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Abstract
Purpose of Review The main goal of this article is to discuss the role of the epithelial sodium channel (ENaC) in extracellular
fluid and blood pressure regulation.
Recent Findings Besides its role in sodium handling in the kidney, recent studies have found that ENaC expressed in other cells
including immune cells can influence blood pressure via extra-renal mechanisms. Dendritic cells (DCs) are activated and
contribute to salt-sensitive hypertension in an ENaC-dependent manner. We discuss recent studies on how ENaC is regulated
in both the kidney and other sites including the vascular smooth muscles, endothelial cells, and immune cells. We also discuss
how this extra-renal ENaC can play a role in salt-sensitive hypertension and its promise as a novel therapeutic target.
Summary The role of ENaC in blood pressure regulation in the kidney has been well studied. Recent human gene sequencing
efforts have identified thousands of variants among the genes encoding ENaC, and research efforts to determine if these variants
and their expression in extra-renal tissue play a role in hypertension will advance our understanding of the pathogenesis of ENaC-
mediated cardiovascular disease and lead to novel therapeutic targets.
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Introduction

The balance between salt and body fluid volume is necessary
for regulating blood pressure. High blood pressure is the lead-
ing cause of morbidity and mortality due to cardiovascular-
related diseases, such as stroke, heart failure, myocardial in-
farction, and chronic kidney disease [1]. Reducing dietary
intake of sodium (Na+) decreases both hypertension and rate
of morbidity and mortality associated with cardiovascular
events [2]. A meta-analysis investigating the long-term effects

of dietary salt intake on blood pressure showed that a reduc-
tion of salt for 4 weeks or more results in a significant reduc-
tion in blood pressure regardless of sex or ethnic group. A
major problem with excess salt consumption is that approxi-
mately 25% in the general population and nearly half of the
hypertensive population are salt-sensitive [3]. Salt-sensitivity
is defined by the hyperresponsive increase and decrease in
blood pressure to salt loading and salt depletion, and is an
independent predictor of death and cardiovascular events [4,
5]. In contrast to salt-resistant individuals, those who are salt-
sensitive experience abnormal changes in blood pressure in
response to even minor changes in plasma salt levels [6].

Recently, a paradigm-shift in the understanding of Na+

handling has elucidated a role of extra-renal interstitial space
[7, 8]. Studies using 23Na MRI and mathematical modeling
demonstrated high Na+ content in the skin and muscle junc-
tional zones positively correlates with blood pressure in
humans [9–11]. These observations regarding tissue Na+ have
relevance to immune cell activation which contributes to hy-
pertension since monocytes can enter and re-emerge from
tissues with minimal or no differentiation [12]. There is strong
evidence that monocytes contribute to both blood pressure
elevation and end-organ damage associated with hyperten-
sion. Deletion of monocytes markedly reduces experimental
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hypertension [13]. Cells derived from monocytes, including
macrophages and DCs have also been implicated in hyperten-
sion [14, 15, 16••]. Despite the extensive studies, the mecha-
nisms mediating tissue sodium-induced activation of immune
cells and hypertension are still not well understood.

The epithelial Na+ channel (ENaC) plays a critical role in
body fluid volume and Na+ homeostasis which underly the
pathogenesis of salt-sensitive hypertension [17, 18]. This
channel has been extensively studied in the kidney where it
plays a role in controlling Na+ and K+ handling (Fig. 1).
However, it is expressed in other tissues such as the endothe-
lium, vascular smooth muscle, tongue, colon, and immune
cells and has been found to influence blood pressure via
extra-renal mechanisms. Here, we review the mechanisms of
the ENaC-mediated Na+ balance and its relationship to salt-
sensitive hypertension and inflammation. Understanding the
relationship between salt and the predisposition for high blood
pressure could provide valuable insight in drug development
for the prevention and treatment of hypertension.

