Skip to main content

Advertisement

Log in

Genetic Risk Scores for Type 1 Diabetes Prediction and Diagnosis

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

About 50% of the heritability of type 1 diabetes (T1D) is attributed to human leukocyte antigen (HLA) alleles and the remainder to several (close to 50) non-HLA loci. A current challenge in the field of the genetics of T1D is to apply the knowledge accumulated in the last 40 years towards differential diagnosis and risk assessment.

Recent Findings

T1D genetic risk scores seek to combine the information from HLA and non-HLA alleles to improve the accuracy of diagnosis, prediction, and prognosis. Here, we describe genetic risk scores that have been developed and validated in various settings and populations.

Summary

Several genetic scores have been proposed that merge disease risk information from multiple genetic factors to optimize the use of genetic information and ultimately improve prediction and diagnosis of T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, Group ES. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–33.

    Article  PubMed  Google Scholar 

  2. Tao B, Pietropaolo M, Atkinson M, Schatz D, Taylor D. Estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method. PLoS One. 2010;5(7):e11501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82.

    Article  PubMed  Google Scholar 

  4. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet. 1996;59(5):1134–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14(9):661–73.

    Article  CAS  PubMed  Google Scholar 

  7. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47(4):381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rich SS, Akolkar B, Concannon P, Erlich H, Hilner JE, Julier C, et al. Overview of the type I diabetes genetics consortium. Genes Immun. 2009;10 Suppl 1:S1–4.

    Article  CAS  PubMed  Google Scholar 

  10. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, et al. Genetics of type 1 diabetes: what's next? Diabetes. 2010;59(7):1561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vehik K, Ajami NJ, Hadley D, Petrosino JF, Burkhardt BR. The changing landscape of type 1 diabetes: recent developments and future frontiers. Curr Diabetes Rep. 2013;13(5):642–50.

    Article  CAS  Google Scholar 

  12. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358(9277):221–9.

    Article  CAS  PubMed  Google Scholar 

  13. Eisenbarth GS, Type I. diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314(21):1360–8.

    Article  CAS  PubMed  Google Scholar 

  14. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vardi P, Dibella EE, Pasquarello TJ, Srikanta S. Islet cell autoantibodies: pathobiology and clinical applications. Diabetes Care. 1987;10(5):645–56.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrara CT, Geyer SM, Liu YF, Evans-Molina C, Libman IM, Besser R, et al. Excess BMI in childhood: a modifiable risk factor for type 1 diabetes development. Diabetes Care. 2017;40:698–701.

    Article  PubMed  Google Scholar 

  17. Wherrett DK, Chiang JL, Delamater AM, DiMeglio LA, Gitelman SE, Gottlieb PA, et al. Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: a consensus report. Diabetes Care. 2015;38(10):1975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  19. Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in type I diabetes and associated disorders. Diabetologia. 2002;45(5):605–22.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobsen LM, Sosenko JM, Evans-Molina C, DiMgelio L, Goland RS, Wilson DM, Atkinsion MA, Aye, T, Russell W, Wentowroth J, Geyer S, Boulware D. The risk of progression to type 1 diabetes in individuals of diverse ages with multiple autoantibodies. 249-OR. Oral presentation at the American Diabetes Association Scientific Sessions, San Diego, California. 2017.

  21. Davis AK, DuBose SN, Haller MJ, Miller KM, DiMeglio LA, Bethin KE, et al. Prevalence of detectable C-peptide according to age at diagnosis and duration of type 1 diabetes. Diabetes Care. 2015;38(3):476–81.

    Article  CAS  PubMed  Google Scholar 

  22. Hao W, Gitelman S, DiMeglio LA, Boulware D, Greenbaum CJ, Type 1 Diabetes TrialNet Study Group. Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care. 2016;39(10):1664–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mrena S, Virtanen SM, Laippala P, Kulmala P, Hannila ML, Akerblom HK, et al. Models for predicting type 1 diabetes in siblings of affected children. Diabetes Care. 2006;29(3):662–7.

    Article  PubMed  Google Scholar 

  24. Dorman JS, Steenkiste AR, O'Leary LA, McCarthy BJ, Lorenzen T, Foley TP. Type 1 diabetes in offspring of parents with type 1 diabetes: the tip of an autoimmune iceberg? Pediatr Diabetes. 2000;1(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  25. Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med. 2008;359(26):2849–50.

