serum ACE levels are increased compared to control indi-
viduals [57]. The PI-3 K and NF-KB pathways are activated 
in addition to the pro-renin receptor [(P)RR] [56••]. This  
activation, in conjunction with the cleaving of HIV Gag-poly-
proteins, culminates in an increased rate of HIV replication 
in T cells via the REN protein. The association of REN with 
(P)RR culminates in its attachment to promyelocytic leukae-
mia zinc finger (PLZF) and its consequent nuclear transloca-
tion [56••]. Subsequently, the PLZF-stimulated pathways 
increase NF-KB function, culminating in its binding to the 
LTR promoter region, thus accelerating the synthesis of  

the Gag-polyprotein. Gag polyproteins are then cleaved by 
HIV protease (Hpr) and REN, leading to the production of 
pro-viral proteins, particularly, HIV’s p24 (Fig. 2).

Despite HIV infection neutralising immune exaggeration 
of PE [58], some studies have reported HDP predisposition 
[59]. It is widely accepted that highly active antiretroviral 
therapy (HAART) increases PE risk by immune restoration, 
thus influencing the RAAS downstream [60, 61]. The func-
tion of HAART during HIV infection is to hinder viral rep-
lication, culminating in the suppression of viral transmission 
between the mother and child [62]. Additionally, HAART 
induces the pro-inflammatory profile of the HIV-infected 
mother, thus triggering the development of HDP [63–65••

RAAS in the Synergy of HIV Infection 
and Preeclampsia

Trans-activator of transcription (Tat), a regulatory protein 
of HIV-1, increases viral infectivity [66] and is rich in both 
lysine and arginine thus resembling the vascular endothe-
lial growth factor (VEGF) sequence [67]. Consequently, 
VEGF’s function is mimicked by Tat, upregulating angio-
genesis, and the expression of αvβ3 and α5β1 integrin and 
endothelial cell (EC) adhesion [67, 68]. These can further 
bind to angiogenic factors that play a role in decidualization 
[69]. It was shown that both endothelial nitric oxide synthase 
(eNos) expression and endothelium-dependent vasorelaxa-
tion were reduced by the Tat protein. Further, these research-
ers revealed that Tat was involved in the development of 
coronary artery disease, which is an outcome of PE in later 
life [70]. Additionally, Tat induces the expression of both 
vascular cell adhesion protein-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1), inferring a potential mecha-
nism via which HIV-1 intensifies endothelial injury as well 
as atherosclerosis [71, 72].

Genetic Appraisal of RAAS

Genetic aberrations of individual components of the RAAS 
result in aberrant physiological manifestations and subse-
quent hypertension [73]. However, hypertension is a con-
dition that is multifaceted emanating from both genetic as 
well as environmental factors [74]. Single nucleotide poly-
morphisms (SNPs) are associated with the pathophysiology 
of several diseases, including HIV/AIDS [75–77]. Of note, 
the C-C chemokine receptor type 5 delta 32 promoter SNP 
(CCR5Δ32) is prominent in people of African American and 
European ancestries [78••]. Interestingly, this SNP could 
serve as a biomarker for the early diagnosis of HIV infec-
tion [78••]. Also, pharmacogenetic studies of these SNPs in 
HIV infection may provide therapeutic intervention [79]. In 
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relation to PE, studies have revealed the association between 
SNPs and the risk of PE development [80]. However, there 
is a demand for more geneticists to holistically understand 
the genetic role of SNPs in the onset of PE [81]. Ultimately, 
SNPs could serve as genetic contributors to disease onset 
thereby aiding researchers in determining the etiology of 
certain diseases and infections [82]. Taken together with 
non-genetic contributors, genetic variation within the RAAS 
may predict one’s risk of developing hypertension [83••]. In 
the succeeding paragraphs, we highlight the pertinent find-
ings of renin, AGT and ACE SNPs in relation to PE, PIH 
and hypertension.