ENaC: Kidney and Beyond

ENaC belongs to the ENaC/degenerin family of ion channels
which are sensitive to extracellular factors. ENaC is typically a
heterotrimer consisting of three homologous subunits: α, β,

and γ [19–21]. A fourth subunit, δ, is functionally similar to
the α-subunit and is found in various epithelial and non-
epithelial tissues of humans such as in the pancreas, lung,
and brain [22–25]. Unlike other subunits, theα-subunit is able
to form a homo-trimeric channel that is able to conduct Na+.
Co-expression of all three subunits (α, β, and γ; or δ, β, and
γ) is required to attain full channel activity [20].αβγ and δβγ
have different functional properties. For example, αβγ chan-
nels are inhibited by extracellular Na+, and full activation
requires furin-mediated proteolytic processing in the trans-
Golgi network and at the cell surface by specific proteases,
referred to as channel activating proteases (CAPs) [26–28]. In
contrast, human δβγ channels are largely insensitive to extra-
cellular Na+ and are not activated by proteases [22, 29].

Mechanisms of ENaC Regulation

Na+ Self-Inhibition Elevated extracellular Na+ inhibits ENaC
through two different mechanisms. First, extracellular Na+

binds ENaC at a defined site in the α-subunit and drives an
allosteric change reducing the ENaC open probability, which
is referred to as Na+ self-inhibition [30, 31]. This self-
inhibition is rapid, low-affinity, and cation-selective. Not only
can Na+ inhibit ENaC activity, but Li+ is also able to have an
inhibitory effect while K+ only has a minimal inhibitory effect

Fig. 1 ENaC regulation in the kidney, vasculature, and immune system.
ENaC expression and activation in renal distal tubule epithelial cells is
regulated by hormonal factors, proteases, lipids, and select ions
promoting hypertension, renal injury and inflammation, hypokalemia,
and metabolic alkalosis. In vasculature, inhibition of ENaC leads to

increased nitric oxide production mediating vascular tone and myogenic
response. Activation of ENaC in innate immune cells stimulates ROS
production, pro-inflammatory cytokine secretion, and antigen
presentation resulting in inflammation and salt-sensitive hypertension
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[26, 32, 33]. Second, increased intracellular Na+ slowly in-
hibits the channel over time [34, 35]. In cultured cells, in-
creases in intracellular Na+ renders channels insensitive to
cleavage and activation by proteases [36, 37]. ENaC regula-
tion by Na+ self-inhibition (NaSI) enables the distal nephron
to control Na+ reabsorption based on fluctuating urinary Na+

concentrations. Numerous studies have found that many of the
human ENaC nonsynonymous single nucleotide variants af-
fect channel function by altering the NaSI response [38–42].

ENaC Regulation by Post-Translational Proteolytic Cleavage
Another mechanism by which ENaC is regulated is through
post-translational proteolytic cleavage at defined sites in their
extracellular domains with release of imbedded inhibitory
tracts leading to activation of the channel through an increase
in channel open probability [28, 39, 43]. The ENaC subunits
αβγ are assembled and processed in Golgi and post-Golgi
compartments and are cleaved by furin [28, 43, 44]. The α-
subunit is cleaved twice by furin, releasing an inhibitory tract
and transitioning channel from a low to an intermediate activ-
ity state. Furin cleaves the γ-subunit once. Its cleavage by
other proteases including prostasin, matriptase, cathepsin B,
elastase, kallikrein, urokinase, and plasmin at sites distal to its
inhibitory tract releases the tract and transition channels to a
high activity state [43, 45–53]. Other key regulatory factors
interface with ENaC subunit proteolysis to determine channel
open probability [27•].

ENaC Regulation by Lipids Lipid signalingmolecules including
phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol
(3,4,5)-trisphosphate have been found to enhance ENaC open
probability by binding to cationic sequences within ENaC sub-
units [54–56]. In contrast, the CYP-epoxygenase metabolite
11,12-epoxyeicosatrienoic acid (EET) inhibits ENaC by reduc-
ing its channel open probability [57, 58]. Post-translational
modification of specific cytoplasmic Cys residues on the β-
and γ-subunits by palmitoylation is another mechanism by
which ENaC is activated by lipids [59, 60].

