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Abstract The renin-angiotensin system (RAS) plays an impor-
tant role in the initiation and progression of tissue injuries in the
cardiovascular and nervous systems. The detrimental actions of
the AT1 receptor (AT1R) in hypertension and vascular injury,
myocardial infarction and brain ischemia are well established. In
the past twenty years, protective actions of the RAS, not only in
the cardiovascular, but also in the nervous system, have been
demonstrated. The so-called protective arm of the RAS includes
AT2-receptors and Mas receptors (AT2R and MasR) and is
characterized by effects different from and often opposing those
of the AT1R. These include anti-inflammation, anti-fibrosis,
anti-apoptosis and neuroregeneration that can counterbalance
pathological processes and enable recovery from disease. The
recent development of novel, small-molecule AT2R agonists
offers a therapeutic potential in humans with a variety of clinical
indications.
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Introduction

Research on the AT2 receptor (AT2R) started about 25 years
ago with the discovery of two receptors for angiotensin II
(Ang II), the AT1R and the AT2R. The AT2R was finally
cloned in 1993 by two independent groups [1]. Due to its
unusual properties including lack of the classic features of G-
protein coupled receptor signaling, the AT2R was described as
an “enigmatic” seven transmembrane receptor [2]. Research
teams working on AT2R had to cope with several problems
including a very selective tissue expression pattern in adult life
and unusual, sometimes contradictory, physiological proper-
ties. Thus, the AT2R became “a matter of love and hate” [3].
Nowadays, it is well accepted that the AT2R forms part of the
“protective arm of RAS” with a great potential in tissue
protection and regeneration [4]. The AT2R, while being only
sparsely expressed in most healthy tissues, is strongly upreg-
ulated following tissue damage [5] such as vascular [6] and
neuronal injury [7], myocardial infarction (MI) [8–10] and
brain ischemia [11]. The selective stimulation of the AT2R
with a recently available small-molecule ligand, compound
21, has not only greatly helped to elucidate the major molec-
ular pathways involved in AT2R-mediated tissue protection,
such as anti-inflammation, anti-fibrosis and anti-apoptosis [5],
but has also revealed a great potential for pharmacological
intervention in the above-mentioned diseases [4]. This review
summarizes current knowledge about the beneficial features
of AT2R stimulation with restriction to cardiac, vascular and
neuronal disease.

AT2R-Mediated Signaling

AT2R stimulation activates at least three different classical
signaling pathways: the cGMP/nitric oxide pathway [12,
13], protein phosphatases [14, 15] and phospholipase A2
signaling [16]. Since the tissue-protective properties of the
AT2R are characterized mainly by regulation of inflammation,
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fibrosis and apoptosis [5], this review will focus on signaling
pathways involved in these events.

Inflammation

Key molecular mechanisms involved in the AT2R-mediated
anti-inflammatory actions are the inhibition of NF-κB activity
[17, 18] and the reduction of oxidative stress [19, 20] (Fig. 1).

In 2010, Rompe and colleagues demonstrated anti-
inflammatory effects of AT2R stimulation via inhibition of
cytokine levels in vitro and in vivo, using the orally active,
highly selective, non-peptide AT2R agonist, compound 21
(C21). In this study, the authors showed that C21 caused a
dose-dependent reduction of TNFα-induced interleukin-6 (Il-
6) levels in primary human and murine dermal fibroblasts.
Moreover, this study elucidated the anti-inflammatory AT2R-
coupled signaling demonstrating that this pathway involves
activation of protein phosphatases, CYP-dependent epoxidation

of arachidonic acid to EETs, and inhibition of NF-κB activity.
With this mechanism, AT2R counteracts not only the pro-
inflammatory effects of TNFα but also those mediated by the
AT1R, which involve CYP-dependent hydroxylation of arachi-
donic acid to 20-HETE and induces NF-κB activation [17].

As mentioned above, AT2R-mediated anti-inflammation
can be achieved through an inhibition of oxidative stress. In
fact, McCarthy et al., found that stimulation of the AT2R
caused a reduction of stroke-induced superoxide production.
They showed an inverse relationship between superoxide
production and AT2R expression and suggested that AT2R
reduces oxidative stress related to ischemia [19].