    Article  CAS  PubMed  Google Scholar 

  26. Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB, et al. Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ. 1999;318(7185):698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, et al. Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 2001;44(3):354–62.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev. 2016;37(3):190–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson MB, Hattersley AT, Flanagan SE. Monogenic autoimmune diseases of the endocrine system. Lancet Diabetes Endocrinol. 2016;4(10):862–72.

    Article  CAS  PubMed  Google Scholar 

  30. Cudworth AG, Woodrow JC. Letter: HL-A antigens and diabetes mellitus. Lancet. 1974;2(7889):1153.

    Article  CAS  PubMed  Google Scholar 

  31. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(1):a007732.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diabetes Rep. 2011;11(6):533–42.

    Article  CAS  Google Scholar 

  33. Steck AK, Armstrong TK, Babu SR, Eisenbarth GS, Type 1 Diabetes Genetics Consortium. Stepwise or linear decrease in penetrance of type 1 diabetes with lower-risk HLA genotypes over the past 40 years. Diabetes. 2011;60(3):1045–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erlich HA, Griffith RL, Bugawan TL, Ziegler R, Alper C, Eisenbarth G. Implication of specific DQB1 alleles in genetic susceptibility and resistance by identification of IDDM siblings with novel HLA-DQB1 allele and unusual DR2 and DR1 haplotypes. Diabetes. 1991;40(4):478–81.

    Article  CAS  PubMed  Google Scholar 

  35. Redondo MJ, Kawasaki E, Mulgrew CL, Noble JA, Erlich HA, Freed BM, et al. DR- and DQ-associated protection from type 1A diabetes: comparison of DRB1*1401 and DQA1*0102-DQB1*0602*. J Clin Endocrinol Metab. 2000;85(10):3793–7.

    CAS  PubMed  Google Scholar 

  36. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Floyel T, Kaur S, Pociot F. Genes affecting beta-cell function in type 1 diabetes. Curr Diabetes Rep. 2015;15(11):97.

    Article  CAS  Google Scholar 

  38. Groop L, Pociot F. Genetics of diabetes—are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382(1):726–39.

    Article  CAS  PubMed  Google Scholar 

  39. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15(3):289–92.

    Article  CAS  PubMed  Google Scholar 

  40. Pugliese A, Zeller M, Fernandez A Jr, Zalcberg LJ, Bartlett RJ, Ricordi C, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15(3):293–7.

    Article  CAS  PubMed  Google Scholar 

  41. Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon PA. Functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun. 2004;5(8):678–80.

    Article  CAS  PubMed  Google Scholar 

  42. Nistico L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian diabetes registry. Hum Mol Genet. 1996;5(7):1075–80.

    Article  CAS  PubMed  Google Scholar 

  43. de Jong VM, Zaldumbide A, van der Slik AR, Laban S, Koeleman BP, Roep BO. Variation in the CTLA4 3'UTR has phenotypic consequences for autoreactive T cells and associates with genetic risk for type 1 diabetes. Genes Immun. 2016;17(1):75–8.

    Article  PubMed  CAS  Google Scholar 

  44. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38(6):617–9.

    Article  CAS  PubMed  Google Scholar 

  45. Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76(5):773–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36(8):837–41.

    Article  CAS  PubMed  Google Scholar 

  47. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steck AK, Zhang W, Bugawan TL, Barriga KJ, Blair A, Erlich HA, et al. Do non-HLA genes influence development of persistent islet autoimmunity and type 1 diabetes in children with high-risk HLA-DR,DQ genotypes? Diabetes. 2009;58(4):1028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Steck AK, Dong F, Wong R, Fouts A, Liu E, Romanos J, et al. Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers. Pediatr Diabetes. 2014;15(5):355–62. This was one of the first studies to demonstrate that the combination of HLA and non-HLA genes improved T1D risk prediction in children from the general population participating in the DAISY study.

    Article  CAS  PubMed  Google Scholar 

  51. Torn C, Hadley D, Lee HS, Hagopian W, Lernmark A, Simell O, et al. Role of type 1 diabetes-associated SNPs on risk of autoantibody positivity in the TEDDY study. Diabetes. 2015;64(5):1818–29.