ENaC Regulation by Aldosterone Aldosterone regulates ENaC
activity through a variety of mechanisms, including an increase
in expression and, in concert with other hormones, activation of
a serum-and-glucocorticoid-induced kinase (SGK1) [61, 62].
Aldosterone is secreted from the adrenal gland in response to
salt loss and volume depletion, and in response to an elevated
serum [K+] [63, 64]. The binding of aldosterone to the miner-
alocorticoid receptor in renal epithelial cells activates SGK1,
which in turn phosphorylates NEDD4-2, a ubiquitin ligase that
interacts with ENaC at the cell surface through carboxyl-
terminal Pro-Tyr motifs on channel subunits. Ubiquitination
of ENaC subunits targets the channel for internalization and
degradation. Phosphorylation of NEDD4-2 recruits a 14-3-3
protein and prevents the interaction of NEDD4-2 with ENaC,

contributing to the accumulation and enhanced expression of
ENaC at the plasma membrane, as well as an increase in chan-
nel open [65–67].

ENaC Function in the Kidney

Classically, ENaC has been demonstrated to be involved in
reabsorption of filtered Na+ in the distal nephron, including
the aldosterone-sensitive distal nephron (ADSN) and the
collecting duct [68–73]. In the kidney, ENaC acts as the final
and rate-limiting step in determining transepithelial Na+ reab-
sorption, net total body Na+ content, fluid volume, and blood
pressure in the collecting duct of the nephron. ENaC is primar-
ily expressed in the apical membrane of late distal tubule epi-
thelial cells, which is also known as the ASDN. In addition to
its role in Na+ reabsorption, ENaC also plays a critical role in
the secretion of K+ in the ASDN [31, 74, 75]. The discovery of
mutations in the human ENaC channel confirmed the role of
ENaC in regulating blood pressure homeostasis. These ENaC
mutations lead to Mendelian forms of hypertension or hypoten-
sion, Liddle syndrome, and pseudohypoaldosteronism type 1
(PHA1), respectively. Liddle’s syndrome occurs through a
gain-of-function mutation in the cytoplasmic C-terminus of ei-
ther the β- or γ-subunit of ENaC resulting in an autosomal-
dominant form of salt-sensitive hypertension, hypokalemia,
and metabolic alkalosis through constitutively active ENaC
[76]. In this setting, hypokalemia is predicted to activate the
Na/Cl co-transporter, which also contributes to the hyperten-
sion in Liddle syndrome [77]. Conversely, inherited loss-of-
function mutations in ENaC result in PHA1 and present phys-
iologically as severe hypotension, renal salt wasting, metabolic
acidosis, and hyperkalemia [78–81]. A recent study has shown
that treatment of hyperaldosteronism with low-dose amiloride,
a pharmacological inhibitor of ENaC activity, normalized pre-
viously elevated blood pressure within 1–4 weeks of starting
the amiloride treatment and was maintained for 14–28 years
[82]. In cases of uncontrolled hypertension, it has been demon-
strated that mineralocorticoid receptor blockade with
spironolactone was sufficient in reducing systolic blood pres-
sure regardless of their levels of aldosterone. In many cases
where ENaC activity is constitutively active, the Na+ channel
can be inhibited by the K+-sparing diuretic, amiloride [83–85].
For instance, a population of African-Americans was resistant
to the blood pressure–lowering effects of spironolactone but
had a significant reduction when treated with amiloride [86].
This evidence suggests a therapeutic role for targeting hyperac-
tive ENaC activity in hypertensive patients.

