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Abstract
Purpose of Review Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more 
extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This 
review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impair-
ment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed.
Recent Findings Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct 
or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and 
hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that 
inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction.
Summary While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, 
replication in patients still needs to be demonstrated.

Keywords Vascular cognitive impairment · Vascular dementia · Cognition · Hippocampus · Prefrontal cortex · Preclinical 
models

Abbreviations
2-VO  Two-vessel carotid artery occlusion
CCAO  Occlusion of the common carotid arteries
ILs  Interleukins
MCAO  Middle cerebral artery occlusion
MetSyn  Metabolic syndrome
NLRP3  NOD-, LRR- and pyrin domain-containing 

protein 3
Nrf2  NF-E2 p45-related factor 2
siRNA  Small interfering RNA
SHR/SP  Stroke-prone spontaneously hypertensive rat
STZ  Streptozotocin
tCDS  Transcranial direct current stimulation
TLR-4  Toll-like receptor 4
TNF  Tumour necrosis factor
TXNIP  Thioredoxin-interacting protein

VCI  Vascular cognitive impairment
VD  Vascular dementia

Introduction

Metabolic syndrome (MetSyn) is a cluster of metabolic 
disturbances—abdominal obesity, hypertension, glucose 
intolerance and atherogenic dyslipidemia (increased plasma 
triglycerides and decreased high-density lipoprotein choles-
terol concentration)—which is associated with increased risk 
for heart disease, type 2 diabetes (T2D) and stroke [1, 2]. 
Current evidence suggests that 20–45% of the population 
worldwide suffer from MetSyn [3] and while the prevalence 
is highest among people aged over 60 [4], recent studies 
show that its incidence is increasing in younger age groups 
[5] and across all populations [6–8].

The association between MetSyn and cardiovascular risk 
is well studied; however, the identification of how MetSyn 
metabolic changes can lead to functionally debilitating 
changes in cognition is less understood. Vascular cognitive 
impairment (VCI) is a form of cognitive deficit caused by 
vascular abnormalities [9]. The most severe form is vascular 
dementia (VD), which refers to a subgroup of patients who 
have dementia that is largely attributable to cerebrovascular 
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pathology, often estimated to be ~ 15–30% of dementia cases 
[10]. Studies demonstrate that patients with VCI display 
deficits in multiple cognitive domains including memory, 
executive functioning, processing speed and overall intel-
lectual functioning [11–13] which can be captured under 
the terminology of higher order function. Anhedonia, apa-
thy, anxiety and depression are also frequently observed in 
patients with VCI [14, 15].

There are currently no medications that successfully 
treat VCI. Interventions such as antihypertensives and 
statins focus on managing risk factors [16] while both these 
classes of medications as well as the medications used to 
treat Alzheimer’s disease have little to no effect on reducing 
or slowing cognitive deficits [17]. Given the lack of effec-
tive pharmaceuticals, progress in our understanding of the 
pathophysiological mechanisms involved in VCI and VD is 
crucial for the development of new strategies around protec-
tion and treatment.

Pathological analysis of brain changes in VCI and VD 
includes both neuroimaging and pathology-confirmed diag-
nosis [9]. Cerebrovascular changes such as lesions, microin-
farcts and arteriolosclerosis are observed along with white 
matter hyperintensities representing white matter degenera-
tion [18, 19]. At a cellular level, we recognize that atypical 
neuroinflammation and cell death are observed with levels 
of inflammatory markers altered in both plasma and cer-
ebrospinal fluid [20]. Inflammatory mechanisms disrupt 
cerebrovascular integrity via glial activation and increased 
pro-inflammatory interleukins (ILs) and tumour necrosis 
factor (TNF)-α production, inducing vascular tissue injury 
and neurodegeneration [21], and centrally endothelial and 
neuronal cell damage [21].

The hippocampus and prefrontal cortex play an essential 
role in cognitive functioning. The hippocampus is impor-
tant in spatial memory and episodic memory, information 
formation and processing and associated behavioural regula-
tion [22], while the prefrontal cortex plays a central role in 

executive functioning including attention, planning, deci-
sion-making, perception and processing [23]. Patients with 
VD show hippocampal atrophy [24] which is attributed to 
loss of neurons [25] and reduction in cerebral microvascula-
ture [26]. Post-mortem studies show IL-1β [27] and TNF-α 
expression [28] in the hippocampus in VD patients is signifi-
cantly higher than in age-matched controls demonstrating an 
influence of inflammation. However, in the prefrontal cortex 
in VCI and VD, white matter degeneration [29] linked to 
neuronal dysfunction and degeneration [30] has been shown, 
but there are few reports of changes in inflammatory markers 
in this region. It is unclear if no changes have been found or 
if the target of the hippocampus as the ‘memory centre’ as 
the prime region of investigation has reduced investigation 
into other brain regions.