It is well known that Ang II induces oxidative stress via
AT1R activation. Pendergrass et al., showed that AT1R-in-
duced oxidative stress involves NADPH oxidase activation
to generate reactive oxygen species (ROS) [21]. On the other
hand, Dandapat and colleagues hypothesized that the AT2R is
anti-inflammatory via reduction of pro-oxidant signals by

Fig. 1 AT2R-mediated molecular pathways involved in tissue injury. The
AT2R can be stimulated either by endogenous ligand Ang II or by exog-
enous agonists (CGP42112 or C21) resulting in activation or inhibition of
multiple molecular pathways. This in turn leads to multiple cellular re-
sponses (grey boxes) including anti-inflammation, anti-fibrosis, modulation
of apoptosis and enhanced neurite outgrowth. The MAPK-pathway and
NFκB-pathway play central roles in the AT2R-mediated responses. Some
of the molecular pathways are initiated indirectly via cross-talk with other
receptors including Fas, TrkA and TrkB receptors by activation of the
receptor or upregulation of ligand expression (e.g., FasL or BDNF). All
pathways can be inhibited by the AT2R antagonist, PD123319, or by
knocking-down the AT2R (not shown on the graph). Please notice that
the edges in the pathway have undirected character (i.e., can represent either
activation or inhibition). *growth factors are necessary for p85αPI3K
activation. Abbreviations: AT2R angiotensin AT2 receptor; Ang II angioten-
sin II; C21 compound 21 (non-peptide AT2R agonist); CGP42112 peptide
AT2R agonist;PD123319non-peptide AT2R antagonist; Trk tyrosine kinase

receptor; BDNF brain-derived neurotrophic factor; Fas Fas cell surface
death receptor; FasL Fas ligand; CYP2C/2J isoform of arachidonic acid-
metabolizing cytochrome P450 enzyme; EET 11,12-epoxyeicosatrienoic
acid; NFκB nuclear factor NF-kappa-B; TIMP tissue inhibitor of metallo-
proteinases; MMPs matrix metalloproteinases; PKCα protein kinase C,
alpha; p21RASRas family of small GTP binding proteins; ATIP/ATBPAT2
receptor-interacting protein (or AT2 receptor binding protein); SHP-1 pro-
tein-tyrosine phosphatase SHP-1; MMS2 methyl methanesulfonate sensi-
tive 2; nNOS neuronal nitric oxide synthase; NO nitric oxide; cGMP cyclic
guanosine monophosphate; PKG cGMP-dependent protein kinase;
NADPH reduced form of nicotinamide adenine dinucleotide phosphate;
ROS reactive oxygen species; MEK mitogen-activated protein kinase ki-
nase; p42/p44mapkp42/p44 mitogen-activated protein kinase; Bcl-2 apopto-
sis regulator Bcl-2; p38mitogen-activated protein kinase p38; JNK JUNN-
terminal kinase; PLZF promyelocytic leukemia zinc finger protein;
p85αPI3K phosphatidylinositol 3-kinase regulatory subunit alpha
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inhibiting NADPH oxidase expression and ROS generation
leading to a downregulation of p38 and p44/42 MAP kinase
phosphorylation [22].

It is also known that, during oxidative stress, the production
of ROS exceeds the available antioxidant defense systems. As a
consequence, increased ROS concentrations reduce the amount
of bioactive NO [23]. Moreover, it has been speculated that the
signaling cascades activated by NO, including cGMP-
dependent protein kinase activation, may be involved in down-
stream activation of mitogen-activated protein kinases that are
required for IL-10 production [24]. In agreement with this
hypothesis, Dhande and colleagues have recently demonstrated
anti-inflammatory actions of the AT2R via increased interleukin-
10 (IL-10) production in an NO-dependent manner [25].

In addition to the above-mentioned effects, increasing ev-
idence demonstrates new protective anti-inflammatory actions
of the AT2R via cellular mechanisms [26–29].

Curato and colleagues studied the role of the AT2R in the
regulation of the cellular immune response in the context of
ischemic heart injury. The authors identified a cardioprotective
T cell population, CD8+AT2R

+, characterized by upregulated
IL-10 and downregulated IL-2 and INF-γ expression compared
with CD8+AT2R

- T cells, which increased in response to ische-
mic cardiac injury. The authors demonstrated an immune-
regulatory, cardioprotective action of the AT2R involving
downregulation of the expression of proinflammatory cyto-
kines and sustained IL-10 production, mediated, at least in part,
viaCD8+AT2R

+ T cells [26].
Another recent study supports the immune regulatory role of

the AT2R. Valero-Esquitino et al., evaluated the effects of AT2R
stimulation on T cell differentiation in vitro. The authors con-
cluded that AT2R stimulation induces an inhibition of T cells
recruitment and modulation of the differentiation of naïve T
cells into pro-inflammatory T helper (Th)1 and Th17 subsets
while promoting differentiation into anti-inflammatory T regu-
latory cells [29].