ENaC Beyond the Kidney

Vascular Smooth Muscle Cells In addition to the ASDN and
collecting duct, certain subunits of ENaC have been shown
to mediate vascular tone through their expression in vascular
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smooth muscle cells. It has been demonstrated that all ENaC
subunits (α, β, and γ) are expressed in mesenteric, cerebral,
and renal arteries [23, 87–89]. Perez et al. showed that all
ENaC subunits are expressed in rat mesenteric resistance
arteries and elegantly showed that inhibition of ENaC using
either benzamil or amiloride increases the ratio of phosphor-
ylated epithelial nitric oxide synthase (p-eNOS)/total eNOS
through a phosphoinositide 3-kinase (P13K)/Akt-dependent
mechanism [87]. Moreover, within the cerebral vasculature,
Drummond et al. demonstrated by mRNA and protein ex-
pression that both β- and γ-subunits of ENaC are expressed
in cerebral resistance arteries and that inhibition of ENaC
with amiloride or benzamil prevented pressure-induced va-
soconstriction [23]. Within the kidney, Guan et al. demon-
strated that vascular smooth muscle cells from afferent arte-
rioles express α, β, and γ ENaC subunits. They went on to
demonstrate that micromolar doses of amiloride or benzamil,
which do not affect L-type calcium channels, inhibited affer-
ent arteriole myogenic response [88]. To investigate which
subunit of ENaC contributes to the myogenic response in
resistance vessels, Ge et al. used a mouse model of reduced
βENaC expression (βENaC m/m). They showed that reduc-
tion of βENaC led to the impairment of whole kidney renal
autoregulatory capability [89]. Taken together, these studies
suggest that ENaC plays a fundamental physiological role in
vascular smooth muscle cell function and regulation of
blood flow through resistance vessels by modulating the
myogenic response.

Vascular EndotheliumAll 4 subunits of ENaC (α, β, δ, and γ)
have been demonstrated to be expressed in the vascular endo-
thelium by mRNA transcription and/or protein expression by
immunofluorescence [90–97]. Interestingly, there is evidence
that endothelial ENaC can be regulated much likely in the
kidney. For example, Oberleithner and colleagues showed
that nanomolar concentrations of aldosterone increases the
expression of ENaC subunits by approximately 36% and total
cellular ENaC by 91% in human umbilical vein cells
(HUVECs) [94]. Moreover, co-administration of amiloride
and aldosterone leads to an 84% reduction in total ENaC in
HUVECs, suggesting a regulation mechanism similar to the
kidney. However, the way that endothelial ENaC handles ex-
tracellular Na+ differs from the renal epithelium. For instance,
increases in extracellular Na+ content leads to downregulation
of ENaC within the renal epithelium. In contrast, in endothe-
lial cells, aldosterone plus high extracellular Na+ (beyond
140 mM) increases ENaC protein expression within minutes
[91]. The precise mechanism by which this occurs is currently
unknown, although it is hypothesized that in endothelial cells,
aldosterone and high extracellular Na+ environment activates
SGK1 which in turn phosphorylates NEDD4-2 which renders
it inactive. Thus, ENaC plays a critical role in both intra- and
extra-renal vascular function.

ENaC Activity and Regulation in Immune Cells

Activation of the adaptive immune system in hypertension
may occur through the loss of self-tolerance, suggesting it
may be an autoimmune disease. Antigen-presenting cells
(APCs), including macrophages, DCs, and B cells, are critical
initiators of the immune response. Of these APCs, DCs are the
most proficient classical antigen presenters and play an impor-
tant role in the discrimination between self and non-self-anti-
gens. In 1973, Ralph Steinman first discovered and described
DCs, and since their discovery, they have been extensively
studied and well characterized as potent stimulators of T cell
activation [98]. APCs present antigens that are then recog-
nized by T cell receptors, stimulating T cell proliferation and
activation. Various hypertensive stimuli including angiotensin
II (Ang II) and norepinephrine and dietary salt stimulate the
infiltration of monocytes, macrophages, DCs, and T lympho-
cytes into the vasculature and kidney to promote Na+ reten-
tion, blood pressure elevation, vasoconstriction, and end-
organ damage [14, 99–103]. Until now, salt sensitivity studies
have focused on the roles of the vasculature, kidney, and sym-
pathetic activity; however, the contribution of immune cells
remains largely unknown.