    Article  PubMed  CAS  Google Scholar 

  52. Redondo MJ, Babu S, Zeidler A, Orban T, Yu L, Greenbaum C, et al. Specific human leukocyte antigen DQ influence on expression of antiislet autoantibodies and progression to type 1 diabetes. J Clin Endocrinol Metab. 2006;91(5):1705–13.

    Article  CAS  PubMed  Google Scholar 

  53. Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nat Genet. 2017;49(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  54. Black MH, Lawrence JM, Pihoker C, Dolan LM, Anderson A, Rodriguez B, et al. HLA-associated phenotypes in youth with autoimmune diabetes. Pediatr Diabetes. 2013;14(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  55. Cruickshanks KJ, Jobim LF, Lawler-Heavner J, Neville TG, Gay EC, Chase HP, et al. Ethnic differences in human leukocyte antigen markers of susceptibility to IDDM. Diabetes Care. 1994;17(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  56. Emery LM, Babu S, Bugawan TL, Norris JM, Erlich HA, Eisenbarth GS, et al. Newborn HLA-DR,DQ genotype screening: age- and ethnicity-specific type 1 diabetes risk estimates. Pediatr Diabetes. 2005;6(3):136–44.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Erlich HA, Zeidler A, Chang J, Shaw S, Raffel LJ, Klitz W, et al. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican-American families. Nat Genet. 1993;3(4):358–64.

    Article  CAS  PubMed  Google Scholar 

  58. Lipton RB, Drum M, Greeley SA, Danielson KK, Bell GI, Hagopian WA. HLA-DQ haplotypes differ by ethnicity in patients with childhood-onset diabetes. Pediatr Diabetes. 2011;12(4 Pt 2):388–95.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Black MH, Dabelea D. Genetics: new HLA variants could predict T1DM risk in African Americans. Nat Rev Endocrinol. 2013;9(10):570–1.

    Article  CAS  PubMed  Google Scholar 

  60. Howson JM, Roy MS, Zeitels L, Stevens H, Todd JA. HLA class II gene associations in African American type 1 diabetes reveal a protective HLA-DRB1*03 haplotype. Diabet Med J Br Diabet Assoc. 2013;30(6):710–6.

    Article  CAS  Google Scholar 

  61. McCarthy BJ, Lipton R, Nichol L. HLA-DQA1 and -DQB1 alleles in Latino and African American children with diabetes mellitus. J Pediatr Endocrinol Metab. 2004;17(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  62. Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med. 1990;322(26):1836–41.

    Article  CAS  PubMed  Google Scholar 

  63. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Florez JC. Found in translation: a type 1 diabetes genetic risk score applied to clinical diagnosis. Diabetes Care. 2016;39(3):330–2.

    Article  CAS  PubMed  Google Scholar 

  65. Skyler JS. Primary and secondary prevention of type 1 diabetes. Diabet Med J Br Diabet Assoc. 2013;30(2):161–9.

    Article  CAS  Google Scholar 

  66. Skyler JS, Greenbaum CJ, Lachin JM, Leschek E, Rafkin-Mervis L, Savage P, et al. Type 1 diabetes TrialNet—an international collaborative clinical trials network. Ann N Y Acad Sci. 2008;1150:14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes. 1999;48(3):460–8.

    Article  CAS  PubMed  Google Scholar 

  68. Group TS. The environmental determinants of diabetes in the young (TEDDY) study: study design. Pediatr Diabetes. 2007;8(5):286–98.

    Article  Google Scholar 

  69. Rewers M, Bugawan TL, Norris JM, Blair A, Beaty B, Hoffman M, et al. Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia. 1996;39(7):807–12.

    Article  CAS  PubMed  Google Scholar 

  70. Ziegler AG, Danne T, Dunger DB, Berner R, Puff R, Kiess W, et al. Primary prevention of beta-cell autoimmunity and type 1 diabetes—the global platform for the prevention of autoimmune diabetes (GPPAD) perspectives. Mol Metab. 2016;5(4):255–62. https://doi.org/10.1016/j.molmet.2016.02.003. eCollection 2016 Apr

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl 1):S11–24.

    Article  Google Scholar 

  72. Hannon TS, Arslanian SA. The changing face of diabetes in youth: lessons learned from studies of type 2 diabetes. Ann N Y Acad Sci. 2015;1353:113–37.

