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Abstract
Purpose of Review Atherosclerosis is characterized by accumulation of lipids and chronic inflammation in medium
size to large arteries. Recently, RNA-based antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs)
are being developed, along with small molecule-based drugs and monoclonal antibodies, for the treatment of risk
factors associated with atherosclerosis. The purpose of this review is to describe nucleic acid–based therapeutics and
introduce novel RNAs that might become future tools for treatment of atherosclerosis.
Recent Findings RNA-based inhibitors for PCSK9, Lp(a), ApoCIII, and ANGPTL3 have been successfully tested in phase II–III
clinical trials. Moreover, multiple microRNA and long non-coding RNAs have been found to reduce atherogenesis in preclinical
animal models.
Summary Clinical trials especially with ASOs and siRNAs directed to liver, targeting cholesterol and lipoprotein metabolism,
have shown promising results. Additional research in larger patient cohorts is needed to fully evaluate the therapeutic potential of
these new drugs.
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Introduction

Atherosclerosis is a multifactorial disease, triggered mainly by
abundant accumulation of apolipoprotein B (ApoB)–contain-
ing lipoproteins and chronic vascular inflammation [1].
Atherosclerosis develops slowly over several decades, starting
in young adults or even in early childhood [2]. Clinical com-
plications result from advanced lesions, which are highly vul-
nerable and prone to rupture, intraplaque hemorrhages, and
thrombus formation [3]. These most common complications
of atherosclerosis account for ~ 70% of fatal acute myocardial
infarctions, sudden coronary deaths, and strokes [4–7].
Despite of the development of potential new therapies and

the improved treatment of high plasma lipid levels, cardiovas-
cular diseases are still the leading cause of death worldwide,
and the number of deaths is predicted to increase in the com-
ing decades [4, 8]. Thus, there is a clear need for new treat-
ment strategies and novel therapeutic agents, as the current
treatments of atherosclerosis are mostly focused on the plasma
lipid lowering. New approaches are focused at resolving the
prevailing vascular inflammation and treating hypertension
among other risk factors.

Lately, nucleic acid–based therapies have been developed
and shown promising potential for the treatment of several
diseases, even in the previously intractable ones. Several clin-
ical trials have already proven efficacy of these therapeutics in
the field of cardiovascular disease (Table 1). RNA-based ther-
apeutics include small interfering RNAs (siRNAs), which are
short double-stranded RNA molecules, that mediate mRNA
degradation by binding to the complementary mRNA target
sequence. Antisense oligonucleotides (ASOs) differ from
siRNAs being single-stranded RNA or DNA molecules, but
they also bind to the complementary target mRNA sequence
and consequently prevent protein translation. Importantly, it
has been noted that N-acetylgalactosamine (GalNAc) modifi-
cation of ASOs increases the hepatic uptake significantly [9]
and is therefore highly advantageousASO/siRNAmodification
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in cases where liver is the main target organ. MicroRNAs
(miRNAs) are endogenous small non-coding RNA molecules,
which bind to complementary mRNA or other targets in the
genome. Function of miRNAs can be modulated, for example,
by antagomirs, which are oligonucleotides preventing miRNA
binding to its target site. Finally, long non-coding RNAs
(lncRNAs) are endogenous over 200 nt RNA transcripts, that
are not translated to proteins.

Nucleic acid therapeutics have been a promising novel tool
in lipid lowering, through inhibition of function of a target
gene, like proprotein convertase subtilisin kexin type 9
(PCSK9) [10]. However, multiple new potential targets for
the regulation of plasma lipoprotein levels and vascular in-
flammation have been found. In addition, the discovery of
new RNA classes has expanded the prospect of RNA mole-
cules as novel therapeutic strategies. This review focuses on
recent and novel nucleic acid–based therapies, which have
advanced into clinical development during the past 3 years
and describe also new promising therapeutic targets for
atherogenesis.

