Skip to main content

Advertisement

Log in

The complexities of diabetic cardiomyopathy: Lessons from patients and animal models

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are foreseeable complications of diabetes mellitus; heart failure is a prominent complication among these. Diabetic cardiomyopathy is a distinct entity independent of coronary artery disease and hypertension. Most of our knowledge on diabetic cardiomyopathy’s pathogenesis comes from studies performed on various animal models. The recent advances in the domain confirm that the disease is above all a maladaptation of the heart mostly driven by the metabolic derangements that accompany diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Smyth S, Heron A: Diabetes and obesity: the twin epidemics. Nat Med 2006, 12:75–80.

    Article  PubMed  CAS  Google Scholar 

  2. Rubler S, Dlugash J, Yuceoglu YZ, et al.: New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972, 30:595–602.

    Article  PubMed  CAS  Google Scholar 

  3. An D, Rodrigues B: Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006, 291:H1489–H1506.

    Article  PubMed  CAS  Google Scholar 

  4. Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation 2007, 115:3213–3223.

    Article  PubMed  Google Scholar 

  5. Poornima IG, Parikh P, Shannon RP: Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 2006, 98:596–605.

    Article  PubMed  CAS  Google Scholar 

  6. Kannel WB, McGee DL: Diabetes and cardiovascular disease. The Framingham study. JAMA 1979, 241:2035–2038.

    Article  PubMed  CAS  Google Scholar 

  7. Galderisi M: diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol 2006, 48:1548–1551.

    Article  PubMed  Google Scholar 

  8. Cohn JN: Pathophysiology and clinical recognition of heart failure. In Cardiovascular Medicine. Edited by Willerson JT, Cohn JN, Wellens HJJ, Holmes DR Jr. New York: Springer; 2007:1379–1396.

    Chapter  Google Scholar 

  9. Bedford E: The story of fatty heart. A disease of Victorian times. Br Heart J 1972, 34:23–28.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma S, Adrogue JV, Golfman L, et al.: Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 2004, 18:1692–1700.

    Article  PubMed  CAS  Google Scholar 

  11. McGavock JM, Lingvay I, Zib I, et al.: Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007, 116:1170–1175.

    Article  PubMed  Google Scholar 

  12. Borisov AB, Ushakov AV, Zagorulko AK, et al.: Intracardiac lipid accumulation, lipoatrophy of muscle cells and expansion of myocardial infarction in type 2 diabetic patients. Micron 2007 Nov 9 (Epub ahead of print).

  13. van der Meer RW, Hammer S, Smit JW, et al.: Short-term caloric restriction induces accumulation of myocardial triglycerides and decreases left ventricular diastolic function in healthy subjects. Diabetes 2007, 56:2849–2853.

    Article  PubMed  Google Scholar 

  14. Perseghin G, Ntali G, De Cobelli F, et al.: Abnormal left ventricular energy metabolism in obese men with preserved systolic and diastolic functions is associated with insulin resistance. Diabetes Care 2007, 30:1520–1526.

    Article  PubMed  Google Scholar 

  15. Hsueh W, Abel ED, Breslow JL, et al.: Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 2007, 100:1415–1427.

    Article  PubMed  CAS  Google Scholar 

  16. Glyn-Jones S, Song S, Black MA, et al.: Transcriptomic analysis of the cardiac left ventricle in a rodent model of diabetic cardiomyopathy: molecular snapshot of a severe myocardial disease. Physiol Genomics 2007, 28:284–293.

    PubMed  CAS  Google Scholar 

  17. Hamblin M, Friedman DB, Hill S, et al.: Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 2007, 42:884–895.

    Article  PubMed  CAS  Google Scholar 

  18. Wichi R, Malfitano C, Rosa K, et al.: Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents. Cardiovasc Diabetol 2007, 6:14

    Article  PubMed  Google Scholar 

  19. Frustaci A, Kajstura J, Chimenti C, et al.: Myocardial cell death in human diabetes. Circ Res 2000, 87:1123–1132.

    PubMed  CAS  Google Scholar 

  20. Machackova J, Liu X, Lukas A, Dhalla NS: Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 2004, 261:271–278.

    Article  PubMed  CAS  Google Scholar 

  21. Aragno M, Mastrocola R, Alloatti G, et al.: Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 2008, 149:380–388.

    Article  PubMed  CAS  Google Scholar 

  22. Van Linthout S, Riad A, Dhayat N, et al.: Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 2007, 50:1977–1986.

    Article  PubMed  Google Scholar 

  23. Westermann D, Van Linthout S, Dhayat S, et al.: Cardio-protective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 2007, 56:1834–1841.

    Article  PubMed  CAS  Google Scholar 

  24. Taegtmeyer H, Hems R, Krebs HA: Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 1980, 186:701–711.

    PubMed  CAS  Google Scholar 

  25. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H: Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 2007, 12:331–343.

    Article  PubMed  CAS  Google Scholar 

  26. Stanley WC, Lopaschuk GD, McCormack JG: Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 1997, 34:25–33.

    Article  PubMed  CAS  Google Scholar 

  27. Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1:785–789.

    Article  PubMed  CAS  Google Scholar 

  28. Taegtmeyer H, McNulty P, Young ME: Adaptation and maladaptation of the heart in diabetes: Part I: general concepts. Circulation 2002, 105:1727–1733.

    Article  PubMed  CAS  Google Scholar 

  29. Summers SA: Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006, 45:42–72.

    Article  PubMed  CAS  Google Scholar 

  30. Xiang H, McNeill JH: Protein kinase C activity is altered in diabetic rat hearts. Biochem Biophys Res Commun 1992, 187:703–710.