    Article  CAS  PubMed  Google Scholar 

  73. Redondo MJ, Rodriguez LM, Escalante M, Smith EO, Balasubramanyam A, Haymond MW. Types of pediatric diabetes mellitus defined by anti-islet autoimmunity and random C-peptide at diagnosis. Pediatr Diabetes. 2013;14(5):333–40.

    Article  CAS  PubMed  Google Scholar 

  74. •• Oram RA, Patel K, Hill A, Shields B, McDonald TJ, Jones A, et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care. 2016;39(3):337–44. These authors developed a genetic score combining HLA and non-HLA SNPs weighed by OR that discriminated between T1D and T2D in the Wellcome Trust Case Control Consortium, and validated their findings in the South West England Cohort.

    Article  CAS  PubMed  Google Scholar 

  75. Patel KA, Oram RA, Flanagan SE, De Franco E, Colclough K, Shepherd M, et al. Type 1 diabetes genetic risk score: a novel tool to discriminate monogenic and type 1 diabetes. Diabetes. 2016;65(7):2094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. SEARCH for Diabetes in Youth Study Group, Liese AD, D’Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006;118(4):1510–8.

    Article  Google Scholar 

  77. Kaminski BM, Klingensmith GJ, Beck RW, Tamborlane WV, Lee J, Hassan K, et al. Body mass index at the time of diagnosis of autoimmune type 1 diabetes in children. J Pediatr. 2013;162(4):736–40. e1

    Article  PubMed  Google Scholar 

  78. Redondo MJ, Rodriguez LM, Escalante M, O’Brian Smith E, Balasubramanyam A, Haymond MW. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes. Pediatr Diabetes. 2012;13(7):564–71.

    Article  CAS  PubMed  Google Scholar 

  79. Gerard-Gonzalez A, Gitelman SE, Cheng P, Dubose SN, Miller KM, Olson BA, et al. Comparison of autoantibody-positive and autoantibody-negative pediatric participants enrolled in the T1D exchange clinic registry. J Diabetes. 2013;5(2):216–23.

    Article  PubMed  Google Scholar 

  80. Sosenko JM, Krischer JP, Palmer JP, Mahon J, Cowie C, Greenbaum CJ, et al. A risk score for type 1 diabetes derived from autoantibody-positive participants in the diabetes prevention trial-type 1. Diabetes Care. 2008;31(3):528–33.

    Article  CAS  PubMed  Google Scholar 

  81. Sosenko JM, Skyler JS, Palmer JP, Krischer JP, Yu L, Mahon J, et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care. 2013;36(9):2615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xu P, Beam CA, Cuthbertson D, Sosenko JM, Skyler JS, Krischer JP, et al. Prognostic accuracy of immunologic and metabolic markers for type 1 diabetes in a high-risk population: receiver operating characteristic analysis. Diabetes Care. 2012;35(10):1975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu P, Wu Y, Zhu Y, Dagne G, Johnson G, Cuthbertson D, et al. Prognostic performance of metabolic indexes in predicting onset of type 1 diabetes. Diabetes Care. 2010;33(12):2508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siljander HT, Simell S, Hekkala A, Lahde J, Simell T, Vahasalo P, et al. Predictive characteristics of diabetes-associated autoantibodies among children with HLA-conferred disease susceptibility in the general population. Diabetes. 2009;58(12):2835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steck AK, Johnson K, Barriga KJ, Miao D, Yu L, Hutton JC, et al. Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care. 2011;34(6):1397–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Steck AK, Vehik K, Bonifacio E, Lernmark A, Ziegler AG, Hagopian WA, et al. Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: the environmental determinants of diabetes in the young (TEDDY). Diabetes Care. 2015;38(5):808–13.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tuomilehto J, Lounamaa R, Tuomilehto-Wolf E, Reunanen A, Virtala E, Kaprio EA, et al. Epidemiology of childhood diabetes mellitus in Finland—background of a nationwide study of type 1 (insulin-dependent) diabetes mellitus. The Childhood Diabetes in Finland (DiMe) study group. Diabetologia. 1992;35(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  88. Lin Y, Qian X, Krischer J, Vehik K, Lee HS, Huang S. A rule-based prognostic model for type 1 diabetes by identifying and synthesizing baseline profile patterns. PLoS One. 2014;9(6):e91095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Clayton DG. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 2009;5(7):e1000540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Watkins RA, Evans-Molina C, Blum JS, DiMeglio LA. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res J Lab Clin Med. 2014;164(2):110–21.