Several studies have identified multiple neoantigens, or
modified endogenous molecules no longer identified as “self,”
for their potential to trigger the adaptive immune system. It is
thought that these molecules are modified by post-translational
modification, adduct formation, oxidation, and nitrosylation.
One particular molecule that has been intensely studied for
over 40 years for its potential role in hypertension and transport
and delivery of antigenic peptides is heat shock protein 70
(HSP70) [104]. Only recently has HSP70 been suggested to
induce an autoimmune reaction leading to T cell activation and
polarization of CD4+ into regulatory T cells in salt-sensitive
hypertension [105, 106]. Additionally, the Toll-like receptor 9
(TLR9) expressed in the endoplasmic reticulum of immune
cells recognize mitochondrial DNA-derived cell-free
unmethylated CpG dinucleotides, which are upregulated in
patients with essential hypertension [107]. Internalization of
these CpG motifs activates the TLR9 signaling cascade
through pro-inflammatory transcriptional factors NF-κB and
AP-1 [108]. The ability for TLR9 to discriminate between
methylated and unmethylated DNA is critical in preventing
an autoimmune reaction. Moreover, studies in our laboratory
have found that a new neoantigen in APCs contributes to the
development of hypertension, its associated inflammation, and
end-organ damage [16••]. We established a critical role of re-
active oxygen species (ROS) and nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase in activating DCs in
hypertension and in the modulation of gene expression and
immunogenicity. In response to a hypertensive stimuli includ-
ing Ang II, DOCA-salt, or N-nitro-L-arginine methyl ester (L-
NAME/high-salt feeding), gamma-ketoaldehydes known as
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isolevuglandins isoLGs are formed in DCs [16••]. Importantly,
scavenging of IsoLG-adducts attenuates blood pressure, in-
flammation, and vascular stiffness [109].

Recently, we investigated the signaling mechanisms of
Na+-dependent ENaC activation in DCs [14]. We demonstrat-
ed that an increase in extracellular Na+ concentrations leads to
an ENaC-dependent activation of the NADPH-oxidase and
subsequent superoxide production leading to formation of
the highly immunoreactive IsoLGs. Moreover, in monocyte-
derived DCs, the production of IsoLG-adducted proteins can
lead to loss of immune tolerance in DOCA-salt hypertension
[14, 16]. This ENaC-dependent increased formation of
IsoLG-adducted proteins in DCs after exposure to high salt
correlates with an increase in surface expression of B7 ligands
CD80 and CD86 indicating DCmaturation and is essential for
the pathogenesis of hypertension [16••]. These studies suggest
a potential relationship between innate immunity, ENaC, and
hypertension.

One important intracellular enzyme induced by Na+ is
SGK-1. The role of SGK-1 in modulating blood pressure
has predominantly been studied in the distal convoluted tubule
where it regulates ENaC expression. Recent work in our lab
has demonstrated that in APCs, the salt-sensing kinase SGK-1
mediates salt-sensitive hypertension by regulating increased
expression of ENaC α- and γ-subunits, which leads to
IsoLG-adduct formation, interleukin-1β (IL-1β) production,
and T cell activation [110•]. Studies by Kleinewiefeld et al.
and Wu et al. showed that when exposed to elevated Na+

concentration, there is a marked induction of Th17 polariza-
tion in naïve T cells [111, 112]. Inhibiting SGK-1 prevented
activation of Forkhead box protein O1 and subsequent differ-
entiation to the Th17 phenotype. In addition, SGK-1 signaling
inhibits FOXP3+ regulatory T cells [113, 114], and both Th17
and regulatory T cells play a role in autoimmune tolerance and
the genesis of hypertension [115, 116].

IL-1β and ENaC: New Mechanism for Salt-Sensitive
Hypertension?

