Skip to main content

Advertisement

Log in

Epinephrine and the Metabolic Syndrome

  • Pathogenesis of Hypertension: Genetic and Environmental Factors (DT O’Connor, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Epinephrine is the prototypical stress hormone. Its stimulation of all α and β adrenergic receptors elicits short-term systolic hypertension, hyperglycemia, and other aspects of the metabolic syndrome. Acute epinephrine infusion increases cardiac output and induces insulin resistance, but removal of the adrenal medulla has no consistent effect on blood pressure. Epinephrine is the most effective endogenous agonist at the β2 receptor. Transgenic mice that cannot make epinephrine and mice that lack the β2 receptor become hypertensive during exercise, presumably owing to the absence of β2-mediated vasodilatation. Epinephrine-deficient mice also have cardiac remodeling and poor cardiac responses to stress, but do not develop resting hypertension. Mice that cannot make epinephrine have a normal metabolism on a regular 14% fat diet but become hyperglycemic and insulin resistant when they eat a high fat diet. Vigorous exercise prevents diabetes in young mice and humans that overeat. However, exercise is a less effective treatment in older type 2 human diabetics and had no effect on glucose or insulin responses in older, diabetic mice. Sensitivity of the β2 receptor falls sharply with advancing age, and adrenal epinephrine release also decreases. However, treatment of older diabetic mice with a β2 adrenergic agonist improved insulin sensitivity, indicating that β2 subsensitivity can be overcome pharmacologically. Recent studies show that over the long term, epinephrine prevents hypertension during stress and improves glucose tolerance. The hyperglycemic influence of epinephrine is short-lived. Chronic administration of epinephrine and other β2 agonists improves cellular glucose uptake and metabolism. Overall, epinephrine counteracts the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ebert SN, Rong Q, Boe S, Thompson RP, Grinberg A, Pfeifer K. Targeted insertion of the Cre-recombinase gene at the phenylethanolamine n-methyltransferase locus: a new model for studying the developmental distribution of adrenergic cells. Dev Dyn. 2004;231:849–58.

    Article  PubMed  CAS  Google Scholar 

  2. Kennedy B, Ziegler MG. Cardiac epinephrine synthesis. Regulation by a glucocorticoid. Circulation. 1991;84:891–5.

    PubMed  CAS  Google Scholar 

  3. Clutter WE, Bier DM, Shah SD, Cryer PE. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest. 1980;66:94–101.

    Article  PubMed  CAS  Google Scholar 

  4. Kjaer M, Howlett K, Langfort J, Zimmerman-Belsing T, Lorentsen J, Bulow J, Ihlemann J, Feldt-Rasmussen U, Galbo H. Adrenaline and glycogenolysis in skeletal muscle during exercise: a study in adrenalectomised humans. J Physiol. 2000;528(Pt 2):371–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ashkar E. Cardiovascular effects of adrenal medullectomy in dogs during rest and exercise. Acta Physiol Lat Am. 1971;20:299–307.

    PubMed  CAS  Google Scholar 

  6. Harakal C, Reidenberg MM, Sevy RW, Ohler EA. Hemodynamic effects of adrenal medullectomy in the dog. Am J Physiol. 1966;210:5–6.

    PubMed  CAS  Google Scholar 

  7. Kennedy B, Bigby TD, Ziegler MG. Nonadrenal epinephrine-forming enzymes in humans. Characteristics, distribution, regulation, and relationship to epinephrine levels. J Clin Invest. 1995;95:2896–902.

    Article  PubMed  CAS  Google Scholar 

  8. Bao X, Lu CM, Liu F, Gu Y, Dalton ND, Zhu BQ, Foster E, Chen J, Karliner JS, Ross Jr J, Simpson PC, Ziegler MG. Epinephrine is required for normal cardiovascular responses to stress in the phenylethanolamine N-methyltransferase knockout mouse. Circulation. 2007;116:1024–31.

    Article  PubMed  CAS  Google Scholar 

  9. Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol. 1991;70:2279–86.

    PubMed  CAS  Google Scholar 

  10. Celander O. The range of control exercised by the sympathico-adrenal system; a quantitative study on blood vessels and other smooth muscle effectors in the cat. Acta Physiol Scand Suppl. 1954;32:1–132.

    Article  PubMed  CAS  Google Scholar 

  11. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem. 1999;274:16694–700.

    Article  PubMed  CAS  Google Scholar 

  12. Singh JP, Larson MG, Manolio TA, O’Donnell CJ, Lauer M, Evans JC, Levy D. Blood pressure response during treadmill testing as a risk factor for new-onset hypertension. The Framingham heart study. Circulation. 1999;99:1831–6.