    Article  CAS  Google Scholar 

  91. Abraham G, Tye-Din JA, Bhalala OG, Kowalczyk A, Zobel J, Inouye M. Accurate and robust genomic prediction of celiac disease using statistical learning. PLoS Genet. 2014;10(2):e1004137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Evans DM, Visscher PM, Wray NR. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum Mol Genet. 2009;18(18):3525–31.

    Article  CAS  PubMed  Google Scholar 

  93. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rose G. Strategy of prevention: lessons from cardiovascular disease. Br Med J. 1981;282(6279):1847–51.

    Article  CAS  Google Scholar 

  96. Rose G. Sick individuals and sick populations. Int J Epidemiol. 1985;14(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  97. Barker JM, Triolo TM, Aly TA, Baschal EE, Babu SR, Kretowski A, et al. Two single nucleotide polymorphisms identify the highest-risk diabetes HLA genotype: potential for rapid screening. Diabetes. 2008;57(11):3152–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen C, Varney MD, Harrison LC, Morahan G. Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes. 2013;62(6):2135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abraham G, Kowalczyk A, Zobel J, Inouye M. SparSNP: fast and memory-efficient analysis of all SNPs for phenotype prediction. BMC Bioinformatics. 2012;13:88.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Abraham G, Kowalczyk A, Zobel J, Inouye M. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease. Genet Epidemiol. 2013;37(2):184–95.

    Article  PubMed  Google Scholar 

  101. Abraham G, Rohmer A, Tye-Din JA, Inouye M. Genomic prediction of celiac disease targeting HLA-positive individuals. Genome Med. 2015;7(1):72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Guttmacher AE, Collins FS. Welcome to the genomic era. N Engl J Med. 2003;349(10):996–8.

    Article  CAS  PubMed  Google Scholar 

  103. Collins FS. Research agenda. Opportunities for research and NIH. Science. 2010;327(5961):36–7.

    Article  CAS  PubMed  Google Scholar 

  104. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A. 2006;103(38):14074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Winkler C, Krumsiek J, Lempainen J, Achenbach P, Grallert H, Giannopoulou E, et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun. 2012;13(7):549–55.

    Article  CAS  PubMed  Google Scholar 

  106. •• Winkler C, Krumsiek J, Buettner F, Angermuller C, Giannopoulou EZ, Theis FJ, et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia. 2014;57(12):2521–9. This study demonstrated that a genetic score including HLA and non-HLA SNPs weighed based on their OR predicted T1D risk in high risk children participants in the BABYDIAB study.

    Article  CAS  PubMed  Google Scholar 

  107. Brorsson CA, Nielsen LB, Andersen ML, Kaur S, Bergholdt R, Hansen L, et al. Genetic risk score modelling for disease progression in new-onset type 1 diabetes patients: increased genetic load of islet-expressed and cytokine-regulated candidate genes predicts poorer glycemic control. J Diabetes Res. 2016;2016:9570424.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Frohnert BI, Ide L, Dong F, Baron AE, Steck AK, Norris JM, et al. Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia. 2017;60(6):998–1006.

    Article  CAS  PubMed  Google Scholar 

  109. Gao S, Jia S, Hessner MJ, Wang X. Predicting disease-related subnetworks for type 1 diabetes using a new network activity score. Omics J Integr Biol. 2012;16(10):566–78.

    CAS  Google Scholar 

  110. Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56(9):1958–63. https://doi.org/10.1007/s00125-013-2962-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

NIH U01 DK103180-01 (MJR), American Diabetes Association (ADA) Grant 1-14-CD-17 (AKS), and Diabetes UK Harry Keen Fellowship (RAO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Redondo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redondo, M.J., Oram, R.A. & Steck, A.K. Genetic Risk Scores for Type 1 Diabetes Prediction and Diagnosis. Curr Diab Rep 17, 129 (2017). https://doi.org/10.1007/s11892-017-0961-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0961-5

Keywords

Navigation