Skip to main content
Log in

Metabolic Syndrome in Children and Adolescents: a Critical Approach Considering the Interaction between Pubertal Stage and Insulin Resistance

  • Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Pediatricians increasingly diagnose the metabolic syndrome (MetS) in recent years to describe cardiovascular risk and to guide management of the obese child. However, there is an ongoing discussion about how to define the MetS in childhood and adolescence. Since insulin resistance—the major driver of MetS—is influenced by pubertal stage, it is questionable to use definitions for MetS in children and adolescents that do not take into account pubertal status. A metabolic healthy status in prepubertal stage does not predict a metabolic healthy status during puberty. Furthermore, cardiovascular risk factors improve at the end of puberty without treatment. However, having a uniform internationally accepted definition of the MetS for children and adolescents would be very helpful for the description of populations in different studies. Therefore, the concept of MetS has to be revisited under the influence of puberty stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002;360(9331):473–82.

    Article  PubMed  Google Scholar 

  2. Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet. 2010;375(9727):1737–48.

    Article  PubMed Central  PubMed  Google Scholar 

  3. I’Allemand D, Wiegand S, Reinehr T, et al. Cardiovascular risk in 26,008 European overweight children as established by a multicenter database. Obesity (Silver Spring). 2008;16(7):1672–9.

    Article  Google Scholar 

  4. Csabi G, Torok K, Jeges S, Molnar D. Presence of metabolic cardiovascular syndrome in obese children. Eur J Pediatr. 2000;159(1-2):91–4.

    Article  CAS  PubMed  Google Scholar 

  5. Chu NF, Rimm EB, Wang DJ, Liou HS, Shieh SM. Clustering of cardiovascular disease risk factors among obese schoolchildren: the Taipei Children Heart Study. Am J Clin Nutr. 1998;67(6):1141–6.

    CAS  PubMed  Google Scholar 

  6. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics. 1999;03(6 Pt 1):1175–82.

    Article  Google Scholar 

  7. Bluher M. Are there still healthy obese patients? Curr Opin Endocrinol Diabetes Obes. 2012;19(5):341–6.

    Article  PubMed  Google Scholar 

  8. Prince RL, Kuk JL, Ambler KA, Dhaliwal J, Ball GD. Predictors of metabolically healthy obesity in children. Diabetes Care. 2014;37(5):1462–8.

  9. Bluher M. The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol. 2010;21(1):38–43.

    Article  PubMed  Google Scholar 

  10. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes. 1998;47(10):1643–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.

    Article  PubMed  Google Scholar 

  12. Bokor S, Frelut ML, Vania A, et al. Prevalence of metabolic syndrome in European obese children. Int J Pediatr Obes. 2008;3 Suppl 2:3–8.

    Article  PubMed  Google Scholar 

  13. Cruz ML, Weigensberg MJ, Huang TT, Ball G, Shaibi GQ, Goran MI. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J Clin Endocrinol Metab. 2004;89(1):108–13.

    Article  CAS  PubMed  Google Scholar 

  14. Shaibi GQ, Goran MI. Examining metabolic syndrome definitions in overweight Hispanic youth: a focus on insulin resistance. J Pediatr. 2008;152(2):171–6.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.

    Article  CAS  PubMed  Google Scholar 

  16. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–9.

    Article  CAS  PubMed  Google Scholar 

  17. Reaven GM. Insulin resistance and compensatory hyperinsulinemia: role in hypertension, dyslipidemia, and coronary heart disease. Am Heart J. 1991;121(4 Pt 2):1283–8.

    Article  CAS  PubMed  Google Scholar 

  18. Grundy SM. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105(23):2696–8.

    Article  PubMed  Google Scholar 

  19. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Reinehr T, de Sousa G, Toschke AM, Andler W. Comparison of metabolic syndrome prevalence using eight different definitions: a critical approach. Arch Dis Child. 2007;92(12):1067–72.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brambilla P, Lissau I, Flodmark CE, et al. Metabolic risk-factor clustering estimation in children: to draw a line across pediatric metabolic syndrome. Int J Obes (Lond). 2007;31(4):591–600.

    Article  CAS  Google Scholar 

  22. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.

    Article  CAS  PubMed  Google Scholar 

  23. Viner RM, Segal TY, Lichtarowicz-Krynska E, Hindmarsh P. Prevalence of the insulin resistance syndrome in obesity. Arch Dis Child. 2005;90(1):10–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74.

    Article  CAS  PubMed  Google Scholar 

  25. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch Pediatr Adolesc Med. 2003;157(8):821–7.