In recent years, significant research progress has been made to
better understand the relationship between inflammation and
the pathogenesis of hypertension [117, 118]. Both animal and
human studies suggest that cytokines such as IL-1β induce a
pro-inflammatory state potentiating blood pressure elevation
through the alteration of renal, endothelial, and immune re-
sponses [99]. Inmice, targeting IL-1β activity has been shown
to decrease blood pressure through pharmacological inhibi-
tion, IL-1β targeted antibody treatment, and genetic deletion
[119–121]. In a recent article by Rothman et al., secondary
analysis of the CANTOS trial suggested that while IL-1β
inhibition with canakinumab reduced cardiovascular event
rates, this benefit may not be related to incident hypertension
and raises the question of the importance of inflammation in

hypertension and development of cardiovascular disease
[122•]. Moreover, there is a connection between high-salt en-
vironments and inflammation. Prior work by Shapiro and
Dinarello showed that high salt concentrations drive peripher-
al blood mononuclear cells to produce the pro-inflammatory
cytokine IL-1β [123]. Additionally, high salt increased
ENaC-dependent production of IL-1β in DCs to mediate
salt-sensitive hypertension by priming and polarizing T cells
to produce interleukin 17-A (IL-17A) [14, 101, 124].

Although it is known that there are increased levels of
circulating IL-1β in hypertension, only recently has the
inflammasome activation been suggested to play a role in its
production. Consisting of the sensing domain NOD-like re-
ceptor family, pyrin domain containing (NLRP3) and adaptor
protein apoptosis-associated speck-like protein containing a
carboxy-terminal caspase recruitment domain (ASC), the
stimulated complex forms to recruit and proteolytically cleave
pro-caspase-1 into the bioactive caspase-1. Caspase-1 activa-
tion results in the subsequent maturation and secretion of IL-
1β [125, 126]. Hypertensive stimuli, including elevated Na+

and Ang II, are linked to ROS production which has been
extensively studied for its role in inflammation, and recent
evidence has shown that multiple sources of intracellular
ROS are responsible for the activation of the NLRP3
inflammasome [127]. In a recent study by Krishnan et al.,
apoptosis-ASC−/− mice were protected from DOCA-salt-
induced elevated blood as well as renal inflammation and
fibrosis [128]. Additionally, they demonstrated that pharma-
cological inhibition of the NLRP3 inflammasome abolishes
DOCA-salt hypertension. In humans, elevated circulating
levels of IL-1β and increased inflammasome gene expression
have been correlated with age-related hypertension
[129–131]. Moreover, mutations in the non-coding region of
NLRP3 gene in humans were associated with susceptibility to
developing hypertension [132]. Recently, ENaC-mediated
Na+ influx was responsible for NLRP3 inflammasome activa-
tion in PBMCs of cystic fibrosis patients [133]. This suggests
a possible link between increased Na+ content and IL-1β pro-
duction in the pathogenesis of salt-sensitive hypertension.
Current studies examining the inflammasome, its compo-
nents, relationship to ENaC activity, and downstream effector
cytokines provide promising insight into the role of salt and
inflammation in the development of hypertension.

Conclusion

In an effort to determine therapeutic targets for salt-induced
hypertension, human gene sequencing efforts have identified
several ENaC gain- and loss-of-function mutations that have
been described in Mendelian disorders characterized by either
hypertension or hypotension [134–144]. It is not known if
individuals with gain-of-function ENaC variants have

Page 5 of 10     69Curr Hypertens Rep (2020) 22: 69



increased risk for salt-sensitive hypertension. Inhibition of
ENaC using inhibitors such as amiloride is not a routinely
used approach for treatment of hypertension given their low
efficacy when compared other diuretics. However, a meta-
analysis by Hebert et al. found that treatment of elderly hyper-
tensive patients with ENaC inhibitors combined with a thia-
zide diuretic reduces coronary mortality and sudden cardiac
death [145]. To date, most of the studies on ENaC have fo-
cused on its role in regulating renal Na+ and K+ handling. The
recent seminal discoveries of the existence and functioning of
extra-renal ENaC including immune cells may illuminate ad-
ditional therapeutic targets for ENaC in salt-induced cardio-
vascular disease.
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