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Abstract Angiotensin II (Ang II) is a pleiotropic hormone
that influences the function of many cell types and regulates
many organ systems. In the cardiovascular system, it is a
potent vasoconstrictor that increases peripheral vascular
resistance and elevates arterial pressure. It also promotes
inflammation, hypertrophy, and fibrosis, which are impor-
tant in vascular remodeling in cardiovascular diseases. The
diverse actions of Ang II are mediated via AT1 and AT2

receptors, which couple to many signaling molecules,
including small G proteins, phospholipases, mitogen-
activated protein (MAP) kinases, phosphatases, tyrosine
kinases, NADPH oxidase, and transcription factors. In
general, acute Ang II stimulation induces vasoconstriction
through changes in the intracellular free calcium concen-
tration [Ca2+]i, whereas long-term stimulation leads to cell
proliferation and proinflammatory responses. This review
focuses on signaling processes of vasoconstriction and
highlights some new mechanisms regulating the contractile
machinery in controlling vasomotor tone by Ang II,
including RhoA/Rho kinase, transient receptor potential
(TRP) channels, reactive oxygen species, and arachidonic
acid metabolites.
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Introduction

Regulation of blood flow, local hemodynamics, and blood
pressure occur acutely through vasomotor responses and
chronically through adaptive arterial structural remodeling.
Of the many factors that regulate vascular function and
structure is angiotensin II (Ang II), the major bioactive
peptide of the renin-angiotensin system (RAS). Ang II,
produced systemically and locally within the vascular wall,
is a potent vasoactive peptide that also stimulates vascular
smooth muscle cell growth, inflammation, and fibrosis
through myriad signaling pathways [1–3]. Accordingly,
Ang II plays an important physiological role in maintaining
vascular tone by regulating immediate vasoconstriction and
a pathophysiological role in cardiovascular diseases such as
hypertension, atherosclerosis, and heart failure, conditions
that are associated with endothelial dysfunction, vascular
hyperreactivity, and structural remodeling.

Ang II exerts its diverse actions via two G protein–
coupled receptors (GPCRs), Ang II type 1 receptors (AT1R)
and type 2 receptors (AT2R). The AT1R mediates most of
the (patho)physiological actions of Ang II. The AT2R is
associated with antiproliferative, pro-apoptotic, and vaso-
dilatory actions of Ang II and tends to counteract effects of
the AT1R [2]. Signaling pathways induced by Ang II/AT1R
involve interactions with several heterotrimeric G proteins
coupled to second messengers and cytosolic proteins,
including phospholipase C (PLC), phospholipase A2
(PLA2), and phospholipase D (PLD) [1]. In addition Ang
II/AT1R regulates the activation of NADPH oxidase
through the activation of many receptor and nonreceptor
tyrosine kinases and serine threonine kinases, important in
cell growth and hypertrophy. NADPH oxidase is a major
source of vascular reactive oxygen species (ROS) involved
in redox signaling and activation of pro-inflammatory
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transcription factors [4, 5•] and stimulation of small G
proteins such as Ras, Rac, and RhoA [1–4, 5•]. Although
the primary vascular cell target of Ang II is smooth muscle,
it also influences the endothelium by modulating produc-
tion of nitric oxide (NO) and ROS [5•] and by influencing
the many ion channels expressed in endothelial and
vascular smooth muscle cells, including transient receptor
potential (TRP) cation channels involved in regulating
vascular tone [6, 7].

Ang II has a diverse array of vascular functions. Acute
Ang II stimulation causes vasoconstriction and a rapid rise
in blood pressure, whereas chronic Ang II stimulation leads
to vascular smooth muscle cell proliferation and structural
remodeling, important in sustained blood pressure eleva-
tion. Many excellent papers have focused on Ang II
signaling involved in vascular remodeling, which will not
be further detailed here [2–4]. The present review discusses

the role of Ang II in the regulation of vascular tone,
focusing on some novel signaling pathways (Fig. 1).

