Skip to main content

Advertisement

Log in

The interaction of coronary tone and cardiac fibrosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Regulation of coronary vascular tone is critical for proper perfusion and function of the myocardium. Many disease processes result in compromised regulation of coronary vascular tone and impaired myocardial perfusion. A common result of coronary vascular dysfunction is the development of areas of replacement fibrosis within the myocardium and surrounding the vasculature. Both intravascular processes, such as coronary atherosclerosis and endothelial dysfunction, and extravascular processes, including compromised myocardial metabolism, hormone excesses, and altered local signaling, may result in coronary vascular dysregulation. Coronary occlusion events, in turn, lead to myocardial damage and the activation of inflammatory cells and fibroblasts. The role of fibroblasts in regulating myocardial fibrosis and the contribution of myofibroblasts, cells that have limited contractile potential while retaining many of the extracellular matrix regulating processes of the fibroblast, may also contribute to the development of myocardial disease. In this review we examine the recent literature on myocardial fibrosis and myofibroblast activity, highlighting the effects of several classes of cardiovascular agents on the remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Duncker DJ, Bache RJ: Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 2000, 86:87–110.

    Article  PubMed  CAS  Google Scholar 

  2. Konidala S, Gutterman DD: Coronary vasospasm and the regulation of coronary blood flow. Prog Cardiovasc Dis 2004, 46:349–373.

    Article  PubMed  Google Scholar 

  3. Zimmerman FH, Gustafson GM, Kemp HG Jr: Recurrent myocardial infarction associated with cocaine abuse in a young man with normal coronary arteries: evidence for coronary artery spasm culminating in thrombosis. J Am Coll Cardiol 1987, 9:964–968.

    Article  PubMed  CAS  Google Scholar 

  4. Myers GH, Hansen TH, Jain A: Left main coronary artery and femoral artery vasospasm associated with cocaine use. Chest 1991, 100:257–258.

    PubMed  CAS  Google Scholar 

  5. Sztajzel J, Mach F, Righetti A: Role of the vascular endothelium in patients with angina pectoris or acute myocardial infarction with normal coronary arteries. Postgrad Med J 2000, 76:16–21.

    Article  PubMed  CAS  Google Scholar 

  6. Keller KB, Lemberg L: The cocaine-abused heart. Am J Crit Care 2003, 12:562–566.

    PubMed  Google Scholar 

  7. Soejima H, Miyamoto S, Kojima S, et al.: Coronary spastic angina in patients with connective tissue disease. Circ J 2004, 68:367–370.

    Article  PubMed  Google Scholar 

  8. Low AF, Chia BL, Ng WL, Lim YT: Bridge over troubling spasm: is the association of myocardial bridging and coronary artery spasm a distinct entity? Three case reports. Angiology 2004, 55:217–220.

    Article  PubMed  Google Scholar 

  9. Teragawa H, Fukuda Y, Matsuda K, et al.: Myocardial bridging increases the risk of coronary spasm. Clin Cardiol 2003, 26:377–383.

    PubMed  Google Scholar 

  10. Bertrand ME, Lablanche JM, Fourrier JL, Traisnel G: Percutaneous transluminal coronary angioplasty in patients with spasm superimposed on atherosclerotic narrowing. Br Heart J 1987, 58:469–472.

    PubMed  CAS  Google Scholar 

  11. Persin GA, Matthai WH Jr: Catheter-induced spasm of the left main coronary artery. J Invasive Cardiol 2000, 12:158–161.

    PubMed  CAS  Google Scholar 

  12. Wah DS, Wang Y, Wang YQ, et al.: Multivessel spasm during coronary and peripheral angiography. J Invasive Cardiol 2001, 13:320–322.

    PubMed  CAS  Google Scholar 

  13. Hung MJ, Wang CH, Kuo LT, Cherng WJ: Coronary artery spasm-induced paroxysmal atrial fibrillation—a case report. Angiology 2001, 52:559–562.

    PubMed  CAS  Google Scholar 

  14. Hattori R, Murohara Y, Yui Y, et al.: Diffuse triple-vessel coronary artery spasm complicated by idioventricular rhythm and syncope. Chest 1987, 92:183–185.

    PubMed  CAS  Google Scholar 

  15. Conti CR: Large vessel coronary vasospasm: diagnosis, natural history and treatment. Am J Cardiol 1985, 55:41B-49B.

    Article  PubMed  CAS  Google Scholar 

  16. Schindler TH, Hornig B, Buser PT, et al.: Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arterioscler Thromb Vasc Biol 2003, 23:495–501.

    Article  PubMed  CAS  Google Scholar 

  17. Sueda S, Kohno H, Fukuda H, et al.: Limitations of medical therapy in patients with pure coronary spastic angina. Chest 2003, 123:380–386.

    Article  PubMed  Google Scholar 

  18. Chutkow WA, Pu J, Wheeler MT, et al.: Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J Clin Invest 2002, 110:203–208.