Renin (REN) Panel

REN is an eminent candidate gene for the development of PE  
[84••]. However, a limited number of studies have determined 
the association between this gene and PE [84••]. Furthermore,  
no positive associations were noted between maternal risk of 
PE development in relation to foetal REN haplotypes [84••]. 
Additionally, these researchers could not distinguish between 
paternally or maternally inherited REN when establishing 
the association of foetal REN with maternal AGT within 
study groups. In a study conducted in Chile, no association 
between PE and variants of the REN gene in offspring was 

reported [85]. In contrast, a strong correlation between REN 
(rs11240688) and AGT (rs11122576 G>A) foetal polymor-
phism and PE development was noted in a North Indian 
population study [86]. This observation indicates a strong 
association between foetal genotypes of REN and AGT that 
give rise to the stimulation of maternal RAAS and the disrup-
tion of angiogenesis, thereby triggering maternal PE.

In recessive models in central China, both foetal and 
maternal REN (rs5707) correlated strongly with PE and 
eclampsia development [87]. Contrary to these findings, 
SNPs of the REN gene (rs5705, rs1464818 and rs3795575) 
revealed no association with the development of PE [84••]. 
A Spanish population study of non-pregnant women who 
carried the GG phenotype of the REN (rs5707) polymor-
phism revealed a strong correlation with hypertension devel-
opment. However, the mechanism by which PE is governed 
emanating from the REN (rs5707) polymorphism is yet to 
be discovered [87]. In both Japanese [88] and Northern Chi-
nese women [89], it was shown that there was no associa-
tion between the development of hypertension and the REN 
(rs5707) polymorphism. Despite an absence of relationship 
between the REN (rs5707) and REN (rs2368564) polymor-
phisms in a central China population study, Mexican women 
showed SNPs of the REN gene with strong association to an 
increased risk of hypertension development [90].

Fig. 2   The role of renin in HIV infection (adapted from [56••]). The 
interaction between HIV infection and REN is established via recep-
tors and pathways, resulting in the synthesis of p24, a core HIV pro-
tein. ((P)RR, pro-renin receptor; PLZF, promyelocytic leukaemia 

zinc finger; PI-3 K, phosphoinositide 3-kinase; NF-KB, nuclear factor 
kappa-light-chain-enhancer of activated B cells; LTR, long terminal 
repeat). +Increases function, ++accelerates synthesis of polyproteins
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An association between maternal AGT and foetal-REN  
was documented in animal models [84••]. The mating between  
transgenic mice who expressed human AGT and human 
REN culminated in pregnant females who displayed a tem-
porary increase in blood pressure in late phases of preg-
nancy emanating from the release of human REN from the 
placenta into the maternal circulation [91•]. This infers that 
the release of human REN in the placenta by paternal genes 
could enter and associate with maternal AGT in the circula-
tion, thus, activating PE symptoms [91•]. These results were  
synonymous with preeclamptic transgenic rodent models 
[92]. Therefore, these findings collectively suggest that eth-
nicity plays a role in the pathogenesis of PE and hyperten-
sion emanating from genetic aberrations that are unique to 
a specific population. There is a paucity of data on REN 
(rs16853055) polymorphism. Purkait et al. showed that this 
polymorphism had no association with diabetic nephropathy 
in participants of Indian ancestry [93]. Since this SNP has 
not yet been analysed within the realm of HDP co-morbid 
with HIV in sub-Saharan Africa, particularly South Africa, 
extensive research is required to enhance our understanding 
of its role as a genetic contributor to disease development as 
well as its associated functional properties.

Angiotensinogen (AGT) Panel

The production of AGT is promoted by oestrogen, cul-
minating in increased levels in circulation during the  
first 80 days of gestation [23••]. Angiotensinogen gene 
polymorphisms may increase plasma levels in PE [94]. Fur-
thermore, the T allele of AGT may probably be a major 
contributor to the onset of PE [95••]. Despite the fact that 
AGT levels are comparable between normal pregnancy and 
PE, the high-molecular-mass form of this gene remains  
relatively higher during PE [23••]. Interestingly, in this form, 
its prevalence is less than 5% in non-pregnant women [96]. 
However, under normal pregnancy conditions, it increases to  
16%, attributed to utero-placental release [23••]. Moreover, a  
higher AGT level (28%) was observed in women who carry 
the gene for PIH [23••]. Two genes were associated with the 
development of hypertension in the Han Chinese population, 
namely, AGT (rs3789678) and ACE (rs4305) [83••]. However,  
the AGT (rs3789678) polymorphism in both Caucasian 
and African-American populations did not yield the Hardy 
Weinberg equilibrium [97], thus inferring population- 
specific discrepancies.

