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Abstract
Purpose of Review This review discusses the need for com-
putational modeling in myelodysplastic syndromes (MDS)
and early test results.
Recent Findings As our evolving understanding of MDS
reveals a molecularly complicated disease, the need for
sophisticated computer analytics is required to keep track
of the number and complex interplay among the molecular
abnormalities. Computational modeling and digital drug
simulations using whole exome sequencing data input have
produced early results showing high accuracy in predicting
treatment response to standard of care drugs. Furthermore, the
computational MDS models serve as clinically relevant MDS
cell lines for pre-clinical assays of investigational agents.
Summary MDS is an ideal disease for computational model-
ing and digital drug simulations. Current research is focused
on establishing the prediction value of computational model-
ing. Future research will test the clinical advantage of
computer-informed therapy in MDS.
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Introduction

Myelodysplastic syndromes (MDS) comprise a variety
of clonal hematopoietic neoplasms with each showing
dysplastic hematopoiesis, observed by light microscopy
that cause at least one peripheral blood cytopenia and a
risk for progression to acute myeloid leukemia (AML)
[1–3]. MDS typically presents in older individuals and
is the most common, age-associated clonal hematopoietic
disease [4–6].

With advent of DNA sequencing, we now understand that
most MDS cases harbor one or more of over 70 driver gene
mutations in a subclonal architecture [7–9]. Furthermore,
when using whole exome sequencing and array-based com-
parative genomic hybridization (CGH), we have detected
unique constellations of hundreds of genomic abnormalities
in our MDS patients, which brings to light the individual
nature of MDS.

The necessity to understand MDS is impelled by a
limited number of therapeutic options [10]. In the current
era, where 50% of MDS patients transiently respond to
hypomethylating agents, azacitidine or decitabine, and on-
ly 20% of non-del(5q) MDS respond to lenalidomide,
there is an urgent need to predict which patients will
achieve benefit from these agents, spare patients who will
not, and identify alternative drugs. Furthermore, as MDS
clones evolve after treatment interventions in individual
patients, it is imperative for clinicians to see those MDS
clonal dynamics so that appropriate revisions in treatment
strategy can be made.

Thus, MDS is biologically complex and challenging to
treat. Bridging MDS disease characteristics to clinical
decision-making requires much greater sophistication than
our wholesale treatment practices of the twentieth century.
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MDS as a Measurable Disease

Although MDS spent much of the twentieth century first as
an odo-leucoses and then a refractory cytopenia distin-
guished from vitamin and mineral deficiencies [11], it
was not until the very end of that century that clinicians
began to measure its existence. In 1997, Peter Greenberg
and collaborators synthesized quantifiable MDS disease
characteristics from prior international efforts into a mini-
mal set of measurable variables (i.e., number of cytopenias,
bone marrow myeloblast percentage, and bone marrow
chromosome karyotyping) that correlated with patient sur-
vival time and progression to AML [12]. The International
Prognostic Scoring System (IPSS) was eventful on several
levels, but chief among its significances was that it trans-
formed MDS into a calculable disease. Revisions and ad-
aptations of the IPSS have followed, primarily by adding
clinical and laboratory variables found to correlate with
survival based on multivariable logistic regression statis-
tics or carving out select sub-populations of MDS patients
[13, 14, 15•, 16, 17]. With the current application of geno-
mics and other –omics technologies, the next waves of
IPSS revisions will incorporate more molecular pathology.

Another key point here is that sharing of a robust MDS
database was required to mature MDS management from a
descriptive cytomorphologic disease to a measurable entity
on which incremental improvements could be plied.

MDS Biomarkers Correlating with Treatment
Response

In addition to clinical factors, somatic gene mutations associate
with overall survival in MDS patients, and can be integrated
into prognostic models to augment their predictive value.

For example, in lower-risk MDS, TP53 gene mutations
were found in 13% of patients with a preponderance found
in del(5q) patients (23.6%) compared to non-del(5q) patients
(3.8%) [18]. Multivariate regression analysis identified TP53
as an independent predictor for shortened progression-free
survival and shortened overall survival in lower-risk MDS
patients. Importantly, the variant allele frequency cutoff for
that study was 6%. Extending these findings to treatment, in
del(5q) MDS patients treated with lenalidomide, the presence
of TP53mutations correlated with a lower response rate and a
higher rate of progression to AML [19].