    Article  PubMed  CAS  Google Scholar 

  19. Miki T, Suzuki M, Shibasaki T, et al.: Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 2002, 8:466–472.

    Article  PubMed  CAS  Google Scholar 

  20. Gross GJ, Peart JN: KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003, 285:H921-H930.

    PubMed  CAS  Google Scholar 

  21. Factor SM, Sonnenblick EH: Hypothesis: is congestive cardiomyopathy caused by a hyperreactive myocardial microcirculation (microvascular spasm)? Am J Cardiol 1982, 50:1149–1152.

    Article  PubMed  CAS  Google Scholar 

  22. Sonnenblick EH, Fein F, Capasso JM, Factor SM: Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential primary therapy. Am J Cardiol 1985, 55:179B-184B.

    Article  PubMed  CAS  Google Scholar 

  23. Coral-Vazquez R, Cohn RD, Moore SA, et al.: Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 1999, 98:465–474.

    Article  PubMed  CAS  Google Scholar 

  24. Barresi R, Moore SA, Stolle CA, et al.: Expression of gamma-sarcoglycan in smooth muscle and its interaction with the smooth muscle sarcoglycan-sarcospan complex. J Biol Chem 2000, 275:38554–38560.

    Article  PubMed  CAS  Google Scholar 

  25. Cohn RD, Durbeej M, Moore SA, et al.: Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J Clin Invest 2001, 107:R1-R7.

    PubMed  CAS  Google Scholar 

  26. Durbeej M, Cohn RD, Hrstka RF, et al.: Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell 2000, 5:141–151.

    Article  PubMed  CAS  Google Scholar 

  27. Hack AA, Ly CT, Jiang F, et al.: Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J Cell Biol 1998, 142:1279–1287.

    Article  PubMed  CAS  Google Scholar 

  28. Tanowitz HB, Kaul DK, Chen B, et al.: Compromised microcirculation in acute murine Trypanosoma cruzi infection. J Parasitol 1996, 82:124–130.

    Article  PubMed  CAS  Google Scholar 

  29. Sole MJ, Liu P: Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J Am Coll Cardiol 1993, 22:99A-105A.

    Article  PubMed  CAS  Google Scholar 

  30. Jelicks LA, Chandra M, Shtutin V, et al.: Phosphoramidon treatment improves the consequences of chagasic heart disease in mice. Clin Sci (Lond) 2002, 103(Suppl 48):267S-271S.

    CAS  Google Scholar 

  31. Silver MA, Kowalczyk D: Coronary microvascular narrowing in acute murine coxsackie B3 myocarditis. Am Heart J 1989, 118:173–174.

    Article  PubMed  CAS  Google Scholar 

  32. Dong R, Liu P, Wee L, et al.: Verapamil ameliorates the clinical and pathological course of murine myocarditis. J Clin Invest 1992, 90:2022–2030.

    PubMed  CAS  Google Scholar 

  33. Lee JK, Zaidi SH, Liu P, et al.: A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med 1998, 4:1383–1391.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki N, Seto S, Koide Y, et al.: Coexistence of familial hypertrophic cardiomyopathy and vasospastic angina pectoris in two brothers. Jpn Heart J 2003, 44:775–782.

    Article  PubMed  Google Scholar 

  35. Petersen HH, Choy J, Stauffer B, et al.: Coronary artery myogenic response in a genetic model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2002, 283:H2244-H2249.

    PubMed  CAS  Google Scholar 

  36. Fang ZY, Prins JB, Marwick TH: Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004, 25:543–567.

    Article  PubMed  CAS  Google Scholar 

  37. Wheeler MT, Korcarz CE, Collins KA, et al.: Secondary coronary artery vasospasm promotes cardiomyopathy progression. Am J Pathol 2004, 164:1063–1071.

    PubMed  Google Scholar 

  38. Wheeler MT, Allikian MJ, Heydemann A, et al.: Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. J Clin Invest 2004, 113:668–675.

    Article  PubMed  CAS  Google Scholar 

  39. Heydemann A, Huber JM, Kakkar R, et al.: Functional nitric oxide synthase mislocalization in cardiomyopathy. J Mol Cell Cardiol 2004, 36:213–223.

    Article  PubMed  CAS  Google Scholar 

  40. Leslie KO, Taatjes DJ, Schwarz J, et al.: Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol 1991, 139:207–216.

    PubMed  CAS  Google Scholar 

  41. Wang J, Chen H, Seth A, McCulloch CA: Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2003, 285: H1871-H1881.

    PubMed  CAS  Google Scholar 

  42. Straino S, Germani A, Di Carlo A, et al.: Enhanced arteriogenesis and wound repair in dystrophin-deficient mdx mice. Circulation 2004, 110:3341–3348.

    Article  PubMed  CAS  Google Scholar 

  43. Thomas GD, Shaul PW, Yuhanna IS, et al.: Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal nitric oxide synthase. Circ Res 2003, 92:554–560.