Fibrosis

Several investigators have observed anti-inflammatory actions
of the AT2R concomitantly with anti-fibrosis suggesting a
possible cross-talk between the two mechanisms [22, 30].

Moreover, different studies demonstrate that the anti-
fibrotic activity of the AT2R seems to be due to a regulation
of matrix metalloproteinases (MMP) and their inhibitors
(TIMP) [22, 31–33] that play a key role in the regulation of
the metabolic balance of the extracellular matrix (Fig. 1).

An important mechanism of AT2R-mediated anti-fibrosis
appears to be an increased expression and activity of TIMP1
and TIMP2 with consequent inhibition of MMP9 andMMP2;
however, the exact signaling pathway is still unknown.

Jing et al., showed in rat vascular smooth muscle cells
(VSMCs) expressing the AT2R in a tetracyclin-regulated

system, that the AT2R counteracted the effects elicited by
AT1R signaling and caused a marked reduction in MMP2
levels [32]. In agreement with this finding, Brassard et al.,
demonstrated an AT2R-mediated decrease in MMP2,
counteracting the AT1R-mediated increase in MMP2 activity
and decrease in TIMP2 activity [31].

In a study investigating the role of the AT2R in atheroscle-
rotic plaque, Dandapat et al., found that the AT2R reduced the
expression and activity of MMP2 and MMP9, and collagen
accumulation. The authors hypothesized that, like the anti-
inflammatory pathway, this mechanism involves downregula-
tion of NADPH oxidase and subsequent ROS generation
leading to an inhibition of p38 MAPKS and p44/42 MAPKs
phosphorylation [22].

In accordance with previous studies, an AT2R-mediated
regulation of MMPs has been recently confirmed in a setting
of atherosclerosis by Kljajic and colleagues. In this study,
stimulation of AT2R, with the peptide AT2R agonist,
CGP42112, caused a reduction of MMP2 and MMP9 [34].

Supporting the regulatory role of the AT2R in the
TIMP/MMPs axis, Lauer et al., recently reported that in a rat
model of infarct-induced heart failure, stimulation of the AT2R
with the selective, non-peptide AT2R agonist, C21 induced an
activation of TIMP1 and subsequent inhibition of MMP9-
mediated proteolysis. Moreover, AT2R stimulation led to a
downregulation of TGF-β1 followed by decreased collagen
accumulation [33].

Conversely, Rehman et al., found that AT2R stimulation
with C21 reduced fibrosis in stroke-prone spontaneously hy-
pertensive rats without any difference in MMP2 and MMP9
expression [28]. A possible explanation for these contrasting
results is that, in the latter study, only the expression and not
the activity of MMPs and TIMPs was evaluated.

Apoptosis

The role of the AT2R in apoptosis is controversial and seems
to differ heavily depending on the experimental conditions
(e.g., cell types, presence or absence of grow factors).

The AT2R regulates apoptosis via different pathways.
AT2R stimulation can activate tyrosine phosphatases, such as
mitogen-activated protein (MAP) kinase-phosphatase-1
(MKP-1) and inactivate MAP kinase extracellular signal-
regulated kinase (ERK)1/2, resulting in dephosphorylation
of Bcl-2 and upregulation of bax-induced pro-apoptotic ef-
fects [15, 35, 36] (Fig. 1).

Recently, we investigated the effect of AT2R stimulation by
C21 on neuroprotection and neurite outgrowth and plasticity
both in vitro and in vivo in a model of spinal cord injury in
mice. This study reported improved neuronal survival with
elevated expression of the neurotrophin, brain-derived neuro-
trophic factor (BDNF), and the neurotrophin receptors, TrkA
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and TrkB, as well as Bcl-2 that may link AT2R to anti-
apoptosis [37].

Another pathway describing the AT2R-mediated regulation
of apoptosis includes activation of caspases. Long-term stim-
ulation of AT2R has been reported to cause ceramide genera-
tion leading to the activation of stress kinases and caspases
and finally to apoptosis [38–40].