Angiotensin II–Induced Contraction Through Classic G
Protein–Dependent Signaling: A Synopsis

Ang II is a potent vasoconstrictor that mediates effects
through vasoconstriction, mediated by G protein–sensi-
tive signaling pathways, where Ang II/AT1R couples to
small G proteins that activate downstream effectors,
including PLC, PLD, and PLA2. PLC activation produces
inositol-1-4-5-trisphosphate (IP3) and diacylglycerol
(DAG) [8]. IP3 in turn mediates sarcoplasmic reticular
release of Ca2+ to increase the intracellular free calcium
concentration [Ca2+]i, the major trigger for contraction.
Stimulation of Ca2+ influx through Ang II–activated Ca2+

Fig. 1 Angiotensin II (Ang II)–mediated activation of Ang II type 1
receptors (AT1R) regulates vasomotor tone through multiple mecha-
nisms. Ang II binds to its AT1R, which couples to heterometric Gq
proteins, to activate phospholipase C (PLC), leading to generation of
second messengers, inositol-1-4-5-trisphosphate (IP3) and diacylgly-
cerol (DAG), resulting in increased intracellular free calcium
concentration [Ca2+]i, which triggers phosphorylation of myosin light
chain (MLC) and stimulation of contraction. Ang II also induces
contraction through the RhoA/Rho kinase pathway, which increases
Ca2+ sensitivity by inhibiting the myosin light chain phosphatase
(MLCP). Ang II/AT1R stimulates production of arachidonic acid
(AA)–derived hydroxyeicosatetraenoic acids (HETEs) and formation
of NADPH oxidase-derived reactive oxygen species (ROS), which
stimulate contraction. Hydrogen peroxide (H2O2) induces vasodilation

through the opening of Ca2+-activated K+ channels (KCa). Activation
of transient receptor potential (TRP) cation channels by Ang II in
endothelial cells (ECs) and vascular smooth muscle cells (VSMCs)
influences Ca2+-activated K+ channels to modulate contraction and
relaxation. ?: unknown factor; Arghef1: Rho guanine nucleotide
exchange factors (GEF) p115; CaM: calmodulin; EETs: epoxyeicosa-
trienoic acids; GC: guanylate cyclase; Jak2: janus kinase; MLCK:
myosin light chain kinase; NO: nitric oxide; p: phosphorylation state;
P: phosphate group; PIP2: phosphatidylinositol 4,5 biphosphate;
PLA2: phospholipase A2; RhoGAP p190A: Rho GTPase activating
proteins (GAP) p190A; SHP2: Src homology region 2 domain
containing phosphatase-2 (SHP2); TRPC: calcium transient receptor
potential; TRPM: melastatin transient receptor potential; VDCC:
voltage-dependent calcium channels
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channels also contributes to the pool of cytoplasmic Ca2+.
Increased [Ca2+]i induces Ca

2+-calmodulin binding, which
activates the myosin light chain kinase (MLCK), promot-
ing interaction of myosin II with actin and enhanced cross-
bridge cycling with consequent contraction [9].

PLD activation by Ang II results in hydrolysis of
phosphatidylcholine to choline and phosphatidic acid,
which is rapidly converted to DAG, resulting in sustained
PKC activation and associated sustained vasoconstriction
[8]. In addition to the “classic” PLC-dependent and PLD-
dependent pathways, ERK1/2 and tyrosine kinases, typi-
cally involved in growth signaling, influence Ang II–
stimulated vascular contraction, an effect mediated through
changes in [Ca2+]i and the intracellular pH (pHi) [10]. A
number of other signaling mechanisms have recently been
identified that also play an important role in the regulation
of vascular tone by Ang II, including the RhoA/Rho kinase
pathway, TRP channels, ROS, and arachidonic acid
metabolites (HETEs, EETs), which are discussed later.

The RhoA/Rho-Kinase Signaling Pathway
and Angiotensin II

Activation of RhoA and its downstream target Rho-kinase
is increasingly being recognized as an important mecha-
nism of vasoconstriction by Ang II and accordingly has
been implicated in the pathophysiology of hypertension
[11, 12]. Small guanosine triphosphatase (GTPase) Rho
proteins are active when bound to GTP and inactive when
bound to guanosine diphosphate (GDP). Activation is
mediated by guanine nucleotide exchange factors (GEFs),
which displace the GDP dissociation inhibitor (GDI) and
promote release of GDP in exchange for GTP. GTPase
activating proteins (GAPs) stimulate the intrinsic hydrolysis
of GTP and lead to rapid conversion of Rho proteins to
their inactive state, bound to GDP and GDI [12]. RhoA, a
member of the Rho family of small GTPase binding
proteins, is abundantly expressed in vascular smooth
muscle cells and is well known to participate in arterial
smooth muscle contraction via phosphorylation of myosin
light chain (MLC) and sensitization of contractile proteins
to Ca2+ [13]. In vascular smooth muscle cells (VSMCs),
Ang II/AT1R increases RhoA activity [14] via the G12/13