Liver-Directed Lipid-Lowering Therapies

As hyperlipidemia is a strong risk factor for atherosclerosis,
several targets to control lipoprotein metabolism with nucleic
acid directed therapeutics have been developed. To affect li-
poprotein metabolism, one of the first and most obvious tar-
gets is apolipoprotein B (ApoB), the predominant apolipopro-
tein in LDL and VLDL particles. Mipomersen is ASO against
ApoB. It has been approved by FDA for patients with familiar
hypercholesterolemia (FH) since 2013, whereas the European
Medicines Agency refused marketing authorization due to
side effects, the most severe being liver damage (https://
www.ema.europa.eu/en/documents/smop-initial/questions-
answers-refusal-marketing-authorisation-kynamro-outcome-
re-examination_en.pdf). Alternative dosing strategy was
recently studied in FH patients, with the idea that injecting
the compound thrice per week with lower amount instead of

weekly injections might ease flu-like side effects while still
maintaining the LDL-lowering effect [11]. However, injection
site reactions were more common with this approach [11]. In
addition, the MICA study reported a 22.6 ± 17.0% decrease in
pre-apheresis LDL with mipomersen [12] in patients with
maximal drug therapy and regular apheresis for hypercholes-
terolemia. Again, side effects were reported to be frequent
[12]. Finally, mipomersen has been reported to decrease plas-
ma Lp(a) in healthy subjects by 21% [13] and 27.7% in FH
patients [11]. Previously, a clinical trial with ApoB targeting
siRNAwas terminated due to immune system activation [14].
These results raise safety concerns and suggest that RNA-
based therapy against ApoB might not be a suitable approach
for treatment of dyslipidemia.

PCSK9 plays an important role in LDL homeostasis by
binding into LDL receptor promoting its degradation and
preventing its recycling to the hepatocyte membrane. Thus,
PCSK9 reduces the number of LDL receptors and increases
LDL concentration in the plasma, making PCSK9 an attrac-
tive target for therapies lowering its expression. In addition to
antibody and small molecule–based inhibition of PCSK9,
multiple approaches focusing on small RNAs have been test-
ed. Early trials with PCSK9ASOwere terminated due to renal
tubular toxicity [15]. However, inclisiran, a GalNAc-
conjugated siRNA against PSCK9, is studied in several phase
III trials (NCT03705234, NCT03814187, NCT03400800,
NCT03399370, NCT03397121, NCT03851705) for evaluat-
ing its effects on cardiovascular outcomes and FH. Previous
phase II trial showed that inclisiran lowers PCSK9 and LDL
levels in a dose-dependent manner in patients with elevated
LDL cholesterol and at high cardiovascular risk [16••]. After
180 days, the mean LDL reductions ranged between 27.9 and
41.9% after a single dose, or 35.5–52.6% after two doses
[16••]. Importantly, PCSK9 siRNA did not evoke any signif-
icant adverse effects and was well-tolerated during the study.
Moreover, diabetes had no effect on the treatment effect [17].
It should be also noted that recent results published by a trial
utilizing PCSK9 inhibition with monoclonal antibody
alirocumab suggest that it might reduce death after acute

Table 1 Recent completed clinical trials with nucleic acid–based therapeutics

Drug name Phase Target
molecule

Targeting
approach

Main outcome Trial no. Reference

Mipomersen III ApoB ASO Up to 21% reduction LDL-C. Flu-like symptoms and hepatic
transaminase increase as adverse effects.

NCT01475825 [11]

Inclisiran II PCSK9 GalNAc-siRNA Up to 52.6% reduction in LDL-C. No serious adverse effects. NCT02597127 [16••]
ANGPTL3-LRx I ANGPTL3 GalNAc-ASO Up to 63.1% reduction in TG. No serious adverse effects. NCT02709850 [20•]
ISIS-APO(a)Rx II Lp(a) ASO Up to 71.6% reduction in Lp(a). Injection site effects as

adverse effects.
NCT02160899 [25••]

IONIS-APO(a)-LRx I/IIa Lp(a) GalNAc-ASO Up to 92% reduction in Lp(a). No serious adverse effects. NCT02414594 [25••]
Volanesorsen III ApoC-III ASO Up to 77% TG reduction. Thrombocytopenia and injection site

reactions as adverse effects.
NCT02211209,

NCT02300233
[29••, 30]

AKCEA-APOCIII-LRx I/IIa ApoC-III GalNAc-ASO Up to 77% TG reduction. No serious adverse effects. NCT02900027 [31]
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coronary syndrome [18]. Also, a clinical trial with another
monoclonal antibody against PCSK9, evolocumab, has
shown similar results [19]. Therefore, PCSK9 is a highly at-
tractive potential target, and future studies will further show
the full potential of ASO-based PCSK9 inhibition in
preventing cardiovascular diseases.