    Article  PubMed  CAS  Google Scholar 

  44. Sander M, Chavoshan B, Harris SA, et al.: Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2000, 97:13818–13823.

    Article  PubMed  CAS  Google Scholar 

  45. Brenman JE, Chao DS, Xia H, et al.: Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995, 82:743–752.

    Article  PubMed  CAS  Google Scholar 

  46. Porter KE, Turner NA, O’Regan DJ, Ball SG: Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: inhibition by simvastatin. Cardiovasc Res 2004, 64:507–515.

    Article  PubMed  CAS  Google Scholar 

  47. Lovelock JD, Baker AH, Gao F, et al.: Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2005, 288:H461-H468.

    Article  PubMed  CAS  Google Scholar 

  48. Chintaglattu V, Nair DM, Katwa LC: Cardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol 2003, 35:277–286.

    Article  CAS  Google Scholar 

  49. Wang F, Trial J, Diwan A, et al.: Regulation of cardiac fibroblast cellular function by leukemia inhibitory factor. J Mol Cell Cardiol 2002, 34:1309–1316.

    Article  PubMed  CAS  Google Scholar 

  50. Kuwahara F, Kai H, Tokuda K, et al.: Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 2002, 106:130–135.

    Article  PubMed  CAS  Google Scholar 

  51. Matsusaka T, Katori H, Inagami T, et al.: Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. J Clin Invest 1999, 103:1451–1458.

    Article  PubMed  CAS  Google Scholar 

  52. Peng J, Gurantz D, Tran V, et al.: Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res 2002, 91:1119–1126.

    Article  PubMed  CAS  Google Scholar 

  53. Jacobs M, Staufenberger S, Gergs U, et al.: Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol 1999, 31:1949–1959.

    Article  PubMed  CAS  Google Scholar 

  54. Gurantz D, Cowling RT, Villarreal FJ, Greenberg BH: Tumor necrosis factor-alpha upregulates angiotensin II type 1 receptors on cardiac fibroblasts. Circ Res 1999, 85:272–279.

    PubMed  CAS  Google Scholar 

  55. Petrov VV, Fagard RH, Lijnen PJ: Stimulation of collagen production by transforming growth factor-beta 1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 2002, 39:258–263.

    Article  PubMed  CAS  Google Scholar 

  56. Kapoun AM, Liang F, O’Young G, et al.: B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 2004, 94:453–461.

    Article  PubMed  CAS  Google Scholar 

  57. Tamura N, Ogawa Y, Chusho H, et al.: Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A 2000, 97:4239–4244.

    Article  PubMed  CAS  Google Scholar 

  58. Katwa LC: Cardiac myofibroblasts isolated from the site of myocardial infarction express endothelin de novo. Am J Physiol Heart Circ Physiol 2003, 285:H1132-H1139.

    PubMed  CAS  Google Scholar 

  59. McNair LL, Salamanca DA, Khalil RA: Endothelin-1 promotes Ca2+ antagonist-insensitive coronary smooth muscle contraction via activation of epsilon-protein kinase C. Hypertension 2004, 43:897–904.

    Article  PubMed  CAS  Google Scholar 

  60. Cingolani OH, Yang XP, Liu YH, et al.: Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertension 2004, 43:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  61. Fraccarollo D, Galuppo P, Hildemann S, et al.: Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 2003, 42:1666–1673.

    Article  PubMed  CAS  Google Scholar 

  62. Porter KE, Turner NA, O’Regan DJ, et al.: Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 2004, 61:745–755.

    Article  PubMed  CAS  Google Scholar 

  63. Bauersachs J, Galuppo P, Fraccarollo D, et al.: Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 2001, 104:982–985.

    PubMed  CAS  Google Scholar 

  64. Patel R, Nagueh SF, Tsybouleva N, et al.: Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001, 104:317–324.

    PubMed  CAS  Google Scholar 

  65. Schieffer B, Wirger A, Meybrunn M, et al.: Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994, 89:2273–2282.

    PubMed  CAS  Google Scholar 

  66. Kim S, Yoshiyama M, Izumi Y, et al.: Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 2001, 103:148–154.

    PubMed  CAS  Google Scholar 

  67. Mankad S, d’Amato TA, Reichek N, et al.: Combined angiotensin II receptor antagonism and angiotensin-converting enzyme inhibition further attenuates postinfarction left ventricular remodeling. Circulation 2001, 103:2845–2850.

    PubMed  CAS  Google Scholar 

  68. Takemoto M, Egashira K, Tomita H, et al.: Chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade: effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis. Hypertension 1997, 30:1621–1627.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, M.T., McNally, E.M. The interaction of coronary tone and cardiac fibrosis. Curr Atheroscler Rep 7, 219–226 (2005). https://doi.org/10.1007/s11883-005-0010-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-005-0010-8

Keywords

Navigation