    Article  PubMed  Google Scholar 

  26. Zimmet P, Alberti KG, Kaufman F, et al. The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes. 2007;8(5):299–306.

    Article  PubMed  Google Scholar 

  27. Vukovic R, Milenkovic T, Mitrovic K, et al. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents. Eur J Pediatr. 2015;174(12):1649–55

  28. Reinehr T, de Sousa G, Andler W. Longitudinal analyses among overweight, insulin resistance, and cardiovascular risk factors in children. Obes Res. 2005;13(10):1824–33.

    Article  CAS  PubMed  Google Scholar 

  29. Reinehr T, de Sousa G, Toschke AM, Andler W. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr. 2006;84(3):490–6.

    CAS  PubMed  Google Scholar 

  30. Sung RY, Yu CW, Chang SK, Mo SW, Woo KS, Lam CW. Effects of dietary intervention and strength training on blood lipid level in obese children. Arch Dis Child. 2002;86(6):407–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Reinehr T, Kiess W, Kapellen T, Andler W. Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics. 2004;114(6):1569–73.

    Article  PubMed  Google Scholar 

  32. Reinehr T, Andler W. Changes in the atherogenic risk factor profile according to degree of weight loss. Arch Dis Child. 2004;89(5):419–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Coppen AM, Risser JA, Vash PD. Metabolic syndrome resolution in children and adolescents after 10 weeks of weight loss. J Cardiometab Syndr. 2008;3(4):205–10.

    Article  PubMed  Google Scholar 

  34. Reinehr T, Kleber M, Toschke AM. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis. 2009;207(1):174–80.

    Article  CAS  PubMed  Google Scholar 

  35. Savoye M, Shaw M, Dziura J, et al. Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA. 2007;297(24):2697–704.

    Article  CAS  PubMed  Google Scholar 

  36. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92.

    Article  CAS  PubMed  Google Scholar 

  37. Uusitupa M, Laakso M, Sarlund H, Majander H, Takala J, Penttila I. Long term effects of a very low calorie diet on metabolic control and cardiovascular risk factors in the treatment of obese non-insulin-dependent diabetics. Int J Obes. 1989;13 Suppl 2:163–4.

    PubMed  Google Scholar 

  38. Skov AR, Toubro S, Ronn B, Holm L, Astrup A. Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord. 1999;23(5):528–36.

    Article  CAS  PubMed  Google Scholar 

  39. Inoue DS, De Mello MT, Foschini D, et al. Linear and undulating periodized strength plus aerobic training promote similar benefits and lead to improvement of insulin resistance on obese adolescents. J Diabetes Complicat. 2015;29(2):258–64.

    Article  PubMed  Google Scholar 

  40. Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin--the classical, resistin--the controversical, adiponectin--the promising, and more to come. Best Pract Res Clin Endocrinol Metab. 2005;19(4):525–46.

    Article  CAS  PubMed  Google Scholar 

  41. Rhie YJ, Choi BM, Eun SH, Son CS, Park SH, Lee KH. Association of serum retinol binding protein 4 with adiposity and pubertal development in Korean children and adolescents. J Korean Med Sci. 2011;26(6):797–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Jurimae J, Gruodyte R, Saar M, et al. Plasma visfatin and adiponectin concentrations in physically active adolescent girls: relationships with insulin sensitivity and body composition variables. J Pediatr Endocrinol Metab. 2011;24(7-8):419–25.

    Article  CAS  PubMed  Google Scholar 

  43. Reinehr T, Roth CL. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab. 2008;93(11):4479–85.

    Article  CAS  PubMed  Google Scholar 

  44. Reinehr T, Woelfle J, Wunsch R, Roth CL. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab. 2012;97(6):2143–50.

    Article  CAS  PubMed  Google Scholar 

  45. Agirbasli M, Agaoglu NB, Orak N, et al. Sex hormones and metabolic syndrome in children and adolescents. Metabolism. 2009;58(9):1256–62.

    Article  CAS  PubMed  Google Scholar 

  46. Reinehr T, Elfers C, Lass N, Roth CL. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis. J Clin Endocrinol Metab. 2015;100(5):2123–30.