family of G proteins, as well as Gq [15]. Therefore
RhoGEFs sensitive to G12/13, such as Arhgef1 (p115Rho-
GEF), Arhgef12 (LARG), or Arhgef11 (PDZ-RhoGEF),
may mediate Rho activation [11, 12]. Recent evidence
indicates that in VSMCs, Ang II/AT1R specifically induces
phosphorylation of Arhgef1 by the tyrosine kinase Jak2
[16]. In vivo, specific deletion of Arghef1 in smooth muscle
does not modify blood pressure, but Ang II-induced
contraction in aortic rings is inhibited in mice with

inactivation of Arhgef1 in smooth muscle, whereas
responses to other vasoconstrictors (norepinephrine and
endothelin-1) are unchanged [16]. This model demonstrates
that Ang II-AT1R-Gq-Arhgef1-RhoA signaling is strongly
implicated in the development of hypertension induced by
Ang II and by NG-nitro-L-arginine methyl ester (L-NAME).
Interestingly, the study of the constitutive deletion of
Arhgef12 in mice showed that endothelin-1-ETA receptor-
G12/13-Arhgef12-RhoA signaling may be implicated in the
development of deoxycorticosterone acetate (DOCA)-salt–
induced hypertension [17].

Not only is activation of a regulator of G-protein
signaling (RGS) domain-containing RhoGEF important,
but inactivation of the RhoGAP is also a crucial aspect of
the RhoA/Rho-kinase cascade stimulated by GPCRs, as
shown by the recent identification in cultured vascular
smooth muscle cells of the tyrosine phosphatase SHP2, as a
novel negative regulator of RhoGAP (p190A). SHP2 is
necessary to maintain basal p190A activation and conse-
quently a low RhoA/Rho-kinase activity in rat aortic
smooth muscle cells [18, 19]. SHP2 regulation by Ang II
through AT1R occurs in a redox-sensitive manner [20•].
Under certain conditions (possibly when the AT2R is
upregulated), Ang II can inhibit RhoA activity to induce
vasodilation. This occurs through AT2R-mediated Ste20-
related kinase (designated SLK)-induced phosphorylation
of Ser188 of RhoA [21•].

In rodents, Ang II-induced hypertension exhibits in-
creased vascular RhoA/Rho kinase activation, without
marked changes in expression [14]. This is associated with
increased activity of Arhgef1, implicated to be important in
RhoA hyperactivation, vasoconstriction, and hypertension
[17]. Pharmacologic inhibition of Rho kinase with fasudil
or Y27632 suppresses acute pressor responses of Ang II,
but does not reduce blood pressure chronically, further
supporting the role of RhoA/Rho kinase in acute vasocon-
striction, rather than in mechanisms associated with
adaptive vascular remodeling that occur chronically with
Ang II infusion [12].

Transient Receptor Potential Channels and Vascular
Cell Function

Transient receptor potential (TRP) channels are present in
both endothelial and vascular smooth muscle cells and
contribute to vasomotor control in many vascular beds.
They are nonselective, cation-permeable channels, most of
which are permeable for Ca2+ and constitute a large family
of 28 mammalian TRP-related proteins, divided into six
subfamilies: the classic TRPCs (TRPC1–7), the vanilloid
receptor TRPs (TRPV1–6), the melastatin TRPs (TRPM1–
8), the mucolipins (TRPML1–3), the polycystins (TRPP1–
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3), and ankyrin transmembrane protein 1 (TRPA1). TRP
channels have recently been reviewed [7, 22], so this
review will not be detailed. Specific TRP channels are
activated by different stimuli, such as vasoactive agents,
oxidative stress, mechanical stimuli, and heat [23]. Multiple
TRP isoforms are relevant for the regulation of vascular
contractility, including TRPC1, TRPC3, TRPC4, TRPC5,
TRPC6, TRPV1, TRPV4, TRPM4, TRPM7, TRPP2, and
TRPA1 [23]. The contribution to systemic blood pressure
regulation has been evaluated only for four TRP isoforms
so far: TRPC6, TRPV1, TRPV4, and TRPM4.