Angiopoietin-like protein 3 (ANGPTL3) acts as an inhibi-
tor of lipoprotein and endothelial lipases, increasing triglycer-
ide (TG), LDL, and HDL levels. It has been demonstrated that
ASO against ANGPTL3 decreases TG levels up to 63% in
humans [20•]. No serious adverse effects were reported with
this GalNAc-conjugated ASO called IONIS-ANGPTL3-LRx.
A subsequent phase II study is underway in patients with
hypertriglyceridemia, type 2 diabetes mellitus, and nonalco-
holic fatty liver disease (NCT03371355). Recently, phase I
studies with a monoclonal antibody against ANGPTL3 have
shown to reduce TG levels up to 83% and to be well-tolerated
[21], providing additional proof that ANGPTL3 blockade
may serve as a novel treatment strategy especially in individ-
uals with high TG levels. On the contrary, angiopoietin-like
protein 4 (ANGPTL4) deficiency has been shown to increase
atherogenesis via myeloid cell proliferation, foam cell forma-
tion, and vascular inflammation [22].

Lipoprotein (a) (Lp(a)) consists of apoliporotein (a)
(Apo(a)) bound to ApoB of the LDL particle. Recent obser-
vations from epidemiological studies have shown that Lp(a) is
an independent risk factor for cardiovascular diseases [23]. A
phase I study with ISIS-APO(a)Rx, an ASO binding to apo(a)
mRNA, reduced plasma levels by 39.6–77.8% in healthy vol-
unteers [24]. A subsequent phase II trial showed similar 67–
72% reductions in patients with elevated Lp(a) [25••]. At the
same time, GalNAc-conjugated ASO with the same target
sequence, IONIS-APO(a)-LRx, was shown to reduce Lp(a)
levels in humans up to 92% [25••] in healthy volunteers.
Importantly, the effective dose to decrease Lp(a) by 50%
was 30-fold less with the GalNAc-modified version of the
ASO. A phase II study is currently ongoing to assess this
ASO in patients with hyperlipoproteinemia (a) and established
cardiovascular disease (NCT03070782) [26]. Since Lp(a) is
not usually measured in standard clinical practice, more effec-
tive screening and larger clinical trials lowering Lp(a) are
awaited to further evaluate Lp(a) as a therapeutic target.

Apoliporotein C-III (ApoC-III) is found in chylomicrons,
VLDL, and remnant particles. It inhibits LPL activity. Plasma
ApoC-III levels have been shown to independently predict
cardiovascular mortality. A phase II study proved that reduc-
tion of apoC-III by ASO volanesorsen triggered a significant
drop in plasma TGs in patients with hypertriglycemia [27].
Also, VLDL is lowered by volanesorsen [28]. Phase III stud-
ies with familial chylomicronemia syndrome and
hypertriglycemia have been completed (NCT02211209,
NCT02300233) [26] [29••]. TG levels were greatly reduced
in both studies (77% and 73%), but injection site reactions

were common side effects [29••, 30]. Volanesorsen received
a negative decision by FDA inAugust 2018, but was followed
by a positive opinion by EUs Committee for Medicinal
Products for Human Use in March 2019. Consequently,
volanesorsen has been approved in Europe for patients with
genetically confirmed familial chylomicronemia syndrome
(FCS) and at high risk for pancreatitis [30]. Furthermore, a
GalNAc-conjugated ASO against ApoC-III, AKCEA-APO-
CIII-LRx, decreased TG levels in average up to 77% in phase
I/IIa study in healthy volunteers. Importantly, this drug was
reported to be well-tolerated [31]. A phase II study
(NCT03385239) is currently active at recruiting stage with
this ASO.