    Article  CAS  PubMed  Google Scholar 

  47. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  48. Adam TC, Hasson RE, Lane CJ, et al. Fasting indicators of insulin sensitivity: effects of ethnicity and pubertal status. Diabetes Care. 2011;34(4):994–9.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Dowling AR, Nedorezov LB, Qiu X, Marino JS, Hill JW. Genetic factors modulate the impact of pubertal androgen excess on insulin sensitivity and fertility. PLoS One. 2013;8(11):e79849.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Reinehr T, Toschke AM. Onset of puberty and cardiovascular risk factors in untreated obese children and adolescents: a 1-year follow-up study. Arch Pediatr Adolesc Med. 2009;163(8):709–15.

    Article  PubMed  Google Scholar 

  51. Boyne MS, Thame M, Osmond C, et al. The effect of earlier puberty on cardiometabolic risk factors in Afro-Caribbean children. J Pediatr Endocrinol Metab. 2014;27(5-6):453–60.

    Article  CAS  PubMed  Google Scholar 

  52. Reinehr T, Wolters B, Knop C, Lass N, Holl RW. Strong effect of pubertal status on metabolic health in obese children: a longitudinal study. J Clin Endocrinol Metab. 2015;100(1):301–8. This large study in > 2000 obese children and adolescents demonstrated an increased cardiovascular risk in pubertal children compared with prepubertal and post pubertal children. The strength are the longitudinal design without intervention proving the hypothesis that entry puberty is associated with higher insulin resistance and its associated cardiovascular risk factors, while moving from mid to late pubertal stage is related to an improvement of cardiovascular risk factors.

    Article  CAS  PubMed  Google Scholar 

  53. Tobisch B, Blatniczky L, Barkai L. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty. Pediatr Obes. 2015;10(1):37–44. This cross-sectional study demonstrated an increased cardiovascular risk in pubertal children compared with prepubertal and post pubertal children.

    Article  CAS  PubMed  Google Scholar 

  54. Pilia S, Casini MR, Foschini ML, et al. The effect of puberty on insulin resistance in obese children. J Endocrinol Investig. 2009;32(5):401–5.

    Article  CAS  Google Scholar 

  55. Pinhas-Hamiel O, Lerner-Geva L, Copperman NM, Jacobson MS. Lipid and insulin levels in obese children: changes with age and puberty. Obesity (Silver Spring). 2007;15(11):2825–31.

    Article  CAS  Google Scholar 

  56. Bluher S, Molz E, Wiegand S, et al. Body mass index, waist circumference, and waist-to-height ratio as predictors of cardiometabolic risk in childhood obesity depending on pubertal development. J Clin Endocrinol Metab. 2013;98(8):3384–93.

    Article  PubMed  Google Scholar 

  57. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation. 2004;110(16):2494–7.

    Article  PubMed  Google Scholar 

  58. Reinehr T, Wabitsch M, Kleber M, de Sousa G, Denzer C, Toschke AM. Parental diabetes, pubertal stage, and extreme obesity are the main risk factors for prediabetes in children and adolescents: a simple risk score to identify children at risk for prediabetes. Pediatr Diabetes. 2009;10(6):395–400.

    Article  PubMed  Google Scholar 

  59. Kleber M, Lass N, Papcke S, Wabitsch M, Reinehr T. One-year follow-up of untreated obese white children and adolescents with impaired glucose tolerance: high conversion rate to normal glucose tolerance. Diabet Med. 2010;27(5):516–21.

    Article  CAS  PubMed  Google Scholar 

  60. Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 2001;50(11):2444–50. This longitudinal study analyses of the impact of puberty on insulin sensitivity and its relation to progression to type 2 diabetes mellitus. It used sophisticated measurements such as dual energy x-ray absorptiometry for determination of body fat and insulin modified intravenous glucose tolerance test to describe b-cell function. This study indicates that the failure to increase insulin response to glucose in response to the fall in insulin sensitivity may be one factor in the pathogenesis of progression to pediatric type 2 diabetes in at risk population such as overweight adolescents.

    Article  CAS  PubMed  Google Scholar 

  61. Yin J, Li M, Xu L, et al. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers. Diabetol Metab Syndr. 2013;5(1):71.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hannon TS, Janosky J, Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res. 2006;60(6):759–63.