Vascular smooth muscle cells express mainly TRPC1,
TRPC4, and TRPC6 [23]. TRPC channels open in
response to stimulation of plasma membrane receptors
that activate PLC, such as Ang II/AT1R, triggering
transmembrane Ca2+ influx. Aortic rings from TRPC4
knockout mice displayed impaired endothelium-dependent
relaxation in response to acetylcholine. This study dem-
onstrated a direct functional link between endothelial
TRPC4 channels and vasomotor tone control [24].
Activation of TRPC3 and TRPC6 channels leads to
myocyte depolarization, which stimulates Ca2+ entry via
voltage-dependent Ca2+ channels leading to vasoconstric-
tion [25]. TRPC6 is involved in pressure-induced vascular
smooth muscle cell depolarization and vasoconstriction of
rat cerebral arteries [25]. TRPC6 has also been identified
as a mechanosensor that regulates myogenic vasoconstric-
tion. This effect occurs through ligand-independent acti-
vation of AT1R [26]. In the heart, activation of TRPC7
channels by Ang II is associated with apoptosis and
cardiac failure in Dahl salt-sensitive rats [27].

TRPV4-mediated Ca2+ entry in endothelial cells is
important for steady-state production of NO and for
vasoconstriction and vasodilatation of peripheral blood
vessels. TRPV4 is regulated by many factors including
Ang II/AT1R. Mechanisms linking AT1aR and TRPV4 have
recently been demonstrated, where they form a constitutive
heterodimer in the membrane [28•]. Moreover β-arrestin 1
interacts with TRPV4 to fine-tune TRPV4-mediated Ca2+

influx and [Ca2+]i. Constitutive interaction and cross-talk
between TRPV4, AT1R, and β-arrestin 1 represents a novel
vascular regulatory mechanism that ensures rapid and
efficient signaling through close proximity of signaling
molecules.

Magnesium (Mg2+) is the second most abundant intra-
cellular cation and is involved in the regulation of vascular
tone by counteracting effects of Ca2+ and through modifi-
cation of the many ATP-sensitive enzymes involved in the
contractile/dilatory machinery in endothelial cells and
vascular smooth muscle cells [29]. Decreased Mg2+

concentration is associated with endothelial dysfunction,
increased reactivity, enhanced contractility, and elevated
blood pressure [29, 30]. TRPM6/TRPM7 cation channels

have recently been identified as important regulators of
Mg2+ homeostasis. In a mouse model of hypomagnesemia,
TRPM7 was found to be important in endothelial function
[31•]. Ang II regulates vascular TRPM7 acutely by
inducing phosphorylation and chronically by increasing
expression at the mRNA and protein levels [29, 32]. The
(patho)physiological significance of this activity awaits
further clarification.

TRPM4 and TRPM5 are also implicated in myogenic tone
through changes in Ca2+ influx. TRPM4 and TRPM5 are
highly selective for monovalent cations, and activation of
TRPM4 currents in arterial myocytes elicits membrane
depolarization, activation of voltage-dependent calcium
channels, and vasoconstriction. Recent studies showed the
possibility that regulation of TRPM4 activity by PKC could
play an important role in the control of myogenic tone under
normal conditions and could contribute to disrupted arterial
function during pathophysiological situations [33•]. TRPM4
expression is increased in spontaneously hypertensive rats
(SHR). Interestingly, TRPM4-deficient mice develop hyper-
tension in a RAS-independent, catecholamine-dependent
manner, so TRPM4 has been suggested to limit blood
pressure increase [34].