In fact, it has been reported in SMC that the AT2Rmediates
inducible transcriptional regulatory protein GATA-6 expres-
sion via activation of mitogen-activated protein kinase kinase
(MEK)– ERK1/2 and c-Jun N-terminal kinase (JNK). GATA-
6 in turn activates FasL promoter, FasL expression and con-
sequently apoptosis via caspase 8 [41].

Conversely, different studies reported anti-apoptotic prop-
erties of the AT2R especially in pathological conditions. For
instance, Kaschina et al., demonstrated that direct AT2R stim-
ulation with C21 exerts beneficial effects after MI by anti-
apoptotic and anti-inflammatory mechanisms. They showed
that, stimulation of the AT2R engendered anti-apoptosis after
MI by rescuing p38 MAPK and p44/42 MAPK expression
and decreasing Fas-ligand and caspase-3 expression [30]
(Fig. 1).

Growth

It has been demonstrated that AT2R stimulation is anti-
hypertrophic via two main mechanisms: activation of protein
tyrosine phosphatase SHP-1, which blocks growth factor sig-
nals [42–44] and interaction with an AT2R binding protein
(ATBP=ATIP) [45, 46]. A higher level of complexity has
been added to the growth effects of the AT2R after the dis-
covery of the promyelocytic leukemia zinc finger protein
(PLZF) as an interacting protein of the AT2R [47], see below
(Fig. 1).

Neuronal Regeneration

The AT2R-related pathways in neuronal regeneration have
been extensively studied in vitro in PC12W and NG108-15
cell-lines [48, 49]. AT2R-mediated neurite outgrowth seems to
be a complex process that involves several pathways neces-
sary for cytoskeleton rearrangements. In contrast to nerve
growth factor, stimulation of the AT2R with Ang II leads to
upregulation of beta-tubulin andMAP2 but downregulation of
MAP1B [50] and neurofilament M [51] as shown in the
PC12W cell-line. Signaling pathways involved in neurite
outgrowth can be divided into four cascades that can be
activated simultaneously or sequentially (Fig. 1). In the
NG108-15 cell-line, stimulation of the AT2R leads to a de-
creased activity of PKCα followed by a decreased p21RAS

activity [52]. The second pathway involves phosphorylation
of p42/p44mapk mediated by Rap1/B-Raf [53]. However, this
pathway may be initiated rather via the phosphorylation of

tyrosine kinase receptor TrkA than directly downstream of the
AT2R [54]. This is in agreement with our finding, where
inhibition of tyrosine kinases with K252a abolished AT2R-
mediated neurite outgrowth in primary cortical neurons [37].
However, the upregulation of TrkA, TrkB and BDNF suggest
that autocrine and/or paracrine mechanisms may be involved
as well. The third pathway is mediated via nitric oxide and
cyclic GMP. Activation of nNOS via cGMP induces neurite
elongation in NG108-15 cells [55]. Finally, the fourth cascade
leading to neuronal differentiation involves ATIP (ATBP) [45,
46] and tyrosine phosphatase SHP-1 leading to transactivation
of methyl methanesulfonate sensitive 2 enzyme (MMS2) [56,
57]. Other molecules such as PLZF or PPARγ may be in-
volved in neurite outgrowth as well [56].

AT2R in Cardiovascular Injury

While angiotensin AT1 receptor antagonists (ARBs) are well
recognized and commonly used in the treatment of many
cardiovascular disorders, the potential cardiovascular protec-
tion offered by the AT2R per se is less known. Direct AT2R
stimulation has no impact on blood pressure; however, it
seems to afford tissue/organ protection via anti-inflammatory
and anti-fibrotic actions [58]. As reviewed previously, the
expression of the AT2R is increased in different cardiovascular
disorders such as left ventricular hypertrophy (LVH), heart
failure, cardiac fibrosis and atherosclerosis [5, 59]. Here we
review recent studies highlighting the cardiovascular protec-
tive actions and their related mechanisms induced by the
AT2R.

Cardioprotection

The pathophysiological role of AT1R stimulation in various
kinds of heart disease is unanimously accepted. In particular,
after myocardial infarction (MI), the AT1R contributes to
tissue injury via inflammation and tissue remodeling. The
AT2R, on the other hand, is widely recognized to induce
actions counteracting those of the AT1R and this seems par-
ticularly true during cardiac injury [60].

