Skip to main content

Advertisement

Log in

Cell Signaling of Angiotensin II on Vascular Tone: Novel Mechanisms

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) is a pleiotropic hormone that influences the function of many cell types and regulates many organ systems. In the cardiovascular system, it is a potent vasoconstrictor that increases peripheral vascular resistance and elevates arterial pressure. It also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via AT1 and AT2 receptors, which couple to many signaling molecules, including small G proteins, phospholipases, mitogen-activated protein (MAP) kinases, phosphatases, tyrosine kinases, NADPH oxidase, and transcription factors. In general, acute Ang II stimulation induces vasoconstriction through changes in the intracellular free calcium concentration [Ca2+]i, whereas long-term stimulation leads to cell proliferation and proinflammatory responses. This review focuses on signaling processes of vasoconstriction and highlights some new mechanisms regulating the contractile machinery in controlling vasomotor tone by Ang II, including RhoA/Rho kinase, transient receptor potential (TRP) channels, reactive oxygen species, and arachidonic acid metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of interest have been highlighted as: • Of importance

  1. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    PubMed  CAS  Google Scholar 

  2. Mehta PK, Griendling KK. Angiotensin II cell signalling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    Article  PubMed  CAS  Google Scholar 

  3. Lemarié CA, Schiffrin EL. The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst. 2010;11(1):19–31.

    Article  PubMed  Google Scholar 

  4. Higuchi S, Ohtsu H, Suzuki H, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond). 2007;112:417–28.

    Article  CAS  Google Scholar 

  5. • Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2009;302(2):148–58. This is a comprehensive review on Ang II signaling through NADPH oxidase activation.

    Article  PubMed  CAS  Google Scholar 

  6. Di A, Malik AB. TRP channels and the control of vascular function. Curr Opin Pharmacol. 2010;10(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  7. Earley S, Brayden JE. Transient receptors potential channels and vascular function. Clin Sci (Lond). 2010;119(1):19–36.

    Article  CAS  Google Scholar 

  8. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–57.

    Article  PubMed  CAS  Google Scholar 

  9. Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol. 2008;586(Pt 21):5047–61.

    Article  PubMed  CAS  Google Scholar 

  10. Touyz RM, El Mabrouk M, He G. Mitogen-activated protein/extracellular signal-regulated kinase inhibition attenuates angiotensin II-mediated signaling and contraction in spontaneously hypertensive rat vascular smooth muscle cells. Circ Res. 1999;84(5):505–15.

    PubMed  CAS  Google Scholar 

  11. Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98:322–34.

    Article  PubMed  CAS  Google Scholar 

  12. Loirand G, Pacaud P. The role of Rho protein signaling in hypertension. Nat Rev Cardiol. 2010;7(11):637–47.

    Article  PubMed  CAS  Google Scholar 

  13. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.

    Article  PubMed  CAS  Google Scholar 

  14. Seko T, Ito M, Kureishi Y, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003;92:411–8.

    Article  PubMed  CAS  Google Scholar 

  15. Gohla A, Schultz G, Offermanns S. Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ Res. 2000;87:221–7.

    PubMed  CAS  Google Scholar 

  16. Guilluy C, Bregeon J, Toumaniantz G, et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010;16:183–90.

    Article  PubMed  CAS  Google Scholar 

  17. Wirth A, Benyó Z, Lukasova M, et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt induced hypertension. Nat Med. 2008;14:64–8.

    Article  PubMed  CAS  Google Scholar 

  18. Bregeon J, Loirand G, Pacaud P, et al. Angiotensin II induces RhoA activation through SHP2-dependent dephosphorylation of the RhoGAP p190A in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2009;297(5):C1062–70.

    Article  PubMed  CAS  Google Scholar 

  19. Mori K, Amano M, Takefuji M, et al. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J Biol Chem. 2009;284:5067–76.

    Article  PubMed  CAS  Google Scholar 

  20. • Tabet F, Schiffrin EL, Callera GE, et al. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res 2008;103(2):149–58. This study shows that Ang II regulates SHP2 through redox-sensitive processes that influence SHP2 oxidation and phosphorylation.

    Article  PubMed  CAS  Google Scholar 

  21. • Guilluy C, Rolli-Derkinderen M, Loufrani L, et al. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type2 receptor activation. Circ Res 2008;102(10):1265-74. This study elucidates novel mechanisms whereby RhoA is regulated by Ang II.

    Article  PubMed  CAS  Google Scholar 

  22. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.

    Article  PubMed  CAS  Google Scholar 

  23. Inoue R, Jensen LJ, Shi J, et al. Transient receptor potential channels in cardiovascular function and disease. Circ Res. 2006;99:119–31.

    Article  PubMed  CAS  Google Scholar 

  24. Freichel M, Suh SH, Pfeifer A, et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4–/– mice. Nat Cell Biol. 2001;3:121–7.

    Article  PubMed  CAS  Google Scholar 

  25. Brayden JE, Earley S, Nelson MT, et al. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol. 2008;35(9):1116–20.

    Article  PubMed  CAS  Google Scholar 

  26. Mederos y Schnitzler M, Storch U, Meibers S, et al. Go-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 2008;27:3092–103.