Dual Effects of Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a stable, nonradical, reactive
oxygen species produced in endothelial and vascular smooth
muscle cells; it acts as a signaling molecule in the regulation
of vascular function [35]. Ang II is a potent inducer of
vascular H2O2 generation, in large part through activation of
vascular NADPH oxidases (Noxs), including Nox1, Nox2,
Nox4, and Nox5 [36]. The role of H2O2 in modulating
vascular tone is complex, as studies show conflicting results
on vasomotor tone: H2O2 can exert either a contractile or a
relaxant response depending on the cellular and enzymatic
source of H2O2, the intracellular compartmentalization of
H2O2, the vascular bed, and the contractile state [37, 38].
Several mechanisms contribute to H2O2-induced vasocon-
striction, including an increase in [Ca2+]i through regulation
of L-type Ca2+ channels [39, 40•], generation of arachidonic
acid metabolites with vasoconstrictor activity, and a direct
Ca2+-independent tonic effect on the vascular smooth muscle
contractile apparatus. Vascular overexpression of catalase in
mice reduced the pressor response to vasoconstrictor agents
and decreased blood pressure, suggesting the importance of
endogenous H2O2 as a vasoconstrictor and regulator of
blood pressure. H2O2 interacts with PLC, PKC, and
phosphoinositide 3-kinase, which may contribute to molec-
ular mechanisms underlying H2O2-induced vasoconstriction.

H2O2 also exerts vasodilatory effects in vascular cells
and has been suggested to be an endothelium-derived
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hyperpolarizing factor [41, 42]. H2O2 hyperpolarizes and
dilates arteries through the opening of Ca2+-activated K+

channels [43]. Cardiac myocytes can modulate coronary
vascular tone through H2O2, purinergic components (aden-
osine and ADP), and Ang II, especially in ischemic
conditions. H2O2 released from cardiac myocytes induced
vasodilatory effects and Ang II released from cardiac
myocytes exhibited vasoconstrictor effects in the coronary
circulation in response to oxygen supply [44•]. Mechanisms
of H2O2-mediated vasodilation are complex but probably
involve regulation of K+ channels through direct actions
and indirect actions via second messengers.

Endothelial Signaling of Ang II/AT1R: The Role
of HETEs/EETs in Vascular Tone Regulation

Arachidonic acid (AA) is metabolized to 20-
hydroxyeicosatetraenoic acids (20-HETEs), epoxyeicosa-
trienoic acids (EETs), and dihydroxyeicosatetraenoic acids
(DiHETEs). These eicosanoids are involved in many
diverse physiological and pathophysiological functions, as
well as in the regulation of vascular tone and blood
pressure. Whereas EETs are recognized as lipid vasodilators
that share many NO vascular protective properties, 20-
HETE is a potent vasoconstrictor, associated with activation
of PKC, Rho kinase, and MAP kinase [45]. Upregulation of
20-HETE production contributes to increased oxidative
stress, endothelial dysfunction, vasoconstriction, and pe-
ripheral vascular resistance associated with Ang II-induced
hypertension [46, 47•].

EETs and DiHETEs counterregulate vasoconstrictor
actions of HETEs by mediating vasodilatation through
inhibition of Ca2+-activated K+ channels and by modulating
TRP channel activity [47•, 48, 49•]. Because of their
vasodilatory and vascular-protective actions, increasing
EET production may be an attractive therapeutic strategy
for the management of cardiovascular disease [49•].

Conclusions

The mechanical functional response of vascular smooth
muscle to Ang II is the summation of vasoconstrictor and
vasodilator signals that are integrated at the level of the
contractile machinery, mainly through the phosphorylation
or the dephosphorylation state of the regulatory light chains
of the MLC, which depends on the activity of two key
enzymes, the kinase MLCK and the phosphatase MLCP. In
addition to changes in [Ca2+]i through classic G protein–
coupled, receptor-mediated activation of PLC and PLD, it
is now clear that many signaling molecules, including
RhoA/Rho kinase, TRPs, ROS, EETS/HETEs, and others,

play a role in Ang II–mediated regulation of vascular tone.
Exactly how the pathways network and how signaling
molecules interact to control vasoconstriction and vasodi-
lation remain unclear. A greater understanding of the
processes that regulate temporal and spatial aspects of
contraction, together with the mechanism through which
signaling pathways network, will facilitate development of
new therapeutic agents to better control vascular tone in
vascular disease. Such innovations are already under way,
as evidenced by development of novel Rho kinase
inhibitors, Nox inhibitors, and EET and HETE modulators.
Inhibition of the RAS with ACE inhibitors, AT1R blockers,
and direct renin inhibitors, together with potentially
beneficial actions of AT2R agonists, are also effective
strategies to regulate vascular tone, particularly in cardio-
vascular pathologies.
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