Skip to main content

Advertisement

Log in

Podocytes: the Weakest Link in Diabetic Kidney Disease?

  • Microvascular Complications—Nephropathy (AP Maxwell, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes is increasing in prevalence and is the leading cause of end-stage renal disease in the United States. Diabetic kidney disease is considered a proteinuric glomerular disease. Although the glomerulus is composed of various cell types, research suggests that podocytes are critical to overall glomerular health. Podocyte injury has been identified as a pivotal event resulting in proteinuric kidney disease, glomerulosclerosis, and loss of renal function. Thus, understanding the signaling mechanisms that trigger podocyte injury in diabetic kidney disease might allow for the development of targeted therapeutics to prevent or ameliorate progression to end-stage renal failure. This review focuses on the role of podocytes in diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Recently published papers of particular interest are highlighted as: • Of importance, •• Of major importance

  1. Molitch ME et al. Nephropathy in diabetes. Diabetes Care. 2004;27 Suppl 1:S79–83.

    PubMed  Google Scholar 

  2. Reddy GR et al. The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens. 2008;17(1):32–6.

    Article  PubMed  Google Scholar 

  3. U.S. Renal Data System. USRDS 2014 annual data report: atlas of end-stage renal disease in the United States 2015.

  4. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes—United States and Puerto Rico, 1996–2007. MMWR Morb Mortal Wkly Rep, 2010. 59(42): p. 1361–6.

  5. Zhang L et al. Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis. 2008;51(3):373–84.

    Article  PubMed  Google Scholar 

  6. Haroun MK et al. Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland. J Am Soc Nephrol. 2003;14(11):2934–41.

    Article  PubMed  Google Scholar 

  7. Lu JL et al. Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol. 2015;3(9):704–14.

    Article  PubMed  Google Scholar 

  8. Brancati FL et al. Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple risk factor intervention trial. Jama. 1997;278(23):2069–74.

    Article  CAS  PubMed  Google Scholar 

  9. Cruickshanks KJ et al. The association of microalbuminuria with diabetic retinopathy. The Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology. 1993;100(6):862–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chavers BM et al. Relationship between retinal and glomerular lesions in IDDM patients. Diabetes. 1994;43(3):441–6.

    Article  CAS  PubMed  Google Scholar 

  11. Klein R et al. The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients: the renin-angiotensin system study. Diabetes. 2005;54(2):527–33.

    Article  CAS  PubMed  Google Scholar 

  12. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med. 1997;157(13):1413–8.

    Article  CAS  PubMed  Google Scholar 

  13. Parving HH et al. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh). 1982;100(4):550–5.

    CAS  Google Scholar 

  14. Mauer SM et al. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51(5):1580–7.

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56(5):1627–37.

    Article  CAS  PubMed  Google Scholar 

  17. Ponchiardi C, Mauer M, Najafian B. Temporal profile of diabetic nephropathy pathologic changes. Curr Diab Rep. 2013;13(4):592–9. This study describes the natural history of diabetic kidney lesions.

    Article  CAS  PubMed  Google Scholar 

  18. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–43.

    Article  CAS  PubMed  Google Scholar 

  19. Leehey DJ et al. Role of angiotensin II in diabetic nephropathy. Kidney Int Suppl. 2000;77:S93–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lewis EJ et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  21. Lewis EJ et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  22. Veron D et al. Podocyte vascular endothelial growth factor (Vegf(1)(6)(4)) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia. 2011;54(5):1227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weil EJ et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012;82(9):1010–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sugimoto H et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem. 2003;278(15):12605–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto T et al. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A. 1993;90(5):1814–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujimoto M et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun. 2003;305(4):1002–7.

    Article  CAS  PubMed  Google Scholar 

  27. Iglesias-de la Cruz MC et al. Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int. 2002;62(3):901–13.

    Article  CAS  PubMed  Google Scholar 

  28. Hathaway CK et al. Low TGFbeta1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci U S A. 2015;112(18):5815–20. This study suggests that blocking or decreasing TGFbeta1 might be of therapeutic value in diabetic kidney disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osterby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl. 1974;574:3–82.