From our understanding of cognition and cognitive defi-
cits in its many forms, it is clear that a ‘one area fits all’ 
concept cannot address why cognitive deficits occur after 
metabolic syndrome and its associated diseases. The use of 
preclinical models with controlled parameters is advanta-
geous to mimic certain aspects of MetSyn and VCI in ani-
mals and explore the relationship between brain pathology 
and the cognitive deficits associated with the disorders.

Models of Vascular Cognitive Impairment

VCI animal models are largely based on modelling the cer-
ebrovascular pathology observed in patients [31] (Table 1). 
Transient or permanent middle cerebral artery occlusion 
(MCAO) or occlusion of the common carotid arteries 
(CCAO) are routinely used as models of stroke and VCI 
to induce cerebral hypoperfusion, infarction, hypoxia and 
hypoperfusion of white matter due to inadequate blood sup-
ply [32–34]. This is accompanied by damaged white matter 
with a proliferation of astrocytes and activated microglia, 
disintegration of white matter tracts and a reduction in 

Table 1  Summary table of most used VCI preclinical models

Preclinial models Performed by Pathology References

Middle cerebral artery occlusion (MCAO) Transient or permanent middle cerebral 
artery occlusion

Hypoperfusion, infarction, cerebral 
ischemia, neuronal lesions, damaged 
white matter tracts

[19, 32]

Occlusion of the common carotid arteries 
(CCAO)

Transient or permanent bilateral common 
carotid artery occlusion

Hypoperfusion, infarction, cerebral 
ischemia, neuronal lesions, damaged 
white matter tracts

[87]

Stroke-prone spontaneously hypertensive 
rat (SHR/SP)

Established from a sub-strain of spontane-
ously hypertensive rats

Hypertension with progressive blood 
pressure increase during young adult-
hood, wall thickening in small arteries

Microvascular dysfunction, blood–brain 
barrier breakdown, cerebrovascular 
lesions, hypoxia, hypoperfusion, white 
matter damage

[36, 37, 88]
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myelin [35]. Alternatively, the stroke-prone spontaneously 
hypertensive rat (SHR/SP) is a non-surgical VCI model. 
This model exhibits brain lesions predominantly within the 
cerebral cortex and chronic vessel changes [36, 37] leading 
to cortical degeneration [38].

Metabolic disturbance can be used to model systemic 
cause or as an adjunct to the aforementioned models with a 
number of rodent models that encompass features of Met-
Syn. Some models are inbred strains selected for one or 
more traits underlying MetSyn—most commonly the SHR 
(spontaneous hypertensive rat) modelling hypertension. 
Others are population models with genetic risk for MetSyn 
traits, such as Zucker rats which model obesity and db/db 
mice which are a model of T2D. A third group are MetSyn 
traits induced by environmental stressors such as being fed 
high-fat and/or sugar diet [39] or administration of strepto-
zotocin (STZ), a widely used chemical for the induction of 
experimental diabetes in rodents [40].

With regard to neuroinflammation, both infarct and non-
infarct models of VCI demonstrate upregulation of inflam-
matory cells and markers. Astrocytes and microglia are acti-
vated in the brain [41] and pro-inflammatory cytokines such 
as IL-1β, IL-6 and TNF-α are increased [42, 43]. Inflamma-
tory mediators such as matrix metalloproteinases are also 
upregulated [44].

Cognitive tests in VCI models demonstrate impaired 
memory. Spatial reference memory and working memory is 
deficient in VCI models [45, 46] which is influenced largely 
by the hippocampus. In this review, we will focus on the lat-
est findings concerning hippocampal and prefrontal cortex 
pathology and cognitive deficits in VCI models, and endeav-
our to assess the plethora of new generation treatments pro-
posed to reverse these.

Hippocampal and Prefrontal Pathology 
in VCI Models

Carotid artery occlusion and MCAO models produce a loss 
of hippocampal neurons [47], impaired spatial memory 
[48–50], elevated hippocampal levels of TNF-α and IL-6, 
as well as increased apoptotic cell death in the hippocampus 
[50]. Much less is known about changes in prefrontal cor-
tices in preclinical VCI and VD models; however, a recent 
study has demonstrated that two-vessel carotid artery occlu-
sion (2-VO) reduced learning in a novel object recognition 
prefrontal-dependant test and lowered expression of synaptic 
markers in the prefrontal cortex [51•].