The current ASO and siRNA-based therapeutics have
shown remarkably good and long-lasting results and are on
their way to a portfolio of preventive treatments of lipid levels.
However, it should be noted that the regulation of cholesterol
homeostasis is more complex, and new potential targets for
therapeutic interventions affecting cholesterol and lipoprotein
metabolism are being discovered. For example, lncRNA
called LASER has been implicated to participate in cholester-
ol homeostasis in hepatocytes [32]. Likely, there are other yet
unidentified lncRNAs and other RNA species participating in
this regulation as well.

New Potential Targets in Atherogenesis

There are several critical steps in early atherogenesis,
which might serve as targets for new therapies to prevent
or regress vascular diseases. In the early stages of athero-
sclerosis, dysfunctional arterial endothelium allows exces-
sive LDL to penetrate the endothelial layer and adhere to
intimal proteoglycans via (ApoB100) and gradually accu-
mulate into the intimal layer [33, 34]. Intimal LDL accu-
mulation provokes the expression of adhesion molecules
and chemotactic proteins from endothelial cells that en-
hances the adhesion of circulating monocytes and other
inflammatory cells in the arterial wall. A few miRNAs,
such as miR-126 and miR-155, have been shown to im-
prove endothelial function and inhibit adhesion of leuko-
cytes and thereby possess anti-atherogenic properties [35,
36]. Several other miRNAs are known to regulate prolif-
eration and apoptosis of endothelial cells [37, 38], and
affect endothelial cell senescence, which lead to endothe-
lial dysfunction [39]. Interestingly, antagomirs directed
against miR-92a prevents endothelial dysfunction and ath-
erosclerotic lesion progression in mice [40]. Moreover,
global run-on sequencing-based transcriptional profiling
of hypoxic endothelial cells showed several non-coding
RNAs which are differentially regulated in atherosclerotic
plaques [41] and therefore, might be potential targets for
RNA therapies. The inhibition of chemokine monocyte
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chemoattractant protein 1 (MCP-1) and its receptor che-
mokine (C-C Motif) receptor 2 (CCR2) have shown to
inhibit plaque growth and monocyte accumulation in the
plaque in RNAi-based gene silencing studies [42–45]. An
interesting new inhibitor of MCP-1, emapticap pegol
(NOX-E36), is a 40-nucleotide oligonucleotide aptamer
that binds and inhibits MCP-1 with high affinity and spec-
ificity. It has been studied in a phase II trial in diabetic
patients with albuminuria (NCT01547897) [46] and
shown to dr ive macrophages towards an an t i -
inflammatory phenotype in mice [47]. A recent study
showed that lncRNA MANTIS affects endothelial cell
monocyte adhesion via ICAM-1 [48]. Furthermore, statins
were shown to upregulate MANTIS. Thus, MANTIS
might be involved in pleiotropic effects of statins [48].
MANTIS appears to be a multifunctional atheroprotective
lncRNA awaiting further studies to explore its role in
therapeutic applications.