    CAS  PubMed  Google Scholar 

  30. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358–73.

    Article  CAS  PubMed  Google Scholar 

  31. Gambara V et al. Heterogeneous nature of renal lesions in type II diabetes. J Am Soc Nephrol. 1993;3(8):1458–66.

    CAS  PubMed  Google Scholar 

  32. Gunwar S et al. Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J Biol Chem. 1998;273(15):8767–75.

    Article  CAS  PubMed  Google Scholar 

  33. Zeisberg M et al. Differential expression of type IV collagen isoforms in rat glomerular endothelial and mesangial cells. Biochem Biophys Res Commun. 2002;295(2):401–7.

    Article  CAS  PubMed  Google Scholar 

  34. Yagame M et al. Differential distribution of type IV collagen chains in patients with diabetic nephropathy in non-insulin-dependent diabetes mellitus. Nephron. 1995;70(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ziyadeh FN et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A. 2000;97(14):8015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen S et al. Angiotensin II stimulates alpha3(IV) collagen production in mouse podocytes via TGF-beta and VEGF signalling: implications for diabetic glomerulopathy. Nephrol Dial Transplant. 2005;20(7):1320–8.

    Article  CAS  PubMed  Google Scholar 

  37. Bai Y et al. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol Biochem. 2006;17(1–2):57–68.

    Article  CAS  PubMed  Google Scholar 

  38. Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol. 2013;24(7):1175–81. This study showed that GBM thickness might be able to predict which T1DM patient will develop proteinuria and ESRD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pagtalunan ME et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiggins JE et al. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol. 2005;16(10):2953–66.

    Article  PubMed  Google Scholar 

  41. Wharram BL et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16(10):2941–52.

    Article  CAS  PubMed  Google Scholar 

  42. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307.

    Article  CAS  PubMed  Google Scholar 

  43. Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens. 2005;14(3):211–6.

    Article  PubMed  Google Scholar 

  44. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13(12):3005–15.

    Article  PubMed  Google Scholar 

  45. Li X et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J Am Soc Nephrol. 2015;26(10):2361–77. Inducible RNAi-mediated nephrin knockdown mice showed that short versus long-term nephrin knockdown resulted in different histological outcomes when subjected to glomerular injury models. AKT phosphorylation was decreased in both short- and long-term nephrin knockdown mice.

  46. Beltcheva O et al. Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat. 2001;17(5):368–73.

    Article  CAS  PubMed  Google Scholar 

  47. Simons M et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol. 2001;159(3):1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu J et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 2008;73(5):556–66.

    Article  CAS  PubMed  Google Scholar 

  49. Li H et al. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol. 2004;15(12):3006–15.

    Article  PubMed  Google Scholar 

  50. Verma R et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest. 2006;116(5):1346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tryggvason K, Pikkarainen T, Patrakka J. Nck links nephrin to actin in kidney podocytes. Cell. 2006;125(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  52. Jones N et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature. 2006;440(7085):818–23.

    Article  CAS  PubMed  Google Scholar 

  53. Na J et al. Diet-induced podocyte dysfunction in drosophila and mammals. Cell Rep. 2015;12(4):636–47.

    Article  CAS  PubMed  Google Scholar 

  54. Doublier S et al. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes. 2003;52(4):1023–30.

    Article  CAS  PubMed  Google Scholar 

  55. Coward RJ et al. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes. 2007;56(4):1127–35.

    Article  CAS  PubMed  Google Scholar 

  56. Welsh GI et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010;12(4):329–40.

    Article  CAS  PubMed  Google Scholar 

  57. Veron D et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int. 2010;77(11):989–99.

    Article  CAS  PubMed  Google Scholar 

  58. Huber TB et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol. 2003;23(14):4917–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blattner SM et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 2013;84(5):920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu H et al. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol Cell Biol. 2013;33(23):4755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, J.S., et al., Loss of PTEN promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. J Pathol 2015.