    Article  CAS  PubMed  Google Scholar 

  63. Goran MI, Shaibi GQ, Weigensberg MJ, Davis JN, Cruz ML. Deterioration of insulin sensitivity and beta-cell function in overweight Hispanic children during pubertal transition: a longitudinal assessment. Int J Pediatr Obes. 2006;1(3):139–45.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Xu L, Li M, Yin J, et al. Change of Body Composition and Adipokines and Their Relationship with Insulin Resistance across Pubertal Development in Obese and Nonobese Chinese Children: the BCAMS Study. Int J Endocrinol. 2012;2012:389108.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kelly LA, Lane CJ, Weigensberg MJ, Toledo-Corral CM, Goran MI. Pubertal changes of insulin sensitivity, acute insulin response, and beta-cell function in overweight Latino youth. J Pediatr. 2011;158(3):442–6. This longitudinal study is a hallmark in the analyses of the impact of puberty on insulin sensitivity in a large cohort of 253 obese Latino children. It used sophisticated measurements such as dual energy x-ray absorptiometry for determination of body fat and insulin modified intravenous glucose tolerance test to describe b-cell function. This study indicates that insulin secretion fails after Tanner stage 3 due to beta-cell deterioration.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Brufani C, Tozzi A, Fintini D, et al. Sexual dimorphism of body composition and insulin sensitivity across pubertal development in obese Caucasian subjects. Eur J Endocrinol. 2009;160(5):769–75.

    Article  CAS  PubMed  Google Scholar 

  67. Raab J, Haupt F, Kordonouri O, et al. Continuous rise of insulin resistance before and after the onset of puberty in children at increased risk for type 1 diabetes - a cross-sectional analysis. Diabetes Metab Res Rev. 2013;29(8):631–5.

    Article  CAS  PubMed  Google Scholar 

  68. Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ. Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care. 2012;35(3):536–41. This longitudinal prospective cohort study of healthy children was the first to describe an increase of insulin resistance in mid-childhood some years before puberty. This study was based on sophisticated measurements such as dual energy x-ray absorptiometry for determination of body fat. However, measurement of insulin resistance was based only on the HOMA model.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hainan E. Diabetes and puberty. Am J Nurs. 2014;114(10):12.

    Article  PubMed  Google Scholar 

  70. Chu L, Riddell MC, Schneiderman JE, McCrindle BW, Hamilton JK. The effect of puberty on fat oxidation rates during exercise in overweight and normal-weight girls. J Appl Physiol (1985. 2014;116(1):76–82.

    Article  CAS  Google Scholar 

  71. Spruijt-Metz D, Belcher BR, Hsu YW, et al. Temporal relationship between insulin sensitivity and the pubertal decline in physical activity in peripubertal Hispanic and African American females. Diabetes Care. 2013;36(11):3739–45.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Kayser BD, Toledo-Corral CM, Alderete TL, Weigensberg MJ, Goran MI. Temporal relationships between adipocytokines and diabetes risk in Hispanic adolescents with obesity. Obesity (Silver Spring). 2015;23(7):1479–85. This longitudinal study helps to understand how puberty can influence insulin resistance. This study is based on sophisticated measurements such as dual energy x-ray absorptiometry for determination of body fat and insulin modified intravenous glucose tolerance test to describe b-cell function. This study demonstrates that several adipocytokines changed during puberty. However, the relationships to insulin resistance were only weak.

    Article  CAS  Google Scholar 

  73. Korner A, Neef M, Friebe D, et al. Vaspin is related to gender, puberty and deteriorating insulin sensitivity in children. Int J Obes (Lond). 2011;35(4):578–86.

    Article  CAS  Google Scholar 

  74. Santoro N, Perrone L, Cirillo G, et al. Variations of retinol binding protein 4 levels are not associated with changes in insulin resistance during puberty. J Endocrinol Investig. 2009;32(5):411–4.

    Article  CAS  Google Scholar 

  75. Reinehr T, Roth CL. A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obes (Lond). 2010;34(5):852–8.

    Article  CAS  Google Scholar 

  76. Sorensen K, Aksglaede L, Munch-Andersen T, et al. Sex hormone-binding globulin levels predict insulin sensitivity, disposition index, and cardiovascular risk during puberty. Diabetes Care. 2009;32(5):909–14.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Qiu X, Dao H, Wang M, et al. Insulin and leptin signaling interact in the mouse kiss1 neuron during the peripubertal period. PLoS One. 2015;10(5):e0121974.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Astiz S, Gonzalez-Bulnes A, Astiz I, Barbero A, Perez-Solana ML, Garcia-Real I. Advanced onset of puberty after metformin therapy in swine with thrifty genotype. Exp Physiol. 2014;99(9):1241–52.

    Article  CAS  PubMed  Google Scholar 

  79. Rynders C, Weltman A, Delgiorno C, et al. Lifestyle intervention improves fitness independent of metformin in obese adolescents. Med Sci Sports Exerc. 2012;44(5):786–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Wiegand S, L’Allemand D, Hubel H, et al. Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study. Eur J Endocrinol. 2010;163(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  81. Rasmussen SS, Glumer C, Sandbaek A, Lauritzen T, Borch-Johnsen K. Progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screening programme in general practice: the ADDITION Study, Denmark. Diabetologia. 2007;50(2):293–7.