Kaschina et al., performed the first study looking at the
impact of direct AT2R stimulation post MI using the selective
AT2R agonist, C21 [30]. In a model of MI following perma-
nent coronary artery ligation in Wistar rats, acute treatment
with C21 post-MI for one week improved cardiac function
and decreased the infarct scar compared to vehicle treatment
[30]. The underlying mechanisms seem to imply an anti-
inflammatory as well as an anti-apoptotic action. Moreover,
continuous AT2R stimulation can also afford long-term
cardioprotection as highlighted recently in the late stage of
MI six weeks after the acute event, when heart failure begins
to develop [33]. C21 also improved arterial stiffness and
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reduced cardiac collagen content post-MI compared to the
vehicle-treated group. The prevention of the cardiac remodel-
ing by C21 seems to involve, among others, the TIMP1/
MMP9 axis to reduce post-MI fibrosis [33].

In a model ofMIwith permanent ligature of the left anterior
descending coronary artery, moderate cardio-selective over-
expression of the AT2R also protected cardiac function and
attenuated MI-induced cardiac hypertrophy [61]. The upreg-
ulation of the RAS components observed after MI in the left
ventricle (mRNA) was attenuated in the presence of an
overexpressed AT2R. Moreover, the MI-induced increase of
collagen I was also attenuated [61]. In addition, other AT2R-
mediated cardioprotective mechanisms, implying cardiac
stem cells as well as CD8-positive Tcells, have been identified
[8, 26]. Indeed after MI, an increased AT2R expression in
cardiac stem cells has been reported. Treatment of these cells
with C21 attenuated the apoptosis of cardiomyocytes [8]. On
the other hand, CD8+ AT2R

+ T cells did not induce cytotox-
icity to cardiomyocytes in opposition to the CD8+ AT2R

- T
cells [26]. They also exhibited an anti-inflammatory pattern
(see above). Moreover, intra-myocardial transplantation of
CD8+ AT2R

+ T cells after MI reduced the infarct size [26].
In a hypertension-induced model of left ventricular hyper-

trophy (SHR-SP), administration of C21, alone or in combi-
nation with an ARB, led to anti-fibrotic and anti-hypertrophic
effects on the heart independently of any blood pressure
change [28]. In particular, C21 reduced the interstitial collagen
I/III content in the left ventricle and the expression of cardiac
genes associated with cardiac hypertrophy. As suggested by
the authors, this may be due to antioxidant and anti-
inflammatory actions induced by AT2R stimulation [28]. An-
other recent study investigated the contribution of the AT2R to
cardiac remodeling, which is commonly observed with chron-
ic ARB treatment in the aging hypertensive heart [62]. In this
study, cardiac fibrosis of aged SHR was reduced by AT1R
blockade, and this cardioprotective effect was reversed by
blockade of the AT2R, thus, highlighting the anti-fibrotic
effects of the AT2R in the heart.

In a model of pulmonary hypertension, a disease that often
leads to right ventricular failure due to the increased vascula-
ture resistance in the lung, C21 treatment slowed the progres-
sion of the associated pulmonary and cardiac disease [63, 64],
as observed by the reduction of right ventricular systolic
pressure, right ventricular hypertrophy and dP/dtmax. These
protective effects were prevented when the AT2R antagonist,
PD123319, was administered concomitantly with C21. More-
over, C21 also attenuated the increase in pro-inflammatory
cytokines contributing to the protective mechanisms of the
AT2R stimulation in pulmonary hypertension [63, 64].

Cardioprotection afforded by the AT2R, thus, seems to be
mainly the result of anti-inflammatory and anti-fibrotic ac-
tions. AT2R-mediated anti-inflammation is controlled by
mechanisms initiated at two levels: within cardiac as well as

within immune cells. This may offer new therapeutic perspec-
tives against cardiac injuries.