A study of 439 MDS patients interrogated for mutations in
111 cancer-relevant genes found that mutations in EZH2,
RUNX1, TP53, ETV6, and ASXL1 were independent predictors
of poor survival in a multivariate analysis controlling for
IPSS classification [20]. This large cohort of MDS patients
further enabled the investigators to correlate genotype and
phenotype characteristics, leading to associations between

RUNX1, TP53, and NRAS mutations with severe thrombo-
cytopenia and increased blast percentage, and the associa-
tion of TP53 mutations with complex karyotype.

A subsequent study performed targeted sequencing of 111
genes across 738 patients with MDS and identified recurrent
driver mutations in 43 genes [7]. This study verified the poor
prognostic impact of genes such as RUNX1, ASXL1, TP53,
SRSF2, and U2AF1 and also identified a correlation between
the number of driver mutations present and leukemia-free sur-
vival. These clinical associations are excellent examples of
how somatic gene mutation data build upon existing clinical
risk-stratification scoring systems.

With regard to chemotherapy treatment, in patients
whose MDS harbored a TET2 mutation at > 10% variant
allele frequency and wild-type ASXL1, they were 2.5 times
more likely to achieve improved clinical outcomes after
hypomethylating agent (HMA) treatment [21, 22, 23, 24•].

In terms of allogeneic hematopoietic cell transplantation
(HCT), although transplant can bring about cure in approxi-
mately 40% of MDS patients, the countervailing risks of
transplant-related death and MDS relapse after transplant
necessitate careful patient selection. Many transplant centers
base transplant eligibility on clinical and comorbidity factors,
but recent evidence indicates that molecular biomarkers may
also be useful in identifying MDS patients for allogeneic
HCT. To identify these biomarkers, 288 MDS samples were
retrospectively interrogated for the presence of mutations in
22 myeloid genes and then correlated with post-transplant
outcomes [25]. Among the 22 genes, EZH2, RUNX1, TP53,
and ASXL1 were associated with worse transplant outcomes.
A multivariable regression analysis incorporating clinical data
further identified EZH2 mutations as an independent poor
prognostic factor.

In a separate retrospective MDS study, mutations in
TP53 and TET2 were identified as biomarkers for poor
clinical outcome after allogeneic HCT to such an extent that
the strategy of allogeneic HCT in this patient population bears
further study and optimization [26].

Another research effort sequenced 129 genes of 1514MDS
patient pre-transplant samples [27]. This study confirmed that
TP53 mutations, along with the p53 regulator PPM1D and
JAK2mutations, were significantly associated with shortened
overall survival time after transplant. Mutations in TP53 and/
or Ras pathway (NRAS, KRAS, PTPN11, CBL, NF1, RIT1,
FLT3, and KIT) mutations were associated with shorter time
to disease relapse after transplant.

Building upon with these molecular studies, others
found that the presence of TP53, RUNX1, or ASXL1 muta-
tions impacted post-transplant survival when somatic gene
mutations and IPSS-R risk scoring were combined [28].
This augmentation by molecular profiling supports the
evolution of MDS clinical prognostic systems into a
clinico-molecular system.
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The Upcoming Era of Computational Modeling
for MDS

In these early days of correlative molecular studies driven
primarily by multivariate regression statistics, the associations
among genomic abnormalities and treatment responses are
mounting in number and complexity. At the clinical practice
level, it is challenging to remember and interpret the increas-
ing number of significant biomarkers in addition to clinical
factors. Revelation of these numerous complex associations is
transforming MDS into its next era when computational
methods will be necessary to understand each patient’s disease
network and interactions with treatment options.

We recently tested a computational biology method
that comprises software coding for 4700 intracellular
pathway elements capable of simulating over 60,000
functional interactions, including coverage of the kinome,
transcriptome, proteome, and metabolome (Cellworks
Group, Inc.) (Fig. 1a) [29••]. The software coding was
sourced from PubMed references over a 10-year period.
The computer software first determines whether the patient’s
MDS gene mutations result in activated or inactivated pro-
teins, and then whether the protein is over-expressed or
under-expressed by utilizing the patient’s MDS cytogenetics
and/or chromosome copy number variation (CNV) data.
Protein network maps of each patient’s MDS mutanome de-
pict the interactive nature of all predicted aberrant protein
signaling pathways (Fig. 1b).