In comparison to normotensive pregnant women, PE 
women display a higher concentration of AGT in its oxi-
dised form [98]; thus, it could infer antioxidants that lead 
to PE development. In pregnant murine models, the over-
expression of AGT led to an unmaintained plasma volume 
overload [99]. This infers that these mice do not have the 
genetic capacity to upregulate the expression of REN in the  

nephron [99]. Whether this finding extrapolates to human 
PE is unknown [23••]. Aung et al. reported that the TT gen-
otype and the T allele of the AGT gene (M235T) were higher 
in the synergy of HIV-infected PE than normotensive HIV- 
infected women. Additionally, in the latter group, there was a 
higher distribution of AGT particularly, the MT genotype in 
comparison to those who were preeclamptic and infected with 
HIV (19% vs. 10%; p = 0.03) [95••]. Further, there was no 
association between the AGT (M235T) and REN (C-5321 T) 
polymorphisms in the normotensive groups when investigat-
ing early-onset PE (EOPE). Furthermore, the MM genotype 
of AGT was only present in the normotensive group [95••].  
These authors proposed that the T allele and TT genotype 
of the M235T polymorphism predisposed South African 
women of African ancestry to developing PE twofold higher 
than normotensive pregnant women who displayed the MT, 
MM and M alleles, independent of HIV status. An associa-
tion between PE and the AGT gene (M235T) in women of 
Greek descent in the North-Western region of Greece [100], 
Iran [101], and Chinese women [102] was noted. Further-
more, a correlation between the AGT-M235T gene poly-
morphism and chronic hypertension was also recorded in 
Caucasian-Dutch women [103].

In contrast, AGT-M235T polymorphism occurs in South 
African women of African ancestry [104••], whilst Cauca-
sian and African-American women had no association with 
the development of PE [105]. Similarly, in North India it 
was established that the AGT-T704C polymorphism did not 
contribute to the development of PE [106]. These variations 
may be attributed to different ethnicities, different sources 
of DNA, and both reagents and instruments employed in the 
study and the sample size [95••]. The Genetics of PE Col-
laboration (GOPEC) study revealed inconclusive findings 
when comparing both foetal and maternal AGT genotypes in 
relation to the development of PE [107]. In relation to HIV 
infection, a relationship was established between the T allele 
of the AGT polymorphism in preeclamptic HIV-infected 
women and in normotensive subjects [95••]. This, however, 
was absent in HIV-uninfected participants, indicating that 
HIV status did not contribute to PE development, contrary 
to what was reported for the AGT-M235T polymorphism.

In Romanian women, both the M235T and AGT-174 M 
polymorphisms were associated with the predisposition to 
early-onset PE (EOPE) rather than late-onset PE (LOPE) 
[108]. Urinary AGT represents a biomarker for the upregula-
tion of RAAS and is subsequently increased during PE and 
gestational hypertension (GH) [109]. Therefore, the activa-
tion of the RAAS can be dysregulated intra-renally emanat-
ing from endotheliosis and hypertension during pregnancy 
[109]. Consequently, this enhances the pathogenesis of both 
hypertension and renal injury.