In contrast to the results summarized above, the AT2R has
also been considered as a mediator of cardiac hypertrophy.
Infusion of Ang II in mice induces cardiac hypertrophy. How-
ever, in AT2R knock-out mice, cardiac hypertrophy is absent
suggesting that the AT2R mediates this effect in response to
increased blood pressure [65]. Further investigations sug-
gested that the cardiac hypertrophic response mediated by
the AT2R may involve the transcription factor PLZF [47,
66]. PLZF is able to bind the AT2R and recent in vivo studies
confirmed its involvement in AT2R-mediated cardiac hyper-
trophy [67]. Following Ang II infusion, mice developed a
major cardiac hypertrophy and fibrosis that was completely
absent in PLZF knockout mice or in Ang II-infused wild type
mice treated by an AT2R antagonist [67]. However, it should
be noted at this point that the actions of PLZF depend on the
growth factor environment for activation. This would indicate
that the AT2R by itself does not induce cardiac hypertrophy,
but that the recruitment of PLZF to the AT2R may, under
appropriate conditions, switch the AT2R-mediated cardiac
actions from antihypertrophic to hypertrophic ones [66].

Vascular Protection

Using the L-NAME hypertensionmodel that exhibits vascular
remodeling with increased stiffness, Paulis et al., investigated
the effect of chronic AT2R stimulation with C21 alone or in
combination with the ARB olmesartan [68]. L-NAME treat-
ment led to hypertension and hypertension-induced vascular
changes characterized by an increased pulse wave velocity
(PWV, an index of arterial stiffness), an increased aortic wall
thickness, elastic modulus and aortic hydroxyproline content
(marker for collagen deposition). C21 alone was able to partly
prevent all these vascular injuries without any change in blood
pressure. As expected, AT1R blockade with olmesartan
completely prevented hypertension as well as the increase in
PWV, aortic wall thickness and elastic modulus. Hydroxypro-
line accumulation in the aorta was slightly reduced by
olmesartan, and the combination with C21 further reduced
and even restored this parameter. Thus, the C21+olmesartan
combination led to a more pronounced stiffness reduction than
each component alone, independently of any effect on blood
pressure [68].

Similar mechanical/structural improvement of the vascula-
ture after AT2R stimulation have also been reported in differ-
ent vascular beds of SHR-SP (aorta, coronary arteries, and
mesenteric arteries) [28]. Chronic administration of C21 alone
or in combination with an ARB reduced vascular stiffness,
collagen and fibronectin content. Moreover, C21 also im-
proved the endothelial function as shown by the improved
vasorelaxation to acetylcholine. These vasoprotective actions
were observed concomitantly with a reduced superoxide
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production and monocyte/macrophage infiltration in the aorta
[28].

The role of the AT2R has also been investigated in the
pathological context of the Marfan syndrome, a disease that
predisposes for aortic root aneurysm and aortic rupture. The
authors crossed AT2R knock-out mice with a genetic mouse
model ofMarfan syndrome [69]. They observed a larger aortic
root diameter in 2-month-old mice lacking the AT2R com-
pared to mice with Marfan syndrome expressing the AT2R.
This effect was maintained in one-year-old mice. In addition,
they observed an increased death rate in AT2R KO mice with
Marfan syndrome [69]. This highlights the key role of the
AT2R in vascular remodeling since its absence accelerates the
process of aortic aneurysm. The authors also investigated the
contribution of indirect AT2R stimulation by using losartan in
Marfan syndrome mice that express or not express the AT2R.
They showed that AT2R signaling is needed to observe the
protection afforded by losartan in this model [69].

In the pathological context of atherosclerosis, it has been
previously suggested that the AT2R may play a role, since its
absence increased the extent of the vascular lesions [70, 71].
This notion has been confirmed by a recent study using apoE-
deficient transgenic mice overexpressing the AT2R [72]. The
authors demonstrated that the AT2R-mediated anti-
atherogenic actions were kinin / NO-dependent. Another re-
cent study investigated the effect of direct AT2R stimulation
using CGP42112 [34]. ApoE knock-out mice received a high
fat diet for 16 weeks and were treated during the last four
weeks with CGP42112. In this setting, AT2R stimulation
showed vaso-protective and athero-protective effects with
increased plaque stability. These effects were observed with-
out any change on blood pressure and were associated with an
improvement of the endothelial function and an increased NO
bioavailability [34].

Although many studies have highlighted an AT2R-mediat-
ed vasoprotection, there are still some controversies. Opposed
to the findings described above, a recent study showed that
AT2R deficiency has no effect on either aortic aneurysms or
atherosclerosis [73]. However the impact of the AT2R during
tissue injuries should not be studied indirectly using AT2R
blockade and/or AT2R knock-out animals but rather using
direct stimulation of the AT2R.