Utilizing a STZ/MCAO MetSyn-VCI model, research-
ers observed that diabetes induced hippocampal-depend-
ant impaired cognitive function in the Y-maze, social 
recognition and novel object recognition tasks in concert 
with upregulation of NLRP3 (NOD-, LRR- and pyrin 

domain-containing protein 3) inflammasome expression in 
the hippocampus [52•]. These effects are further increased 
by MCAO stroke. This hippocampal inflammatory response 
is accompanied by higher levels of hippocampal cell death, 
vascular remodelling and greater astrocyte reactivity [52•]. 
Increased NLRP3 has also been observed in the hippocam-
pus of the CCAO model of VCI [53], along with shrinkage, 
disorganization and loss of hippocampal neurons [54] and 
an impairment in spatial memory as observed by the Morris 
water maze task [54, 55] and radial arm maze [56]. Pro-
tein and mRNA levels of toll-like receptor 4 (TLR4) were 
increased after CCAO in microglia and neurons of the hip-
pocampus [57] and the downstream inflammatory cytokines 
(IL-6) and TNF-α [57] while microvessels were observed to 
be shorter and fragmented [56].

Looking at non-surgical models, a decrease in neuron 
number and vitality is observed in the frontal cortex and 
hippocampus of Zucker rats, along with a reduction in syn-
aptic markers and a memory retention deficit in the passive 
avoidance task [58, 59]. Conversely in the db/db model hip-
pocampal long-term potentiation is inhibited and memory 
impaired [60, 61] while (like surgical VCI models) inflam-
mation and neuronal pathology is increased in the hippocam-
pus and prefrontal cortex [61, 62]. High-fat diet-induced 
obesity also causes cognition impairment, downregulation of 
neuroplasticity-associated proteins and increases in inflam-
mation including astrocytic reactivity in the hippocampus 
and prefrontal cortex [63–65].

Based on these recent studies models of VCI and VD, 
whether they develop from a surgical or metabolic base, 
deficits in prefrontal and hippocampal-associated cognitive 
domains, decreased neuronal function and increased neuro-
inflammation are observed. However, we are little closer to 
identifying the cellular and molecular mechanisms underly-
ing VCI and VD. Working backwards from interventions 
that show attenuation of deficits is providing a potential 
alternative path to identifying potential targets for treatment 
of VCI and VD.

New Generation Treatments 
and Environmental Interventions

Several new treatments have been proposed to reverse the 
cognitive and pathological deficits in animal models of 
VCI. These include anti-inflammatory, antihypertensive or 
antioxidant pharmacological interventions that may guide 
researchers towards appropriate mechanisms of action for 
human treatments. Other potential interventions are environ-
mental, where the mechanisms are often poorly understood.

Injection of MCC950, a selective inhibitor of the NLRP3 
inflammasome, after reperfusion in the STZ/MCAO Met-
Syn-VCI model ameliorated the diabetes-mediated deficits 
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in hippocampal-dependant memory, lowered cell death of 
the neurons in the CA1 and dentate gyrus regions of the 
hippocampus and reduced levels of IL-1β and NLRP3 after 
MCAO [52•], suggesting that NLRP3 is a potential thera-
peutic target to treat cognitive impairment. In another study, 
osthole, a coumarin Chinese herb compound and inhibitor 
of NLRP3 protein expression, attenuated cognitive dys-
function in a VCI rat model induced by CCAO, evidenced 
by reversing spatial and working deficits, and inhibiting 
microglia activation in the hippocampus [66]. This notion 
is further strengthened by a recent study from Du and col-
leagues where acupuncture treatment reduced cognitive 
decline and hippocampal neuronal death in a model of VCI 
induced by CCAO by decreasing NLRP3 inflammasome and 
IL-1β expression in the hippocampus [53]. The molecular 
mechanisms of acupuncture treatment in this model are sug-
gested to be via inhibition of thioredoxin-interacting protein 
(TXNIP) which plays a vital role in NLRP3 inflammasome 
activation, with TXNIP small interfering RNA (siRNA) 
producing similar effects as acupuncture on memory and 
hippocampal neuron survival in the CCAO VCI model [53, 
67]. In a further 2-VO study, acupuncture treatment reduced 
the levels of inflammatory cytokines in the hippocampus 
which was associated with lowered expression of TLR4 in 
the microglia, but not neurons, of the hippocampus [57]. A 
TLR4 antagonist, TAK-242, had similar effects as acupunc-
ture on inflammation in these rats, while the TLR4 agonist 
lipopolysaccharide inhibited the beneficial effects of acu-
puncture [57]. In patients, inflammasome activation and 
cytokine production is related to the risk factors of VCI. A 
2022 article by Poh and colleagues summarize these effects 
[68•] and report that therapeutic agents targeting IL-1β and 
IL-18 are currently undergoing investigation in clinical trials 
and showing positive results in patient outcomes [68•, 69].