In the intima, LDL undergoes oxidative modification and is
taken up by macrophages that transform into foam cells, which
accumulate in arterial intima forming fatty streaks [42, 49].
Cholesterol can be transported to and frommacrophages by sev-
eral mechanisms that are potential targets to inhibit atherosclerot-
ic plaque formation and progression [50]. Macrophages express
several pattern recognition receptors (PRRs), such as scavenger
receptor A1 (SR-A1), macrophage receptor with collagenous
structure (MARCO or SR-A2), CD36, scavenger receptor class
B type 1 (SR-B1), lectin-like oxidized LDL receptor 1 (LOX-1),
and CXCL16, which are scavenger receptors for oxidized LDL
[51], but SR-A1 and CD36 mediate as much as 75–90% of
modified LDL uptake in in vitro conditions. These receptors
are important targets to inhibit macrophage foam cell formation,
as well as plaque macrophage apoptosis, migration of mono-
cytes, and plaque inflammatory responses [52]. It has been
shown that macrophage scavenger receptor expression can be
modulated with RNAi to exert an effect on development of ath-
erosclerosis [53]. Moreover, macrophage reverse cholesterol
transport is an interesting target, as several miRNAs have been
found to regulate sterol-regulated transcription factors, liver X
receptors α and β activated ATP-binding cassette (ABC) trans-
porters ABCA1 and ABCG1 that mediate the transportation of
free cholesterol to lipid-poor apolipoprotein A1 (apoAI) to form
nascent or lapidated HDL particle [35, 54]. Lately, the role of
lncRNAs in cholesterol homeostasis has been studied.
Subsequently, a lncRNA named as LeXis regulates crosstalk
between liver X receptor and SREBP and sustains hepatic sterol
content and serum cholesterol levels [55•]. As a therapeutic ap-
proach, AAV-mediated overexpression of LeXis has been shown
to lower serum cholesterol and TG levels, and furthermore re-
duce atherosclerosis burden [55•]. Additionally, the same group
discovered another lncRNA MeXis, which regulates macro-
phage cholesterol efflux through ABCA1 [56]. Moreover, a
primate-specific lncRNA CHROME elevated in atherosclerotic

plaques has been identified, which is upregulated in response to
increased cholesterol levels through LXR [57•]. Knockdown of
CHROME reduces ABCA1 expression and increases several
miRNAs involved in cholesterol metabolism. Thus, CHROME
appears to play a key role in cholesterol homeostasis in humans
among lncRNAs. Finally, a lncRNA AC096664.3 has been
shown to play a role in PPARγ and ABCG1-mediated choles-
terol signaling in smooth muscle cells [58], whereas lncRNA
ENST00000602558.1 has been shown to regulate ABCG1 in
vascular smooth muscle cells via nuclear factor κB (NF-κB)
p65 [59]. This suggests that there are numerous RNAs involved
in the cholesterol trafficking inmacrophages and other cell types,
which can serve as potential targets for future attempts to regulate
cholesterol accumulation in order to affect atherogenesis.

Several previously discussed nucleic acid–based therapies
targeted to ApoB, PCSK9, ANGPTL3, Lp(a), and ApoC-III
are promising tools to resolve plaque inflammation via reduction
in cholesterol levels. In hypercholesterolemic mouse models,
reduction in plasma cholesterol reduces plaque inflammation
[60–62]. In addition, recently, a high-fat diet-regulated miRNA
gene network was found from baboons [63]. ThesemiRNAs had
discordant effects on plasma LDL concentration and might serve
as potential targets for LDL lowering. Nevertheless, treatments
targeted to plaque inflammation itself are still very limited. Local
inflammatory stimulus within plaques activates macrophages,
mast cells, and T cells to release cytokines that regulate cell
migration and adhesion. In addition, pro-inflammatory stimulus
in the vascular wall inhibits fibrotic cap formation by decreasing
collagen synthesis and by increasing the amount of proteases that
digest extracellular matrix proteins [42, 64]. Intracellular choles-
terol and pro-inflammatory mediators induce the NF-κB path-
way in plaque macrophages [65]. NF-κB is a master regulator of
pro-inflammatory effects in the atheroma plaque, and thus,
NF-κB-targeted therapies possess great potential to strike against
atheroma plaque development and instability. Interestingly,
miRNA-146a has shown great potential in inhibiting NF-κB
activation and limiting the development of atherosclerotic
plaques in mice [66]. MiRNA-210 is believed to enhance fibrous
cap stability in atherosclerotic lesions [67]. A lncRNAMALAT1
has been linked to plaque inflammation, hematopoietic deficien-
cy of MALAT1 promoting accumulation of inflammatory cells
in lesions in an atherosclerotic mouse model [68•]. In humans,
higher MALAT1 levels in plaques were shown to correlate with
fewer forthcoming major adverse cardiovascular events [68•]. In
addition, lncRNA called SENCR (smooth muscle and endothe-
lial cell-enriched migration/differentiation-associated lncRNA)
was found from human coronary artery smooth muscle cells by
sequencing and shown to inhibit smooth muscle cell migration
[69]. The long intergenic non-coding RNA-p21 (lincRNA-p21)
is shown to regulate p53, a master regulator of cell proliferation
and apoptosis, and thereby affecting atherogenesis. LincRNA-
p21 is reduced in human coronary atherosclerosis and in a hy-
percholesterolemic mouse model [70]. In addition, its inhibition
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by lentivirus-driven supply of siRNA results in neointimal hy-
perplasia after carotid artery injury [70].