AT2R in Neuronal Injury

This chapter focuses on the AT2R-mediated neuroprotection
and neuroregeneration. Neuroprotection can be defined as a
process that directly prevents necrotic or apoptotic neuronal cell
death (primary neuroprotection) or affords protection of mye-
lin, axons, and neurons by, e.g., anti-inflammation (secondary
neuroprotection). Neuroregeneration can be defined as a com-
plex process restoring the interrupted neuronal connectivity and

resulting in functional recovery. The underlying mechanisms
may involve cell renewal, synaptic plasticity, regrowth of sev-
ered axons and sprouting of non-damaged neurons compensat-
ing the loss of a neighboring tract [74].

Neuroprotection

Several studies have suggested a protective role of the AT2R in
neuronal injury. The expression of AT2R is massively upregu-
lated in neuronal damage as demonstrated in animal models of
stroke and of sciatic or optic nerve crush [7, 11, 75]. Genetically
modified animals lacking AT2R subjected to cerebral ischemia
have larger infarcts as compared to the wild-type animals,
mainly due to exacerbated inflammation and generation of
ROS [76]. Subsequent studies demonstrated that stimulation
of the AT2R exerts neuroprotection either directly, or by the
anti-inflammatory activity (secondary neuroprotection).

The neuro-protective potential of AT2R-stimulation was
demonstrated in vitro in N-methyl-D-aspartate (NMDA)-me-
diated cell death [77]. The survival of two differentiated
neuronal cell lines, NG108-15 and N1E115, was reduced by
treatment with NMDA in a dose-dependent manner. Incuba-
tion with 10-7 M Ang II inhibited neuronal apoptosis and
suppressed the NMDA-mediated reduction of anti-apoptotic
Bcl-2. This effect was inhibited by the co-treatment with
PD123319, but not with losartan, suggesting an AT2R-medi-
ated primary neuroprotection [77]. In primary cortical neurons
isolated from mouse embryos, AT2R stimulation with
CGP42112 significantly reduced cell death during glucose
deprivation [78]. This effect was blocked by the co-
treatment with PD123319 confirming the AT2R specificity.

Postischemic inflammation significantly contributes to is-
chemic brain injury. Therefore, anti-inflammatory therapeutic
strategies can afford secondary neuroprotection in ischemic
stroke [79]. Previously, we demonstrated that AT2R stimula-
tion inhibits inflammatory response in vitro in CNS-derived
cells. As shown in primary rat astrocytes exposed to LPS, the
elevated expression of IL-6 and TNF-α was significantly
reduced by treatment with C21 as compared to vehicle [80].
AT2R stimulation also inhibited microglial activation as
shown by reduced nitric oxide release, and abolished cell
migration [81].

In animal models of neuronal injury, both primary and
secondary neuroprotection may significantly contribute to
the beneficial effects mediated by the AT2R. Previously, we
had shown that the AT1R blocker telmisartan, but not the ACE
inhibitor ramipril, reduced infarct volume, neuronal apoptosis
and inflammation in normotensive rats subjected to middle
cerebral artery occlusion (MCAO) [82]. This observation may
suggest that, in the presence of AT1R blockade, endogenous
Ang II stimulates the unopposed AT2R and by this exerts
neuroprotective actions.
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The AT2R-mediated neuroprotection in cerebral ischemia
was extensively studied by another group [19, 78, 83]. In
spontaneously hypertensive rats, intracerebroventricular
(i.c.v.) administration of CGP42112 for five days prior to
endothelin-1 induced stroke reduced infarct volume, locomo-
tor deficits and neuronal apoptosis as measured 72 hours after
cerebral ischemia [19]. Importantly, stimulation of the AT2R
even six hours after stroke induction was still effective, show-
ing for the first time a neuroprotective effect of delayed AT2R
stimulation after cerebral ischemia [83]. In C57Bl6 mice
subjected to MCAO, systemic administration of the peptidic
AT2R agonist, CGP42112, during the reperfusion reduced
infarct and edema volume as well as improved functional
outcome [78]. It is unclear, whether CGP42112 can enter brain
parenchyma through the damaged blood-brain barrier. How-
ever, improved cerebral blood flow during the first ten mi-
nutes of reperfusion suggests, that vascular components may
contribute to the observed beneficial effects of systemic drug
administration [78].