Chronic 3-month treatment with the antihypertensive 
amlodipine, a voltage-dependent  Ca2+-channel blocker 
in BPH/2 mice prevented hypertension-related damage to 
functional hyperemia through the diminished activity of the 
capillary endothelial cell inward-rectifier potassium chan-
nel, Kir2.1 [70]. Interestingly, this result was not reproduced 
with the antihypertensive losartan, an angiotensin II recep-
tor antagonist [70], aligning with clinical findings which 
demonstrate that calcium-channel blockers provide greater 
cerebrovascular protection than angiotensin-related antihy-
pertensives in the prevention of dementia [71].

Recent studies suggested that antioxidants also have 
promising effects in VCI and VD models. The Chinese herb 
mix Chitosan reduces hippocampal-memory impairment 
and reduces neuron cell loss induced by CCAO while also 
significantly reversing reactive oxygen species production, 
neuronal apoptosis and microglia overactivation in the hip-
pocampus through activation of the antioxidative response 
element Nrf2 (NF-E2 p45-related factor 2) causing the 

subsequent upregulation in the expression of many cyto-
protective enzymes [72]. Meanwhile, Pinocembrin, a fla-
vonoid with antioxidant properties [73] alleviated learning 
and memory deficits induced by CCAO and attenuated hip-
pocampal neuronal damage by inducing the upregulation 
of the Reelin-Dab1 signalling pathway in the hippocampus 
[74], previously reported to exert a key role in the adult 
brain by promoting learning and memory [75]. Moreover in 
a dietary MetSyn-VCI model, gallic acid, a polyphenol and 
antioxidant present in grapes and green tea [76] improved 
recognition memory and increased hippocampal dendritic 
spine numbers by reducing the oxidative and inflammatory 
environment [77].

Evidence suggests that there are effects of physical exer-
cise on neuroplasticity, learning and memory and investiga-
tions in preclinical models of MetSyn-VCI have produced 
very positive results [78, 79]. In CCAO rats modelling 
vascular dementia, exercise has demonstrated improve-
ment in passive avoidance memory [80] and novel object 
recognition memory [51•] and increases in synaptic plastic-
ity markers in the hippocampus and prefrontal cortex [51•, 
81]. Environmental enrichment, a combination of voluntary 
exercise with stimulated surroundings and social interac-
tion, alleviates memory impairment [82, 83] induced by 
CCAO and attenuates astrocyte activation and increases 
microvessel length in the hippocampus [82, 83]. Transcra-
nial direct current stimulation (tCDS) has also been shown 
to stimulate increases in neuroplasticity and hippocampal 
long-term potentiation [84], the molecular basis of memory 
[85]. In a CCAO rat model, tDCS significantly alleviated 
the decreased hippocampal protein levels of IL-1β, IL-6 
and TNF-α and memory impairment observed in the Mor-
ris water maze [54].

Conclusion

Using models of MetSyn, VCI and VD researchers show 
cognitive and pathological deficits that model what is 
observed in humans. Promising reversal of these deficits is 
observed with environmental interventions, anti-inflamma-
tory agents and antioxidants, although whether this can be 
replicated in patients is still to be seen. What is evident from 
the latest studies is that an expansion of focus is required. 
Interestingly, Ward and colleagues suggest that when inves-
tigating the hippocampus’s role in VCI, we should consider 
it as a conceptual neurovascular unit which is composed of 
neurons, endothelial cells and glial cells, assessing the inter-
action between vasculature and the surrounding brain cells 
rather than neurons alone [52•]. This concept is repeated 
by Smith et al. [86] when we advance to clinical trials who 
suggest that future clinical trials should investigate the 
broad range of interventions in preclinical models including 
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oxidative stress and inflammation pathobiology to target the 
neurovascular unit in patients.
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