    Article  PubMed  CAS  Google Scholar 

  27. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, et al. Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem. 2007;294:205–15.

    Article  PubMed  CAS  Google Scholar 

  28. • Arun K, Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ. Arresting a Transient Receptor Potential (TRP) Channel β-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 2010;285:30115-25. This study demonstrates that AT 1 R, TRPV4, and β-arrestin 1 form a functional complex that may regulate vascular contraction.

    Article  Google Scholar 

  29. Touyz RM, He Y, Montezano AC, et al. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R73–8.

    PubMed  CAS  Google Scholar 

  30. He Y, Yao G, Savoia C, et al. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res. 2005;96:207–15.

    Article  PubMed  CAS  Google Scholar 

  31. • Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 2009;83:547–57. This study highlights the importance of TRPM7 in the regulation of endothelial cell function.

    Article  PubMed  CAS  Google Scholar 

  32. Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res. 2004;95:922–9.

    Article  PubMed  CAS  Google Scholar 

  33. • Gonzales AL, Garcia ZI, Amberg GC et al. Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am J Physiol Cell Physiol 2010;299(5):C1195-202. This study demonstrates that TRPM4 is an important regulator of smooth muscle cell membrane depolarization and arterial constriction in response to changes in intraluminal pressure.

    Article  PubMed  CAS  Google Scholar 

  34. Mathar I, Vennekens R, Meissner M, et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest. 2010;120(9):3267–79.

    Article  PubMed  CAS  Google Scholar 

  35. Lucchesi PA, Belmadani S, Matrougui K. Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens. 2005;23(3):571–9.

    Article  PubMed  CAS  Google Scholar 

  36. Montezano AC, Burger D, Ceravolo GS, Yusuf H, Montero M, Touyz RM. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci (Lond). 2011;120(4):131–41.

    Article  CAS  Google Scholar 

  37. Suvorava T, Lauer N, Kumpf S, et al. Endogenous vascular hydrogen peroxide regulates arteriolar tension in vivo. Circulation. 2005;112(16):2487–95. 18.

    Article  PubMed  CAS  Google Scholar 

  38. Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med. 2006;231:237–51.

    CAS  Google Scholar 

  39. Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal. 2005;7(9–10):1302.

    Article  PubMed  CAS  Google Scholar 

  40. • Amberg GC, Eraley S, Glapa SA. Local regulation of arterial L-type calcium channels by reactive oxygen species. Circ Res 2010;107(8):1002-10. This paper demonstrates the novel findings that Ang II induces discrete sites of ROS generation resulting in oxidative activation of PKCα; these in turn promote local sites of enhanced L-type Ca 2+ channel activity, resulting in increased Ca 2+ influx and contraction. These findings link Ca 2+ and ROS in Ang II-mediated vasoconstriction.

    Article  PubMed  CAS  Google Scholar 

  41. Shimokawa H, Matoba T. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pharmacol Res. 2004;49(6):543–9.

    Article  PubMed  CAS  Google Scholar 

  42. Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest. 2000;106:1521–30.

    Article  PubMed  CAS  Google Scholar 

  43. Miura H, Bosnjak JJ, Ning G, et al. Role of hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res. 2003;92:e31–40.

    Article  PubMed  CAS  Google Scholar 

  44. • Kaneshiro T, Saitoh S, Machii H, et al. Metabolic regulation of coronary vascular tone: role of hydrogen peroxide, purinergic components, and angiotensin. Eur J Pharmacol 2010;645:127–34. This comprehensive review discusses the role of reactive oxygen species and Ang II in the regulation of vascular tone.

    Article  PubMed  CAS  Google Scholar 

  45. Campbell WB, Falck JR. Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension. 2007;49:590–6.

    Article  PubMed  CAS  Google Scholar 

  46. Williams JM, Murphy S, Burke M, et al. 20-hydroxyeicosatetraeonic acid: a new target for the treatment of hypertension. J Cardiovasc Pharmacol. 2010;56(4):336–44.

    Article  PubMed  CAS  Google Scholar 

  47. • Yaghini FA, Song CY, Lavrentyev EN, et al. Ghafoor HU, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 2010;55(6):1461–7. This study demonstrates that Ang II regulates vascular smooth muscle cell function through arachidonic acid metabolites that signal through redox-sensitive pathways.

    Article  PubMed  CAS  Google Scholar 

  48. Michaelis UR, Fleming I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol Ther. 2006;111:584–95.

    Article  PubMed  CAS  Google Scholar 

  49. • Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 2010;459(6):881–95. This excellent review highlights mechanisms whereby EETs and HETEs modulate vascular tone through effects on endothelial function.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen Dinh Cat, A., Touyz, R.M. Cell Signaling of Angiotensin II on Vascular Tone: Novel Mechanisms. Curr Hypertens Rep 13, 122–128 (2011). https://doi.org/10.1007/s11906-011-0187-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0187-x

Keywords

Navigation