    PubMed  CAS  Google Scholar 

  13. Seematter G, Binnert C, Tappy L. Stress and metabolism. Metab Syndr Relat Disord. 2005;3:8–13.

    Article  PubMed  CAS  Google Scholar 

  14. Selye H. The stress of life. 2nd ed. New York: McGraw-Hill; 1976.

    Google Scholar 

  15. Kjeldsen SE, Eide I, Aakesson I, Leren P. Influence of body weight on plasma catecholamine patterns in middle-aged, normotensive men. Scand J Clin Lab Invest. 1983;43:339–42.

    Article  PubMed  CAS  Google Scholar 

  16. Tataranni PA, Young JB, Bogardus C, Ravussin E. A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res. 1997;5:341–7.

    PubMed  CAS  Google Scholar 

  17. Tuck ML. Obesity, the sympathetic nervous system, and essential hypertension. Hypertension. 1992;19:I67–77.

    PubMed  CAS  Google Scholar 

  18. Young JB, Troisi RJ, Weiss ST, Parker DR, Sparrow D, Landsberg L. Relationship of catecholamine excretion to body size, obesity, and nutrient intake in middle-aged and elderly men. Am J Clin Nutr. 1992;56:827–34.

    PubMed  CAS  Google Scholar 

  19. Schutz Y, Bessard T, Jequier E. Diet-induced thermogenesis measured over a whole day in obese and nonobese women. Am J Clin Nutr. 1984;40:542–52.

    PubMed  CAS  Google Scholar 

  20. Schwartz RS, Jaeger LF, Veith RC. The importance of body composition to the increase in plasma norepinephrine appearance rate in elderly men. J Gerontol. 1987;42:546–51.

    PubMed  CAS  Google Scholar 

  21. Baron AD, Wallace P, Olefsky JM. In vivo regulation of non-insulin-mediated and insulin-mediated glucose uptake by epinephrine. J Clin Endocrinol Metab. 1987;64:889–95.

    Article  PubMed  CAS  Google Scholar 

  22. Lithell HO. Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care. 1991;14:203–9.

    Article  PubMed  CAS  Google Scholar 

  23. Lee ZS, Critchley JA, Tomlinson B, Young RP, Thomas GN, Cockram CS, Chan TY, Chan JC. Urinary epinephrine and norepinephrine interrelations with obesity, insulin, and the metabolic syndrome in Hong Kong Chinese. Metabolism. 2001;50:135–43.

    Article  PubMed  CAS  Google Scholar 

  24. Ward KD, Sparrow D, Landsberg L, Young JB, Vokonas PS, Weiss ST. The relationship of epinephrine excretion to serum lipid levels: the Normative Aging Study. Metabolism. 1994;43:509–13.

    Article  PubMed  CAS  Google Scholar 

  25. Troisi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension. 1991;17:669–77.

    PubMed  CAS  Google Scholar 

  26. Jensen J, Ruzzin J, Jebens E, Brennesvik EO, Knardahl S. Improved insulin-stimulated glucose uptake and glycogen synthase activation in rat skeletal muscles after adrenaline infusion: role of glycogen content and PKB phosphorylation. Acta Physiol Scand. 2005;184:121–30.

    Article  PubMed  CAS  Google Scholar 

  27. Bao X, Mills PJ, Rana BK, Dimsdale JE, Schork NJ, Smith DW, Rao F, Milic M, O’Connor DT, Ziegler MG. Interactive effects of common beta2-adrenoceptor haplotypes and age on susceptibility to hypertension and receptor function. Hypertension. 2005;46:301–7.

    Article  PubMed  CAS  Google Scholar 

  28. Loomba R, Rao F, Zhang L, Khandrika S, Ziegler MG, Brenner DA, O’Connor DT. Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins. Gastroenterology. 2010; 139:836–45, 845 e1.

    Google Scholar 

  29. Seals DR, Esler MD. Human ageing and the sympathoadrenal system. J Physiol. 2000;528:407–17.

    Article  PubMed  CAS  Google Scholar 

  30. Bowie MW, Slattum PW. Pharmacodynamics in older adults: a review. Am J Geriatr Pharmacother. 2007;5:263–303.

    Article  PubMed  CAS  Google Scholar 

  31. Docherty JR. Age-related changes in adrenergic neuroeffector transmission. Auton Neurosci. 2002;96:8–12.

    Article  PubMed  CAS  Google Scholar 

  32. • Ziegler MG, Milic M, Sun P, Tang CM, Elayan H, Bao X, Cheung WW, O’Connor DT. Endogenous epinephrine protects against obesity induced insulin resistance. Auton Neurosci. 2011; 162:32–4. PNMT knockout mice developed worse diabetes.