    Article  CAS  PubMed  Google Scholar 

  82. Rasmussen SS, Glumer C, Sandbaek A, Lauritzen T, Borch-Johnsen K. Determinants of progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screened population: 3-year follow-up in the ADDITION study, Denmark. Diabetologia. 2008;51(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  83. Kleber M, Desousa G, Papcke S, Wabitsch M, Reinehr T. Impaired glucose tolerance in obese white children and adolescents: three to five-year follow-up in untreated patients. Exp Clin Endocrinol Diabetes. 2011;119(3):172–6.

  84. Kleber M, Lass N, Papcke S, Wabitsch M, Reinehr T. One year follow-up of untreated obese white children and adolescents with impaired glucose tolerance: high conversion rate to normal glucose tolerance. Diabet Med. 2010;27(5):516–21.

  85. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41.

    Article  PubMed  Google Scholar 

  86. Mente A, Yusuf S, Islam S, et al. Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J Am Coll Cardiol. 2010;55(21):2390–8.

    Article  PubMed  Google Scholar 

  87. Baldassarre D, Werba JP, Castelnuovo S, et al. The metabolic syndrome predicts carotid intima-media thickness no better than the sum of individual risk factors in a lipid clinic population. Atherosclerosis. 2010;210(1):214–9.

    Article  CAS  PubMed  Google Scholar 

  88. Fadini GP, Coracina A, Inchiostro S, Tiengo A, Avogaro A, de Kreutzenberg SV. A stepwise approach to assess the impact of clustering cardiometabolic risk factors on carotid intima-media thickness: the metabolic syndrome no-more-than-additive. Eur J Cardiovasc Prev Rehabil. 2008;15(2):190–6.

    Article  PubMed  Google Scholar 

  89. Reinehr T, Wunsch R, Putter C, Scherag A. Relationship between carotid intima-media thickness and metabolic syndrome in adolescents. J Pediatr. 2013;163(2):327–32.

  90. Reinehr T, Wunsch R, de Sousa G, Toschke AM. Relationship between metabolic syndrome definitions for children and adolescents and intima-media thickness. Atherosclerosis. 2008;199(1):193–200.

    Article  CAS  PubMed  Google Scholar 

  91. Magnussen CG, Koskinen J, Chen W, et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation. 2010;122(16):1604–11.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Allard P, Delvin EE, Paradis G, et al. Distribution of fasting plasma insulin, free fatty acids, and glucose concentrations and of homeostasis model assessment of insulin resistance in a representative sample of Quebec children and adolescents. Clin Chem. 2003;49(4):644–9.

    Article  CAS  PubMed  Google Scholar 

  93. Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med. 2002;19(7):527–34.

    Article  CAS  PubMed  Google Scholar 

  94. Chan CL, Pyle L, Newnes L, Nadeau KJ, Zeitler PS, Kelsey MM. Continuous glucose monitoring and its relationship to hemoglobin A1c and oral glucose tolerance testing in obese and prediabetic youth. J Clin Endocrinol Metab. 2015;100(3):902–10.

    Article  CAS  PubMed  Google Scholar 

  95. Libman IM, Barinas-Mitchell E, Bartucci A, Robertson R, Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008;93(11):4231–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Olza J, Aguilera CM, Gil-Campos M, et al. Waist-to-height ratio, inflammation and CVD risk in obese children. Public Health Nutr. 2014;17(10):2378–85.

Download references

Acknowledgments

The author thanks Dr. Juliane Rothermel for checking the spelling and grammar in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reinehr.

Ethics declarations

Conflict of Interest

Thomas Reinehr declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

The data presented in this article are based on studies that have been approved by the ethics committee of the University of Witten/Herdecke, Germany and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Funding

Thomas Reinehr received grant support from the German Ministry of Education and Research (Bundesministerium für Bildung und Forschung Obesity network: grant number 01 01GI1120A and 01GI 1120B).

Additional information

This article is part of the Topical Collection on Pediatric Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinehr, T. Metabolic Syndrome in Children and Adolescents: a Critical Approach Considering the Interaction between Pubertal Stage and Insulin Resistance. Curr Diab Rep 16, 8 (2016). https://doi.org/10.1007/s11892-015-0695-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0695-1

Keywords

Navigation