Our group studied the AT2R-mediated neuroprotective
mechanisms in MCAO in mice [84]. Systemic administration
of C21 reduced post-stroke mortality, neurological deficits
and neuronal apoptosis. This was accompanied by a reduced
IL-6 expression and elevated BDNF in the infarcted brain
areas [84]. These findings suggest that the neurotrophic path-
way is involved in the observed neuroprotection by promoting
neuronal survival.

Neuroregeneration

Neurite outgrowth has been attributed to the AT2R [85, 86]
indicating a neuroregenerative potential [1]. In primary corti-
cal neurons isolated from embryonic rat, Ang II promoted
neurite outgrowth as estimated by the measurement of neurite
length. Treatment with irbesartan enhanced the Ang II-
mediated effect, and PD123319 completely abolished neurite
outgrowth [11]. Similar effects were obtained when the AT2R
was stimulated directly; either with CGP42112 [85] or with
C21 [37, 87].

Lucius et al., demonstrated already in 1998 that AT2R
stimulation engendered neurotrophic-like actions in the ner-
vous system of adult animals [75]. Rats subjected to the optic
nerve lesion and treated locally with Ang II showed outgrowth
of axon bundles within the proximal optic nerve. This effect
was AT2R-dependent since it could be inhibited by an AT2R-
antagonist [75]. The neuroregenerative potential of AT2R was
also demonstrated in a sciatic nerve crush model in rats [88].
Ang II not only increased axonal diameters and promoted re-
myelination via AT2R but also accelerated functional recovery
as shown by increased toe spread distance (parameter for
motor-function) and improved the foot reflex withdrawal re-
action (a parameter of sensomotoric function) [88]. Finally, in
rats subjected to MCAO, increased AT2R immunoreactivity

was associated with intense neurite outgrowth in ischemic
striatum [11].

The AT2R may be implied in neuro-regenerative processes
beyond the well-described neurite outgrowth. It has been
shown that in AT2R-KO mice subjected to MCAO, impaired
spatial memory was associated with decreased hippocampal
neurogenesis as compared to wild-type animals [89]. This
effect was larger in female animals, suggesting gender differ-
ences in AT2R-mediated neuroregeneration. In a related man-
ner, the impact of AT2R-stimulation on renal function also
differs between sexes in that direct AT2R-stimulation with
C21 increased renal blood flow to a greater extent in female
rats than in males [90].

We have recently evaluated the impact of the direct AT2R
stimulation with C21 on neuroregeneration in an animal mod-
el of spinal cord injury (SCI) [37]. In mice subjected to SCI,
treatment with C21 elevated the number of regenerating axons
cranially and caudally from the lesioned area. The number of
regenerating fibers positively correlated with improved loco-
motor performance indicating functionality of these fibers.
Animals treated with C21 showed elevated immunoreactivity
for the neutrophic receptor TrkB in the peri-lesional area.
Parallel in vitro studies confirmed the importance of the
BDNF/TrkB axis in AT2R-mediated neuroregeneration [37].

Apart from neuronal injury, the exogenous delivery of
BDNF to the CNS may exert therapeutic effects in a variety
of other neurological diseases including Alzheimer’s,
Parkinson’s and Huntington’s disease, amyotrophic lateral
sclerosis, Rett syndrome and vascular dementia [91, 92].
However, gene delivery in humans remains a challenge. On
the other hand, a drug-induced increase of endogenous BDNF
expression in the CNS seems to be a rational alternative for
gene therapy. Small molecule AT2R agonists, such as C21, via
the activation of neutrophic pathways, may provide a thera-
peutic option in the above-mentioned diseases.

Conclusions

During the twenty-five years following the discovery of the
AT2R, our understanding of its protective role in tissue injury
has greatly improved, but it is still far from complete. Devel-
opment of pharmacological tools such as small-molecule li-
gands and the generation of the AT2R-KO animals have
facilitated the elucidation of the major molecular pathways
engaged by the AT2R. Results from various experimental
disease models revealed the protective and regenerative po-
tential of AT2R stimulation in cardiovascular and neuronal
injury. Future research on the AT2R should concentrate on the
complexity of molecular AT2R-related pathways and the
cross-talk with other receptors and pathways in the context
of tissue-protection. In addition to basic science, translational
research will have to address the therapeutic potential of AT2R
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stimulation with available AT2R agonists in humans and de-
fine therapeutic cardiovascular indications and non-
cardiovascular indications.
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