Researchers at the University of Norway demonstrated 
a strong correlation between PE and maternal AGT [84••]. 
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Furthermore, these results were correlated with AGT A-Met-
Thr (G1035A-Thr174Met-Met235Thr) in preeclamptic 
French-Canadian Caucasians [110] who had an increased 
risk of disease development compared to normotensive 
subjects [110]. Contrary to this finding, the GOPEC study 
revealed no association between PE and haplotypes of 
maternal AGT when investigating the relationship between 
536 foetal triads (mother-father-child) and 398 maternal 
triads (grandmother-grandfather-mother) of British descent 
[107]. The variations of AGT (rs7079) revealed staggering 
differences when evaluating PE prevalence, particularly 
the severe form and is, therefore comparable to the mild 
form of PE [86]. South Africans of African ancestry have 
salt-sensitive hypertension [111] and thus could be less 
accommodating to RAAS inhibitors [20••]. Therefore, the 
presence or absence of RAAS-associated polymorphisms 
could influence the outcome of anti-hypertensive therapy  
[20••]. This was shown by Woodiwiss and co-workers 
where AGT SNP genotypes had varying responses to ACE 
inhibitors in individuals of African ancestry [112]. From  
these findings, one may elucidate that ethnicity may/may not 
genetically predispose hypertension development.

Angiotensin‑Converting Enzyme (ACE) Panel

Angiotensin-converting enzyme, an indirect regulator of 
blood pressure, may involve insertion/deletion (ACE I/D) 
polymorphisms in PE [113–115]. Preterm birth is associated 
with an insertion/deletion of ACE polymorphisms [116]. 
However, these results may be based on ethnicity [116] as 
pregnant women in Brazil showed a correlation between 
ACE polymorphisms and PE [113]. In contrast, other groups 
have shown no association between these polymorphisms 
and PE development in the general Brazilian population 
[117, 118].

Studies performed in other ethnic groups, namely, South 
African, Chinese, and Caucasian populations also show no 
positive correlation with the development of PE [104••, 119, 
120]. However, there was a strong association between ele-
vated PE risk and the D allele in Turkish, South-East Iranian, 
Mexican and Egyptian women [115, 121–123]. A strong 
association was noted between EOPE and the DD genotype 
in Egyptian women [123]. In pregnant Chinese women who 
displayed the D allele, both renal dysfunction and severe 
proteinuria were a common anomaly [120]. Additionally, 
preeclamptic Italian women who displayed the DD genotype 
had increased pulsatility index values in the umbilical artery 
at the 16th, 20th and 24th week of gestation in comparison 
with those who displayed the II and ID genotypes [124].

ACE polymorphisms may negatively impact both serum 
and tissue enzyme levels, resulting in PE development 
[125]. One such polymorphism is the ACE (rs4343) which 

is significantly associated with PE in Iranian women [125]. 
However, there was no evidence of a positive association 
between PE development and the ACE I/D alleles in the 
same population [125]. There are currently only two inves-
tigations that have studied the influence of the ACE (rs4343) 
polymorphism in the development of PE [126, 127]. Evi-
dently, in Han Chinese women, foetal ACE (rs4343) was 
associated with the development of PE. However, this dif-
fered in maternal ACE (rs4343) [126]. A European-based 
study revealed a directly proportional relationship between 
ACE (rs4305) and hypertension [128]. Elevated ACE activ-
ity resulted in dysregulated angiogenesis and placental circu-
lation, consequently leading to adverse gestational outcomes 
[129]. Contrary to this finding, the inhibition of ACE culmi-
nated in endothelial apoptosis [130]. Interestingly, Gathiram 
and Moodley showed that ACE polymorphisms did not con-
tribute to the development of PE [131••] (Table 1).

Conclusion

In summary, this review article appraises RAAS-associated 
polymorphisms in relation to PE co-morbid with HIV infec-
tion in this ART era. We report contradictory findings of 
REN (rs5707) polymorphism and the risk of PE develop-
ment. The AGT (M235T) polymorphism has however been 
widely associated with hypertensive development across 
varying ethnicity. Nonetheless, AGT (M235T) variants have 
also been reported to have no association with PE develop-
ment. Lastly, the ACE (rs4343) polymorphism is associ-
ated with the development of PE independent of ethnicity. 
Given that many of these SNPs have not been investigated 
in relation to preeclampsia (PE) and HIV infection, exten-
sive research is required to focus on the genetics of PE. In 
sub-Saharan Africa, researchers should focus on studies that 
include PE co-morbid with HIV in women of African ances-
try in South Africa as the burden of HIV and PE prevalence 
is high.

Future Recommendations

SNPs of all components of the RAAS are warranted particu-
larly in low-middle-income countries.
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