  62. Akilesh S et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121(10):4127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gee HY et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123(8):3243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Danesh FR et al. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc Natl Acad Sci U S A. 2002;99(12):8301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng F et al. RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes. 2008;57(6):1683–92.

    Article  CAS  PubMed  Google Scholar 

  66. Vogelmann SU et al. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol. 2003;285(1):F40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mathew S et al. Integrins in renal development. Pediatr Nephrol. 2012;27(6):891–900.

    Article  PubMed  Google Scholar 

  68. Chen HC et al. Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci. 2000;67(19):2345–53.

    Article  CAS  PubMed  Google Scholar 

  69. Regoli M, Bendayan M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia. 1997;40(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  70. Susztak K et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  71. Eid AA et al. Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes. 2009;58(5):1201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eid AA et al. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes. 2013;62(8):2935–47. This study showed that mTOR drives production of Nox-4 derived ROS generation and podocyte death. Inhibiting mTOR or NADPH oxidase was shown to be beneficial in animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schiffer M et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 2001;108(6):807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li JH et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. Faseb j. 2004;18(1):176–8.

    CAS  PubMed  Google Scholar 

  75. Li Y et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol. 2008;172(2):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abe Y et al. TGF-beta1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway. Am J Physiol Renal Physiol. 2013;305(10):F1477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Das R et al. Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306(2):F155–67.

    Article  CAS  PubMed  Google Scholar 

  78. Hartleben B et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120(4):1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lenoir O et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 2015;11(7):1130–45.

    Article  CAS  PubMed  Google Scholar 

  80. Shahzad K et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015;87(1):74–84. This study showed that Nlrp3-inflammasome activation aggravates diabetic nephropathy. Blocking ROS and Nlrp3-inflammasome might be protective in diabetic kidney disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  82. Godel M et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121(6):2197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Inoki K et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121(6):2181–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niranjan T et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med. 2008;14(3):290–8.

    Article  CAS  PubMed  Google Scholar 

  85. Lin CL et al. Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy. Diabetes. 2010;59(8):1915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sweetwyne MT, et al. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes, 2015; 64(12):4099–111. This study looked at different Notch receptors in vivo and demonstrated that Notch1 and Notch2 have divergent roles in diabetic nephropathy.

  87. Kato H et al. Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem. 2011;286(29):26003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ichikawa I et al. Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens. 2005;14(3):205–10.

    Article  PubMed  Google Scholar 

  89. Sharma K et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118(5):1645–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hemmelgarn BR et al. Relation between kidney function, proteinuria, and adverse outcomes. Jama. 2010;303(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  91. Malaga-Dieguez L, Susztak K. ADCK4 “reenergizes” nephrotic syndrome. J Clin Invest. 2013;123(12):4996–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hackl MJ et al. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat Med. 2013;19(12):1661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eng DG et al. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 2015;88(5):999–1012.

    Article  CAS  PubMed  Google Scholar 

  94. Berger K et al. The regenerative potential of parietal epithelial cells in adult mice. J Am Soc Nephrol. 2014;25(4):693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ronconi E et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009;20(2):322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guhr SS et al. The expression of podocyte-specific proteins in parietal epithelial cells is regulated by protein degradation. Kidney Int. 2013;84(3):532–44.

    Article  CAS  PubMed  Google Scholar 

  97. Appel D et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009;20(2):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Conflict of Interest

Jamie S. Lin declares that she has no conflict of interest. Katalin Susztak reports that work in her lab is supported by Biogen, Boehringer Ingelheim, and Lilly.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

Work in the Susztak lab is supported by the National Institute of Health, Juvenile Diabetes Research Foundation, American Diabetes Association, Boehringer Ingelheim, Biogen, and Lilly. Dr. Lin is supported by NIDDK Ruth L. Kirschstein National Research Service Award institutional research training and post-doctoral fellowship grant.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J.S., Susztak, K. Podocytes: the Weakest Link in Diabetic Kidney Disease?. Curr Diab Rep 16, 45 (2016). https://doi.org/10.1007/s11892-016-0735-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0735-5

Keywords

Navigation