Each patient’s map also enables a quantitative means of
measuring the disease physiology in a composite MDS cell
growth score consisting of MDS cell apoptosis, cell prolifer-
ation, and cell viability. Next, the patient’s MDS profile can be
digitally screened to predict response to drugs of interest. If
the drug targets and downstream mediators for the drug are
present and unperturbed by genomic mutations in the MDS
profile, the cell growth score will normalize in a dose-
dependent manner, suggesting a response to that particular
agent. If the drug in the model does not have its targets or
necessary downstream mediators, then the MDS cell growth
score is unchanged and the MDS is predicted as non-
responsive to the drug. Combinations of drugs are also tested
in any permutation. Once the model is created and validated
over the course of 5–7 days, the drug simulations can be
executed on the order of minutes. PubMed references are pro-
vided as documentation linking the genomic abnormalities
with predicted drug sensitivity or resistance.

To test this computational method in MDS, we accessed
three retrospective MDS datasets [29••]. The first cohort
modeled 46 del(5q) MDS patients and predicted their re-
sponse to lenalidomide treatment in a blinded fashion. When
the simulated drug predictions were compared to clinical re-
sponses, 37/46 (80%) matched the observed clinical out-
comes. Importantly, in del(5q) MDS cases that did not

improve after lenalidomide treatment, the computational ap-
proach identified potential mechanisms for lenalidomide re-
sistance (Fig. 1b). The second cohort in the study modeled 15
MDS patients treated with azacitidine and accurately predict-
ed 12/15 (80%) clinical outcomes. The third cohort modeled
10MDS patients treated with a combination of azacitidine and
lenalidomide, and accurately predicted 10/10 (100%) of the
clinical outcomes. Not only was this method accurate in
predicting MDS patient responses to standard of care (SOC)
therapy, it was able to highlight the drug sensitivity and resis-
tance mechanisms for each case (Fig. 1b).

Based on these results, we subsequently initiated a prospec-
tive clinical trial designed to test the feasibility of computer-
informed treatment in the management of MDS patients
(ClinicalTrials.gov NCT02435550). The trial establishes the
prediction values of the computational method and is
generating IDE-enabling data for a future clinical trial ran-
domizing HMA-refractory MDS patients to SOC versus
computer-informed treatment. Preliminary data show high
prediction accuracy in MDS and AML patients receiving
SOC [30]. The PubMed references identified by the compu-
tational modeling and drug simulations are necessary for jus-
tifying medical necessity to health insurance carriers for drug
coverage. This provision of PubMed references is a major
difference between algorithmic methods and artificial intelli-
gence systems that use heuristics, and thus demonstrates a
real-world advantage to algorithmic methods.

Ultimately, this technology is meant to select MDS
patients who will benefit most from treatment, spare patients
from unwarranted toxicities in those who will not achieve
benefit, and identify alternative treatments with greater
chance for clinical improvement. These advantages are of
interest to patients, clinicians, and payers such as health
insurance carriers.

In addition to accurately discriminating responders from
non-responders, this computational biology method has also
been used to screen investigational drugs for application in
MDS. With each MDS protein network map representing an
MDS patient’s cell line, a database of 1000 MDS patients
generates 1000 MDS cell lines with no laboratory-induced
genomic artifacts. These digital MDS models can be orga-
nized into treat-naïve and HMA-refractory cohorts, thus en-
abling pre-clinical testing to specificMDS sub-populations for
intended market approval. Because computational modeling
does not require additional tissue or animal xenografting, a
limitless number of drugs or drug combinations can be tested
in the digital MDS models. Drugs such as BET inhibitors,
CDK4/6 inhibitors, and venetoclax have been screened by this
MDS computational modeling method with identification of
certain genomic signatures that correlate with predicted effi-
cacy [31, 32]. These drug-signature pairs inform eligibility
criteria for precision enrollment clinical trials, companion di-
agnostics, and swift pathways to market approval.
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Fig. 1 Multi-gene, multi-drug computational modeling in MDS. a The
computational biology software was founded on PubMed references of
intracellular elements involved in cancer cell physiology. Before
inputting the MDS patient’s genomic abnormalities, the digital cell
model was allowed to divide and die at a rate that was mathematically
recorded over time and representative of a non-malignant state. Genomic
abnormalities, such as gene mutations and gene copy number variations,
from an MDS patient were then used to change the function of select
protein networks. The rate of MDS cell division and death was then
recalculated and compared to the non-malignant state. This change in
MDS cell proliferation, viability, and apoptosis was expressed as a
composite MDS cell growth score and represented the quantitative
effect of the patient’s MDS mutanome. Drug and drug combinations
were then modeled in the patient’s MDS network map to determine