    Google Scholar 

  33. • Marques CM, Motta VF, Torres TS, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of exercise training (treadmill) on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice. Braz J Med Biol Res. 2010; 43:467–75. Exercise prevented diabetes in young mice.

    Google Scholar 

  34. Ringseis R, Mooren FC, Keller J, Couturier A, Wen G, Hirche F, Stangl GI, Eder K. Kruger K. Mol Nutr Food Res: Regular endurance exercise improves the diminished hepatic carnitine status in mice fed a high-fat diet; 2011.

    Google Scholar 

  35. Steinberg GR, Jorgensen SB. The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini Rev Med Chem. 2007;7:519–26.

    Article  PubMed  CAS  Google Scholar 

  36. Kelly M, Gauthier MS, Saha AK, Ruderman NB. Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes. 2009;58:1953–60.

    Article  PubMed  CAS  Google Scholar 

  37. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology. 2007;148:3441–8.

    Article  PubMed  CAS  Google Scholar 

  38. Kirsch DM, Baumgarten M, Deufel T, Rinninger F, Kemmler W, Haring HU. Catecholamine-induced insulin resistance of glucose transport in isolated rat adipocytes. Biochem J. 1983;216:737–45.

    PubMed  CAS  Google Scholar 

  39. Mulder AH, Tack CJ, Olthaar AJ, Smits P, Sweep FC, Bosch RR. Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3 T3-L1 adipocytes by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab. 2005;289:E627–33.

    Article  PubMed  CAS  Google Scholar 

  40. Chakraborty C. Biochemical and molecular basis of insulin resistance. Curr Protein Pept Sci. 2006;7:113–21.

    Article  PubMed  CAS  Google Scholar 

  41. Sanz C, Gautier JF, Hanaire H. Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes Metab. 2010;36:346–51.

    Article  PubMed  CAS  Google Scholar 

  42. Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, Philippides G, Rocchini A. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:3244–62.

    Article  PubMed  Google Scholar 

  43. Gill JM. Physical activity, cardiorespiratory fitness and insulin resistance: a short update. Curr Opin Lipidol. 2007;18:47–52.

    Article  PubMed  CAS  Google Scholar 

  44. Haram PM, Kemi OJ, Lee SJ, Bendheim MO, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisloff U. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res. 2009;81:723–32.

    Article  PubMed  CAS  Google Scholar 

  45. Rutledge DR, Steinberg JD. Effect of age on lymphocyte beta 2-adrenergic responsiveness. DICP. 1991;25:532–8.

    PubMed  CAS  Google Scholar 

  46. Ebstein RP, Stessman J, Eliakim R, Menczel J. The effect of age on beta-adrenergic function in man: a review. Isr J Med Sci. 1985;21:302–11.

    PubMed  CAS  Google Scholar 

  47. Begin-Heick N. Beta-adrenergic receptors and G-proteins in the ob/ob mouse. Int J Obes Relat Metab Disord. 1996;20 Suppl 3:S32–5.

    PubMed  CAS  Google Scholar 

  48. • Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011; 305:1790–9. The effect of exercise on diabetes in older diabetics.

  49. Innes KE, Vincent HK, Taylor AG. Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part I: neurophysiological responses and pathological sequelae. Altern Ther Health Med. 2007;13:46–52.

    PubMed  Google Scholar 

  50. Weidmann P, de Courten M, Boehlen L, Shaw S. The pathogenesis of hypertension in obese subjects. Drugs. 1993;46 Suppl 2:197–208. discussion 208–9.

    Article  PubMed  Google Scholar 

  51. Moan A, Eide IK, Kjeldsen SE. Metabolic and adrenergic characteristics of young men with insulin resistance. Blood Press Suppl. 1996;1:30–7.

    PubMed  CAS  Google Scholar 

  52. Zhang J, Niaura R, Dyer JR, Shen BJ, Todaro JF, McCaffery JM, Spiro 3rd A, Ward KD. Hostility and urine norepinephrine interact to predict insulin resistance: the VA Normative Aging Study. Psychosom Med. 2006;68:718–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL58120, M01RR00827, and 1UL1RR0319800.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, M.G., Elayan, H., Milic, M. et al. Epinephrine and the Metabolic Syndrome. Curr Hypertens Rep 14, 1–7 (2012). https://doi.org/10.1007/s11906-011-0243-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0243-6

Keywords

Navigation