Genome-wide association studies have identified an anti-
sense non-coding RNA ANRIL (antisense non-coding RNA
in the INK4 locus), located at the chromosome 9 p21 locus,
which is currently the most significant risk region for athero-
sclerosis and coronary artery disease. ANRIL has several ef-
fects in different vascular cell types, but underlying mecha-
nisms how ANRIL affects atherogenesis are not known [71,
72]. In addition, multiple linear and circular splicing variants
of ANRIL have shown to have pro- and anti-atherogenic ef-
fects, but the specific mechanisms need to be investigated [73].
ANRIL, like other ncRNAs, are able to regulate the expression
of their neighboring genes via cis-trans gene regulation, and
further influence microRNA signaling, thus providing multiple
potential therapeutic targets for the treatment of atherosclerosis.
Interestingly, the coronary artery disease risk associated with
Chr9p21 and ANRIL seems to be independent of plasma cho-
lesterol levels and other classical risk factors [74]. ANRIL has
been proposed to regulate vascular cell inflammation, viability,
proliferation, and senescence, thereby providing novelty for the
future atherosclerosis therapies [71, 73, 75–77]. Overall,
lncRNAs are promising targets for the development of new
therapeutic approaches for cardiovascular diseases.

CRISPR/Cas9 Gene Editing as a Novel
Therapeutic Approach for Atherosclerosis?

Most of the abovementioned genes modulating lipid homeo-
stasis and being targets for RNA therapeutics have been al-
ready explored with CRISPR/Cas9 gene editing technique.
First, it was shown by 2 independent studies that CRISPR-
mediated modification of PCSK9 led to over 50% or 80%
editing after single administration [65, 66]. This modification
reduced serum PSCK9 levels to undetectable levels and
lowered cholesterol 30–40% in mice [78•, 79]. Recently, a
knock-in mouse model with liver-specific expression of hu-
man PCSK9 has been developed [80]. In this model, CRISPR-
mediated editing was used to individually affect human or
mouse PCSK9 and alter cholesterol levels regulated by human
PCSK9 [80]. Thus, this model might be suitable for studies
where new therapies against PCSK9 are explored. LDL recep-
tor CRISPR knockout led to severe hypercholesterolemia and
atherosclerosis in mice [81]. Subsequently, when the same
animals were knocked out for ApoB, the disease was
completely eradicated. In addition, CRISPR/Cas9-mediated
LDLR/ApoE-deficient pigs have been generated [82].
Moreover, CRISPR/Cas9 gene editing has been used to gen-
erate hyperlipidemic rabbits by knocking down LDL receptor
alone or in combination with ApoE [83]. Moreover,
ANGPTL3 has been interrupted with CRISPR/Cas9 system
[84]. This led to lower ANGPTL3, TG, and cholesterol levels.

It is clear that CRISPR/Cas9 gene editing will serve as a valu-
able research tool in atherosclerosis but might also offer new
treatment possibilities via gene therapy approaches.

Conclusions

In summary, multiple RNA-based and/or RNA-targeted thera-
peutics are now heading for phase III trials. Results of trials are
eagerly waited. Moreover, CRIPSR/Cas9 gene modification
technique has rapidly consolidated its role in creating models
and therapies for cardiovascular diseases. This technique will
provide generation of novel models useful in studying the path-
ogenesis and therapies of atherosclerosis. Also, when it comes
to lncRNAs, the journey has just taken the first steps.
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