    Article  PubMed  CAS  Google Scholar 

  31. Cooney GJ, Thompson AL, Furler SM, et al.: Muscle long-chain acyl CoA esters and insulin resistance. Ann N Y Acad Sci 2002, 967:196–207.

    PubMed  CAS  Google Scholar 

  32. Borradaile NM, Han X, Harp JD, et al.: Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 2006, 47:2726–2737.

    Article  PubMed  CAS  Google Scholar 

  33. Ouwens DM, Diamant M, Fodor M, et al.: Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 2007, 50:1938–1948.

    Article  PubMed  CAS  Google Scholar 

  34. Yang J, Sambandam N, Han X, et al.: CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 2007, 100:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  35. Young ME, McNulty P, Taegtmeyer H: Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation 2002, 105:1861–1870.

    Article  PubMed  CAS  Google Scholar 

  36. Fulop N, Mason MM, Dutta K, et al.: Impact of type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol 2007, 292:C1370–C1378.

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi S, Mao K, Zheng H, et al.: Diminished GATA4 protein levels contribute to hyperglycemia-induced cardiomyocyte injury. J Biol Chem 2007, 282:21945–21952.

    Article  PubMed  CAS  Google Scholar 

  38. Depre C, Young ME, Ying J, et al.: Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol 2000, 32:985–996.

    Article  PubMed  CAS  Google Scholar 

  39. Erol A: Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. Bioessays 2007, 29:811–818.

    Article  PubMed  CAS  Google Scholar 

  40. Burkart EM, Sambandam N, Han X, et al.: Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 2007, 117:3930–3939.

    PubMed  CAS  Google Scholar 

  41. Boudina S, Sena S, Theobald H, et al.: Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007, 56:2457–2466.

    Article  PubMed  CAS  Google Scholar 

  42. Shen X, Zheng S, Thongboonkerd V, et al.: Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 2004, 287:E896–E905.

    Article  PubMed  CAS  Google Scholar 

  43. Turko IV, Murad F: Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 2003, 278:35844–35849.

    Article  PubMed  CAS  Google Scholar 

  44. Lu MC, Tzang BS, Kuo WW, et al.: More activated cardiac mitochondrial-dependent apoptotic pathway in obese Zucker rats. Obesity (Silver Spring) 2007, 15:2634–2642.

    Article  CAS  Google Scholar 

  45. Han X, Yang J, Yang K, et al.: Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 2007, 46:6417–6428.

    Article  PubMed  CAS  Google Scholar 

  46. Gerber LK, Aronow BJ, Matlib MA: Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts. Am J Physiol Cell Physiol 2006, 291:C1198–C1207.

    Article  PubMed  CAS  Google Scholar 

  47. Wilson CR, Tran MK, Salazar KL, et al.: Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J 2007, 406:457–467.

    Article  PubMed  CAS  Google Scholar 

  48. Boudina S, Sena S, O’Neill BT, et al.: Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 2005, 112:2686–2695.

    Article  PubMed  Google Scholar 

  49. Song Y, Du Y, Prabhu SD, Epstein PN: Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility. Rev Diabet Stud 2007, 4:159–168.

    Article  PubMed  Google Scholar 

  50. Li L, Renier G: Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism 2006, 55:1516–1523.

    Article  PubMed  CAS  Google Scholar 

  51. Saraiva RM, Minhas KM, Zheng M, et al.: Reduced neuronal nitric oxide synthase expression contributes to cardiac oxidative stress and nitroso-redox imbalance in ob/ob mice. Nitric Oxide 2007, 16:331–338.

    Article  PubMed  CAS  Google Scholar 

  52. Barouch LA, Gao D, Chen L, et al.: Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ Res 2006, 98:119–124.

    Article  PubMed  CAS  Google Scholar 

  53. Koya D, King GL: Protein kinase C activation and the development of diabetic complications. Diabetes 1998, 47:859–866.

    Article  PubMed  CAS  Google Scholar 

  54. Cesario DA, Brar R, Shivkumar K: Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am 2006, 35:601–610, ix–x.

    Article  PubMed  CAS  Google Scholar 

  55. Pereira L, Matthes J, Schuster I, et al.: Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006, 55:608–615.

    Article  PubMed  CAS  Google Scholar 

  56. Choi KM, Zhong Y, Hoit BD, et al.: Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002, 283:H1398–H1408.

    PubMed  CAS  Google Scholar 

  57. Lacombe VA, Viatchenko-Karpinski S, Terentyev D, et al.: Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 2007, 293:R1787–R1797.

    PubMed  CAS  Google Scholar 

  58. Dillmann WH: Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980, 29:579–582.

    PubMed  CAS  Google Scholar 

  59. Razeghi P, Young ME, Cockrill TC, et al.: Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 2002, 106:407–411.

    Article  PubMed  CAS  Google Scholar 

  60. Trost SU, Belke DD, Bluhm WF, et al.: Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 2002, 51:1166–1171.

    Article  PubMed  CAS  Google Scholar 

  61. Nakayama H, Chen X, Baines CP, et al.: Ca2+-and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007, 117:2431–2444.

    Article  PubMed  CAS  Google Scholar 

  62. Dent CL, Bowman AW, Scott MJ, et al.: Echocardiographic characterization of fundamental mechanisms of abnormal diastolic filling in diabetic rats with a parameterized diastolic filling formalism. J Am Soc Echocardiogr 2001, 14:1166–1172.

    Article  PubMed  CAS  Google Scholar 

  63. Fauconnier J, Andersson DC, Zhang SJ, et al.: Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 2007, 56:1136–1142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Taegtmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmancey, R., Taegtmeyer, H. The complexities of diabetic cardiomyopathy: Lessons from patients and animal models. Curr Diab Rep 8, 243–248 (2008). https://doi.org/10.1007/s11892-008-0042-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-008-0042-x

Keywords

Navigation