which drug or drug combination returns the MDS cell growth score
back to rate of a non-malignant state. b This protein network map is
from a patient with del(5q) MDS who did not achieve clinical
improvement with lenalidomide. NGS and CNV data from the patient’s
MDS cells were used to project a protein network map. Proteins are
labeled as knock-down (KD, blue) or over-expressed (OE, green).
Interacting proteins are depicted in gray. Downstream effects on MDS
cell proliferation and viability are also mapped. A positive interaction is
depicted with an arrow, whereas an inhibitor interaction is depicted as a
bar. Lenalidomide (burgundy) is simulated as directly interacting with its
target (CRBN). In this computational modeling and drug simulation, the
patient’s MDS biology is predicted insensitive to lenalidomide because of
watershed effects of increased beta-catenin activity and weakened TP53
activity
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Data Need for Next Generation Computing in MDS

As –omics profiling becomes more affordable, clinical trials
are increasingly incorporating these technologies. Thus, clin-
ical trials provide a wealth of molecular and clinical data from
cancer patients. The availability of publicly available,
genomically annotated clinical databases derived from cancer
clinical trials is perhaps just as important as the clinical trials’
primary objectives. The Cancer Genome Atlas (TCGA), Gene
Expression Omnibus (GEO), cBioPortal, The Cancer
Genomics Hub, canEvolve, and others have collected genomic
information from a myriad cancer patients, although the lack of
comprehensive clinical annotation and therapy response in
most of these datasets is a major limitation [33].

Celgene’s Connect MDS/AML Disease Registry aims to
fill this data gap by capturing patient demographic data, diag-
nostic laboratory and bone marrow pathology data, genomic
mutations, prognostic risk variables, treatments, and clinical
outcome data for 1500 newly diagnosed lower-risk MDS,
higher-risk MDS, ICUS, and AML patients [34]. This rich
dataset is expected to answer many current and future ques-
tions in MDS and AML.

Additionally, several groups have allowed access to their
annotated clinical and/or genomic data, providing opportunities
for novel computational analyses that will lead to important
discoveries in MDS [7, 9, 35].

Ongoing clinical trials, such as those coordinated by the
CIBMTR, are comparing outcomes with allogeneic HCT ver-
sus HMA therapy or best supportive care. Genomically anno-
tated clinical records from these CIBMTR trials will be essen-
tial in assessing the potency of allogeneic HCT to overcome
poor-risk MDS genetics.

Going forward, a concerted effort by an honest broker, such
as a professional society, is needed to coalesce and harmonize
the assortment of MDS datasets worldwide. This MDS data-
base would engage engineers and scientists outside the tradi-
tional MDS research community and enable detection of a
greater number MDS variables that associate with prognosis
and treatment response.

Conclusions

A major need in the treatment of MDS patients is to iden-
tify those with poor prognosis features who will benefit
from therapy. The advent of NGS has made clear the im-
portance of molecular profiling, as certain genomic aber-
rations significantly associate with drug response, survival,
and allogeneic HCT outcomes. As the full complexity of
MDS biology unveils, prognostic and predictive modeling
will need to utilize sophisticated techniques aided by com-
putational biology systems. By incorporating the totality of
the MDS mutanome, computational methods have shown

early accuracy in predicting drug response in patients with
MDS. Use of a computational system may improve a cli-
nician’s effectiveness in treating MDS, avoid toxicity when
there is no prospect of benefit, weigh treatment options in the
absence of guidelines, and find alternatives to treatment when
none exist. Finally, computational modeling, unlike ex vivo
assays and patient-derived xenograft (PDX) modeling, can
rapidly test a limitless number of drugs and drug combina-
tions, which catalyzes drug development for MDS.
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